Radial growth of C^2 functions satisfying Bloch type condition

Dedicated to Professor Makoto Sakai on the occasion of his sixtieth birthday

Toshihide Futamura and Yoshihiro Mizuta (Received May 27, 2003)

ABSTRACT. The aim of this paper is to give a simple proof of results by González-Koskela concerning the radial growth of C^2 functions satisfying Bloch type condition. Our results also give generalizations of their results.

1. Introduction

Denote by \mathcal{B} the Bloch space of all holomorphic functions f on the unit disk U which satisfy

$$||f||_{\mathscr{B}} = |f(0)| + \sup_{z \in U} (1 - |z|^2)|f'(z)| < \infty.$$

The radial growth of Bloch functions was extensively discussed by Clunie-MacGregor [2], Korenblum [4], Makarov [5] and Pommerenke [7]. The law of the iterated logarithm of Makarov [5] states that if $f \in \mathcal{B}$, then

$$\limsup_{r \to 1} \frac{|f(r\zeta)|}{\sqrt{\log \frac{1}{1-r} \log \log \log \frac{1}{1-r}}} \le C||f||_{\mathscr{B}} \tag{1}$$

for almost every $\zeta \in \partial U$, where C is a universal constant. Pommerenke [7] proved that this inequality is true for C=1 and this inequality is false for $C \leq 0.685$. Recently, González and Koskela studied the radial growth of C^2 functions on the unit ball \mathbf{B}^n of \mathbf{R}^n which satisfy

$$|\nabla u(x)|^2 + |u(x)\Delta u(x)| \le \frac{c}{(1-|x|)^2 \left(\log\frac{2}{1-|x|}\right)^{\gamma}}$$
(2)

for all $x \in \mathbf{B}^n$, where c > 0 and $\gamma \le 1$. They showed the following result ([3, Theorem 1.2]).

²⁰⁰⁰ Mathematics Subject Classification. Primary 31B25.

Key words and phrases. radial growth, Bloch condition, law of the iterated logarithm, Hausdorff measures.

THEOREM A. Let u be a C^2 function on \mathbf{B}^n satisfying (2). Then, for almost all ζ , $|\zeta| = 1$,

$$\limsup_{r \to 1} \frac{|u(r\zeta)|}{\sqrt{\left(\log \frac{1}{1-r}\right)^{1-\gamma} \log \log \frac{1}{1-r}}} \le c_1$$

if $\gamma < 1$; and

$$\limsup_{r \to 1} \frac{|u(r\zeta)|}{\log \log \frac{1}{1-r}} \le c_2$$

if $\gamma = 1$. Here the constants c_1 and c_2 depend only on n, c, γ .

We denote by B(x,r) and S(x,r) the open ball and the sphere of center x and radius r, respectively. We set $\mathbf{B}^n = B(0,1)$ and $\mathbf{S}^{n-1} = S(0,1)$. The Hausdorff measure with a measure function h is written as \mathscr{H}_h . In case $h(r) = r^{\alpha}$, we write \mathscr{H}_{α} for \mathscr{H}_h .

Our first aim in the present note is to extend Theorem A by González-Koskela. For this purpose, let φ be a positive, continuous and non-decreasing function on the interval [0,1) satisfying

$$\varphi(1 - r/2) \le A\varphi(1 - r)$$
 for every $r \in (0, 1)$ (3)

with a constant $A \ge 1$ and

$$\int_0^1 (1-t)\varphi(t)dt = \infty. \tag{4}$$

Set

$$\Phi(r) = \int_0^r (1-t)\varphi(t)dt.$$

THEOREM 1. Let u be a C^2 function on \mathbf{B}^n with u(0) = 0 such that

$$\mathscr{A}_{u}(x) = |\nabla u(x)|^{2} + |u(x)\Delta u(x)| \le \varphi(|x|) \quad \text{for all } x \in \mathbf{B}^{n}.$$
 (5)

Then for \mathcal{H}_{n-1} -a.e. $\zeta \in \mathbf{S}^{n-1}$,

$$\limsup_{r \to 1} \frac{|u(r\zeta)|}{\sqrt{\Phi(r)\log\log\frac{1}{1-r}}} \le \sqrt{A}.$$

REMARK 1. If we take $\varphi(r) = c(1-r)^{-2} \{\log(2/(1-r))\}^{-\gamma}$ for c > 0 and $\gamma \le 1$, then Theorem 1 gives Theorem A.

