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Radial growth of C? functions satisfying Bloch type condition
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ABSTRACT. The aim of this paper is to give a simple proof of results by Gonzélez-
Koskela concerning the radial growth of C? functions satisfying Bloch type condition.
Our results also give generalizations of their results.

1. Introduction

Denote by # the Bloch space of all holomorphic functions f on the unit
disk U which satisfy

/115 = 1/ (0)] + Sug(l — 211 (2)] < o0
pAS
The radial growth of Bloch functions was extensively discussed by Clunie-

MacGregor [2], Korenblum [4], Makarov [5] and Pommerenke [7]. The law of
the iterated logarithm of Makarov [5] states that if f € %, then

o103
r—1 \/log 1= logloglog =

< Clf Nl (1)

for almost every { € dU, where C is a universal constant. Pommerenke [7]
proved that this inequality is true for C =1 and this inequality is false for
C <0.685. Recently, Gonzalez and Koskela studied the radial growth of C?
functions on the unit ball B” of R” which satisfy
V(o) + () du(x)| < Y @
(1~ Jx|)? (log :2)

for all x e B”, where ¢ >0 and y < 1. They showed the following result (|3,
Theorem 1.2]).
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TueoreM A. Let u be a C? function on B" satisfying (2). Then, for
almost all ¢, |{| =1,

lim sup |ul(rC)|
r—1 \/(log =) " loglog 1

<

if y<1, and

lim sup M <
r—1 log log 1—r

if y=1. Here the constants ¢, and ¢, depend only on n,c,7y.

We denote by B(x,r) and S(x,r) the open ball and the sphere of center
x and radius r, respectively. We set B" = B(0,1) and S"' = S(0,1). The
Hausdorff measure with a measure function 4 is written as #j,. In case
h(r) = r*, we write #, for #,.

Our first aim in the present note is to extend Theorem A by Gonzailez-
Koskela. For this purpose, let ¢ be a positive, continuous and non-decreasing
function on the interval [0,1) satisfying

p(l —r/2) < Ap(1 —r) for every re (0,1) (3)

with a constant 4 > 1 and

Set

D(r) = J (1 = 0)p(t)dr.
0
TueoreMm 1. Let u be a C? function on B" with u(0) =0 such that
Ay (x) = Vu(x)|* + [u(x)du(x)| < o(]x])  for all xeB". (5)

Then for H,_-a.e. {€S" !,

lim sup ju(rd)] < V4.
r—1 @(r) loglog -

REMARK 1. If we take ¢(r) = ¢(1 — ) *{log(2/(1 —r))} 7 for ¢ >0 and
y» <1, then Theorem 1 gives Theorem A.

On the other hand, we have the lower limit result as follows:

THEOREM 2. [If u is as in Theorem 1, then
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lim inf [u(r)|

<2
=1 /®(r) loglog ®(r)

for Hy_i-a.e. {eS"L.
By Theorems 1 and 2, we have the following corollary.

COROLLARY 1. Let u be a C? function on B" satisfying

B | -1 1 -1 1 -7
Au(x) < ¢(1 = |x]) 2(10g<1) 1_—|x|> <1°g</1> - x|) (log“) 1 - |x|> ’

where ¢ >0, y <1 and log (1) = logy, olog(7) with log(1) = log(e + 7).
Then for #,_i-a.e. {e€S"!,

lim sup ju(rO) <c
r—1 1 1 1—y l 1
Og(/) 1—r Og(z) 1—r
and
lim inf |”(1rC)I <o
r— —y
(logm 1—1_,> log(/+2) ﬁ
when y < 1;
lim sup |u(rQ)| <c
=1\ Jlogy 15 logg) 15
and
lim 11nf [ur0)] <
" \/log /+1) % 8(/+3) ﬁ

when y=1. Here cj,cp,c3 and ¢4 are constants depending only on ¢,y and /.

2. Exponential integral

In this section, we present an exponential estimate for C? functions
satisfying (5). For this we prepare the following lemma, which is a gener-
alization of [3, Theorem 2.2].

LEmMMA 1. Let ¢ be a positive continuous function on [0,1), and set

D(r) = J (1 = t)p(t)dr.

0
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Let u be a C? function in B" with u(0) = 0 which satisfies condition (5). Then
J u(r0)[**dS (L) < oudF kI [@(r)* (6)
Sn—l

for all ke {0,1,2,...} and all r € (0,1), where o, denotes the surface measure of
s" !

Proor. First we show that

%L”l v()dS() = Zl_"J Av(w)dw (7)

B(0,1)
for each ve C*>(B"). Using the divergence theorem, we have

d

ELH o(i)ds(C) = L £ Vo(i)dS(0)

= tl_”J . Vo(w)dS(w)
50,0 ¢

= tl_”J Av(w)dw.
B(0,1)

Thus (7) holds.

We prove this lemma by induction on k. Clearly, (6) holds for k = 0.
Suppose that (6) holds for k. Using (7) and the assumption on induction, we
obtain

d
Gl 0P as o

=2(k + 1)1 L(O ) ()| (u(w) du(w) + (2k + 1)|Vu(w)|*)dw

<4(k + 1)%17"] |u(w)|** 2, (w)dw
B(0,1)

t

< 4(k + 1)211*"J
0

oot (] lutom P astz))ap
<o R 15 | gl () dp
0

Integrating both sides from 0 to r and applying Fubini’s theorem, we have
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J () P4VAS(E) < ot Rk + 1) J o Jtp"_l(p(p)[d)(p)]kdpdt
Sl 0 0

= o, 4" K (ke + 1)2J (

[ dz)p"1w<p>[¢(p>]"dp
0

P

r

< o1+ 01| (ke 1= p)olp) () dp

= g, 4" (k + 1)1J 4 [@(p))dp
odp

= 0,45 (k + D)[@(r)* .
Hence (6) also holds for k+ 1. The induction is completed.

LeEmMMA 2. Let u be a function in B" satisfying condition (6). Then for all
¢, 0<c<1/4, and for all r, 0 <r <1,

Ju(rl)|? On
JSH exp <C|L;§(f))| )dS(C) < T (8)

Proor. If k is a non-negative integer, then, by (6), we have

2 k
1 (80 ot

for ¢ > 0. Hence it follows that

clu(r0)]? & (oY
Ln,, eXp( @(r) )dS(O_JMZ_!( @(r) )dS(C)

The series on the right converges if 0 < ¢ < 1/4 and thus our lemma is proved.

3. Proof of Theorem 1

Let ¢ and @ be as in the Introduction, and let u be as in Theorem 1.
To prove Theorem 1, we need the following two lemmas.

LemMA 3. For every 0 <r <1,

ININ

(1 —r/2) < Zd(1 —r) + (1)2).
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LemMA 4. Let u be a C? function in B" such that |Vu(x))* < o(|x|).
Then for every x € B"\B(0,1/2),

lu(y) — u(z)| < A[D(|x])]'"?
whenever y,z € B(x, (1 —|x])/2).
ProoF. We see that
lu(y) — u(z)] < (1 |xPe((1+ |x])/2)]'> < AV2(1 — |x])[p(|x])] "/
for all y,z e B(x, (1 —|x|)/2). On the other hand, we have for 1/2 <7< 1,

t t
D(1) > J (I = 9)p(s)ds > (2t — I)J (1 —s)ds > A*I(l — t)zga(t).
21 21
Thus Lemma 4 follows.

Proor oF THEOREM 1. From Lemma 2, we see that

! 2 N (el
Jo (107 (e 1) ep<¢(|x|) hos

for all ¢, 0 <c¢<1/4, and all 6 > 0. Then there exists a set E < S™ ! such
that #,_(E) =0 and

| —1-0 y 2
Jo(l —r)1<10g %) exp(dip((f))l )dr< 0,

for each (e S"*I\E, 0 <c<1/4 and 0 > 0, which implies that

(U2 _ 2\ clu(10)|?
1 _
}13} L (1—1) <log T t) exp( 0 dt = 0. 9)

Fix (e S" \E. For 0 <r< 1, define I, = [r,(1 +r)/2). From (9), we

obtain
Ly infc Ju(t0)]”) _
mn <l°g - ) X (m =0

which implies that

cinfeq [u(i0))?
471AD(r) + @(1/2) —

<(1+9) loglog (10)

for r near 1, by Lemma 3. Hence it follows from (10) and Lemma 4 that

lim sup

/A4 +5
=l /D loglog1 s
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Here, letting ¢ — 1/4 and 0 — 0, we obtain

lim sup ju(rO)l < VA4,
r—1 ?(r) loglog -

which proves Theorem 1.

4. Proof of Theorem 2

In this section we complete the proof of Theorem 2.
By Lemma 2, we see that

5 c|lu 2
(1 = [x)(1)) (1)) log @(lx))) "~ exp< bl )dx <o

for all ¢, 0 <c<1/4, and 6 > 0, where ry = @ !(e). Consequently,

lim Jl (1= 0p()®(1) " (log ®(2)) "~ exp (chng))'z) dt =0

JB”\B(O, V())

r—1

for #, 1-ae. (eS" !, 0<c< 1/4 and ¢ > 0. This implies that

lim Jl (1 = (@) (log D(1))""~° exp (“‘;gz) dt =0, (11)

r—1 ),

where g,({) = inf, < 1 [u(p{)|. Since e’ >dx for x > 0, we have

) g (0)
% <_(10g ®(1)) "' exp <—(1 +(3()p(t)g © ))

= (1+8)(1 — Np(1) (1) (log B(1)) >~ exp (T

+ (log @(1)) (1 = D)p(r) (1)
(1+0) eg:(0)° (1+9)egr(0)?
% ( o(1) ) exP( ®(1)

< (1+0+6)(1 = )p()@(1) ' (log &(z)) "~ exp (cyr(£)2>

for rp <t<1. From (11), we obtain

lirrll(log d(r)) "' exp <
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which implies that

(1+46) egr(0)?

o0 < (1+0) loglog @&(r)

for r near 1. By letting ¢ — 1/4 and 0 — 0, we have

lim sup LC)Z <4
P B () loglog @(r) =

which completes the proof of Theorem 2.