On the other hand, we have the lower limit result as follows:

THEOREM 2. If u is as in Theorem 1, then

$$\liminf_{r \to 1} \frac{|u(r\zeta)|}{\sqrt{\Phi(r) \log \log \Phi(r)}} \le 2$$

for \mathcal{H}_{n-1} -a.e. $\zeta \in \mathbf{S}^{n-1}$.

By Theorems 1 and 2, we have the following corollary.

COROLLARY 1. Let u be a C^2 function on \mathbf{B}^n satisfying

$$\mathscr{A}_{u}(x) \leq c(1-|x|)^{-2} \left(\log_{(1)} \frac{1}{1-|x|}\right)^{-1} \dots \left(\log_{(\ell-1)} \frac{1}{1-|x|}\right)^{-1} \left(\log_{(\ell)} \frac{1}{1-|x|}\right)^{-\gamma},$$

where c > 0, $\gamma \le 1$ and $\log_{(k+1)}(t) = \log_{(k)} \circ \log_{(1)}(t)$ with $\log_{(1)}(t) = \log(e+t)$. Then for \mathcal{H}_{n-1} -a.e. $\zeta \in \mathbf{S}^{n-1}$,

$$\limsup_{r \to 1} \frac{|u(r\zeta)|}{\sqrt{\left(\log_{(\ell)} \frac{1}{1-r}\right)^{1-\gamma} \log_{(2)} \frac{1}{1-r}}} \le c_1$$

and

$$\liminf_{r \to 1} \frac{|u(r\zeta)|}{\sqrt{\left(\log_{(\ell)} \frac{1}{1-r}\right)^{1-\gamma} \log_{(\ell+2)} \frac{1}{1-r}}} \le c_2$$

when $\gamma < 1$;

$$\limsup_{r \to 1} \frac{|u(r\zeta)|}{\sqrt{\log_{(\ell+1)} \frac{1}{1-r} \log_{(2)} \frac{1}{1-r}}} \le c_3$$

and

$$\liminf_{r \to 1} \frac{|u(r\zeta)|}{\sqrt{\log_{(\ell+1)} \frac{1}{1-r} \log_{(\ell+3)} \frac{1}{1-r}}} \le c_4$$

when $\gamma = 1$. Here c_1, c_2, c_3 and c_4 are constants depending only on c, γ and ℓ .

2. Exponential integral

In this section, we present an exponential estimate for C^2 functions satisfying (5). For this we prepare the following lemma, which is a generalization of [3, Theorem 2.2].

LEMMA 1. Let φ be a positive continuous function on [0,1), and set

$$\Phi(r) = \int_0^r (1 - t)\varphi(t)dt.$$

Let u be a C^2 function in \mathbf{B}^n with u(0) = 0 which satisfies condition (5). Then

$$\int_{\mathbf{S}^{n-1}} |u(r\zeta)|^{2k} dS(\zeta) \le \sigma_n 4^k k! [\Phi(r)]^k \tag{6}$$

for all $k \in \{0, 1, 2, ...\}$ and all $r \in (0, 1)$, where σ_n denotes the surface measure of \mathbf{S}^{n-1} .

Proof. First we show that

$$\frac{d}{dt} \int_{\mathbf{S}^{n-1}} v(t\zeta) dS(\zeta) = t^{1-n} \int_{B(0,t)} \Delta v(w) dw \tag{7}$$

for each $v \in C^2(\mathbf{B}^n)$. Using the divergence theorem, we have

$$\begin{split} \frac{d}{dt} \int_{\mathbf{S}^{n-1}} v(t\zeta) dS(\zeta) &= \int_{\mathbf{S}^{n-1}} \zeta \cdot \nabla v(t\zeta) dS(\zeta) \\ &= t^{1-n} \int_{S(0,t)} \frac{w}{t} \cdot \nabla v(w) dS(w) \\ &= t^{1-n} \int_{B(0,t)} \Delta v(w) dw. \end{split}$$

Thus (7) holds.

We prove this lemma by induction on k. Clearly, (6) holds for k = 0. Suppose that (6) holds for k. Using (7) and the assumption on induction, we obtain

$$\begin{split} \frac{d}{dt} \int_{\mathbf{S}^{n-1}} |u(t\zeta)|^{2(k+1)} dS(\zeta) \\ &= 2(k+1)t^{1-n} \int_{B(0,t)} |u(w)|^{2k} (u(w) \Delta u(w) + (2k+1) |\nabla u(w)|^2) dw \\ &\leq 4(k+1)^2 t^{1-n} \int_{B(0,t)} |u(w)|^{2k} \mathscr{A}_u(w) dw \\ &\leq 4(k+1)^2 t^{1-n} \int_0^t \rho^{n-1} \varphi(\rho) \left(\int_{\mathbf{S}^{n-1}} |u(\rho z)|^{2k} dS(z) \right) d\rho \\ &\leq \sigma_n 4^{k+1} k! (k+1)^2 t^{1-n} \int_0^t \rho^{n-1} \varphi(\rho) [\Phi(\rho)]^k d\rho. \end{split}$$