COROLLARY 2. Let ¢ and @ be as in the Introduction. Let u be a
harmonic function on B" satisfying

Vu(x)|* < o(lx])  for all xeB”".
Then

lim sup u(ro)l
r—1 /®(r) loglog ®(r) ~

for A_y-a.e (e s
Proor. Consider the radial maximal function of u defined by

R(r,() = max |u(t0)] for 0 <r<1 and {eS" "

o<t<r

By the Hardy-Littlewood maximal theorem [1, Chapter 6] and Lemma I,

an—' Bu(r, OI*dS() < J () XS (0) < c1o,4 kI D(r)]*

s"

for all k and 0 < r < 1, where ¢ is a constant depending only on n. As in the
proof of Theorem 1, we have

1 5 |\ 2
lim J (1= )p()@(1)"" (log ®(£)) " exp (%) dt =0

for #,_j-ae. (eS" L alle, 0 <er < 1/4, and 6 > 0. Hence we see as in the
proof of Theorem 2 that

lim sup Aulr,¢)
=1 /®(r) loglog ®(r) ~

holds for #,_j-a.e. {eS" 1. Since #,(r,() > |u(r)|, we have
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: |u(r))|
hr?_?lup \/®(r) loglog &(r) =2

for #, 1-a.e. {€S""!, which yields the required conclusion.

REMARK 2. Let u be a harmonic function on B” satisfying

Jull = sup (1 — ) Vu(x)]| < oo

xeB”

Then Corollary 2 says that

lim su [u(r)l
p
r—1 \/log = logloglog -

< 2l

for #,_j-a.e. {eS" .

5. Hausdorff measures and radial growth

Let ¢ and @ be as in the Introduction. Take a positive non-decreasing
function ¥ on [0,1) satisfying

@(r) loglog(1/(1 —r))

[T(r)]z — 0 as r — 1.

For A > 0, consider the measure function

We finally establish the following result.

THEOREM 3. If 2. >0 and u is as in Theorem 1, then

: u(rd)|
lim su <2
70

for Hy,-ae (€S

Proor. In view of Lemma 2, we see that

-2 2
J "(1 — a7 <log i —2|x|> exp(%)dx <o

for all ¢;, 0 < ¢; < 1/4. By the covering theorem, there exists a set F < S
such that s, (F) =0 and
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_ -1 2 \? N cl|u(x)|2 B
N (roe 1213 ep( q><|x|>>d"‘0 (12

for {eS"'\F and 0 < ¢; < 1/4 (cf. [6, Lemma 5.8.2]).
Fix (eS"'\F. For 0<t<1, writt D, =B((1—0){+4"1¢ 47").
Since D; = B({,t)NB", we have

. 2\ (elu)?

(1= o)™ (toe =) exp( o) )™
) 2

> [hy(50)] JD (1= <log I _2 |x|> xp (%) o

-2 . ulx 2

tim(57)]” J

s |

B(Z,)NB"

2
> ¢y exp (—43A4/12 P =S 2 loglog(1/7) +

¢1 inf e p, |u(x))?
&(1 — 5¢) ’

D(1 —1/2)
where ¢, is a positive constant. From (12), we obtain

crinfeep, [u(®)> _ 5 4,0 [P =50
e infxep )l A Z0OF 15 1oglog(1
D112 AT gy T2 losloe(l/)

for sufficiently small # > 0. By Lemma 3, we have

(1 -1’
(—)c+2 loglog(1/1)
3

c1 infyep, |u(x)|? <A7'2?
4TAD(1 — 1) + @(1/2) ~ 2=0-

where ¢; = @(1/2)((4/4)° + (4/4)* + (4/4)), which implies that

inf, 2
lim sup infrep [u(x)|"

5 s
t—0 W(l - t)

<L
~ dq

Hence it follows from Lemma 4 that

(- 00]
ISP T < VA

Letting ¢; — 1/4, we obtain

. 1 -
i =

which proves Theorem 3.
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REMARK 3. If we take ¢(r) = (1 — ) *{log(2/(1 —r))} 7, y < 1, then the

conclusion of Theorem 3 says that

. u(r0)
USSP og(1/(1 - My =

for #-a.e. {e€S"', where 2 > 1 —y and

h(r) = 1"~ exp[4* A4~/ {log(1/2)} 7).

Thus Theorem 3 can not cover [3, Theorem 1.3] by Gonzalez-Koskela.
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