Integrating both sides from 0 to r and applying Fubini's theorem, we have

$$\begin{split} \int_{\mathbf{S}^{n-1}} |u(r\zeta)|^{2(k+1)} dS(\zeta) &\leq \sigma_n 4^{k+1} k! (k+1)^2 \int_0^r t^{1-n} \int_0^t \rho^{n-1} \varphi(\rho) [\varPhi(\rho)]^k d\rho dt \\ &= \sigma_n 4^{k+1} k! (k+1)^2 \int_0^r \left(\int_\rho^r t^{1-n} dt \right) \rho^{n-1} \varphi(\rho) [\varPhi(\rho)]^k d\rho \\ &\leq \sigma_n 4^{k+1} (k+1)! \int_0^r (k+1) (1-\rho) \varphi(\rho) [\varPhi(\rho)]^k d\rho \\ &= \sigma_n 4^{k+1} (k+1)! \int_0^r \frac{d}{d\rho} [\varPhi(\rho)]^{k+1} d\rho \\ &= \sigma_n 4^{k+1} (k+1)! [\varPhi(r)]^{k+1}. \end{split}$$

Hence (6) also holds for k + 1. The induction is completed.

LEMMA 2. Let u be a function in \mathbf{B}^n satisfying condition (6). Then for all c, 0 < c < 1/4, and for all r, 0 < r < 1,

$$\int_{\mathbf{S}^{n-1}} \exp\left(\frac{c|u(r\zeta)|^2}{\Phi(r)}\right) dS(\zeta) \le \frac{\sigma_n}{1 - 4c}.$$
 (8)

PROOF. If k is a non-negative integer, then, by (6), we have

$$\frac{1}{k!} \int_{\mathbf{S}^{n-1}} \left(\frac{c|u(r\zeta)|^2}{\Phi(r)} \right)^k dS(\zeta) \le (4c)^k \sigma_n$$

for c > 0. Hence it follows that

$$\int_{\mathbf{S}^{n-1}} \exp\left(\frac{c|u(r\zeta)|^2}{\varPhi(r)}\right) dS(\zeta) = \int_{\mathbf{S}^{n-1}} \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{c|u(r\zeta)|^2}{\varPhi(r)}\right)^k dS(\zeta)$$

$$\leq \sigma_n \sum_{k=0}^{\infty} (4c)^k.$$

The series on the right converges if 0 < c < 1/4 and thus our lemma is proved.

3. Proof of Theorem 1

Let φ and Φ be as in the Introduction, and let u be as in Theorem 1. To prove Theorem 1, we need the following two lemmas.

LEMMA 3. For every 0 < r < 1,

$$\Phi(1 - r/2) \le \frac{A}{4}\Phi(1 - r) + \Phi(1/2).$$

Lemma 4. Let u be a C^2 function in \mathbf{B}^n such that $|\nabla u(x)|^2 \leq \varphi(|x|)$. Then for every $x \in \mathbf{B}^n \setminus \overline{B(0, 1/2)}$,

$$|u(y) - u(z)| \le A[\Phi(|x|)]^{1/2}$$

whenever $y, z \in B(x, (1 - |x|)/2)$.

Proof. We see that

$$|u(y) - u(z)| \le (1 - |x|)[\varphi((1 + |x|)/2)]^{1/2} \le A^{1/2}(1 - |x|)[\varphi(|x|)]^{1/2}$$

for all $y, z \in B(x, (1 - |x|)/2)$. On the other hand, we have for 1/2 < t < 1,

$$\Phi(t) \ge \int_{2t-1}^{t} (1-s)\varphi(s)ds \ge \varphi(2t-1)\int_{2t-1}^{t} (1-s)ds \ge A^{-1}(1-t)^{2}\varphi(t).$$

Thus Lemma 4 follows.

PROOF OF THEOREM 1. From Lemma 2, we see that

$$\int_{\mathbf{B}^n} (1-|x|)^{-1} \left(\log \frac{2}{1-|x|}\right)^{-1-\delta} \exp\left(\frac{c|u(x)|^2}{\varPhi(|x|)}\right) dx < \infty$$

for all c, 0 < c < 1/4, and all $\delta > 0$. Then there exists a set $E \subset \mathbf{S}^{n-1}$ such that $\mathcal{H}_{n-1}(E) = 0$ and

$$\int_0^1 (1-r)^{-1} \left(\log \frac{2}{1-r}\right)^{-1-\delta} \exp \left(\frac{c|u(r\zeta)|^2}{\Phi(r)}\right) dr < \infty,$$

for each $\zeta \in \mathbf{S}^{n-1} \setminus E$, 0 < c < 1/4 and $\delta > 0$, which implies that

$$\lim_{r \to 1} \int_{r}^{(1+r)/2} (1-t)^{-1} \left(\log \frac{2}{1-t} \right)^{-1-\delta} \exp\left(\frac{c|u(t\zeta)|^2}{\Phi(t)} \right) dt = 0.$$
 (9)

Fix $\zeta \in \mathbf{S}^{n-1} \setminus E$. For 0 < r < 1, define $I_r = [r, (1+r)/2)$. From (9), we obtain

$$\lim_{r\to 1} \left(\log \frac{1}{1-r}\right)^{-1-\delta} \exp\left(\frac{c\inf_{t\in I_r} |u(t\zeta)|^2}{\varPhi((1+r)/2)}\right) = 0,$$

which implies that

$$\frac{c \inf_{t \in I_r} |u(t\zeta)|^2}{4^{-1}A\Phi(r) + \Phi(1/2)} \le (1+\delta) \log \log \frac{1}{1-r} \tag{10}$$

for r near 1, by Lemma 3. Hence it follows from (10) and Lemma 4 that

$$\limsup_{r \to 1} \frac{|u(r\zeta)|}{\sqrt{\Phi(r) \log \log \frac{1}{1-r}}} \le \sqrt{\frac{A(1+\delta)}{4c}}.$$

Here, letting $c \to 1/4$ and $\delta \to 0$, we obtain

$$\limsup_{r \to 1} \frac{|u(r\zeta)|}{\sqrt{\Phi(r) \log \log \frac{1}{1-r}}} \le \sqrt{A},$$

which proves Theorem 1.

4. Proof of Theorem 2

In this section we complete the proof of Theorem 2. By Lemma 2, we see that

$$\int_{\mathbf{B}^n \setminus B(0,r_0)} (1-|x|) \varphi(|x|) \Phi(|x|)^{-1} (\log \Phi(|x|))^{-1-\delta} \exp\left(\frac{c|u(x)|^2}{\Phi(|x|)}\right) dx < \infty$$

for all c, 0 < c < 1/4, and $\delta > 0$, where $r_0 = \Phi^{-1}(e)$. Consequently,

$$\lim_{r\to 1}\int_{r}^{1}(1-t)\varphi(t)\Phi(t)^{-1}(\log \Phi(t))^{-1-\delta}\exp\left(\frac{c|u(t\zeta)|^{2}}{\Phi(t)}\right)dt=0$$

for \mathcal{H}_{n-1} -a.e. $\zeta \in \mathbf{S}^{n-1}$, 0 < c < 1/4 and $\delta > 0$. This implies that

$$\lim_{r \to 1} \int_{r}^{1} (1 - t)\varphi(t)\Phi(t)^{-1} (\log \Phi(t))^{-1-\delta} \exp\left(\frac{cg_r(\zeta)^2}{\Phi(t)}\right) dt = 0, \tag{11}$$

where $g_r(\zeta) = \inf_{r \le \rho < 1} |u(\rho \zeta)|$. Since $e^{\delta x} \ge \delta x$ for x > 0, we have

$$\begin{split} \frac{d}{dt} \left(-(\log \Phi(t))^{-1-\delta} \exp\left(\frac{(1+\delta)^{-1} c g_r(\zeta)^2}{\Phi(t)}\right) \right) \\ &= (1+\delta)(1-t)\varphi(t)\Phi(t)^{-1} (\log \Phi(t))^{-2-\delta} \exp\left(\frac{(1+\delta)^{-1} c g_r(\zeta)^2}{\Phi(t)}\right) \\ &+ (\log \Phi(t))^{-1-\delta} (1-t)\varphi(t)\Phi(t)^{-1} \\ &\times \left(\frac{(1+\delta)^{-1} c g_r(\zeta)^2}{\Phi(t)}\right) \exp\left(\frac{(1+\delta)^{-1} c g_r(\zeta)^2}{\Phi(t)}\right) \\ &\leq (1+\delta+\delta^{-1})(1-t)\varphi(t)\Phi(t)^{-1} (\log \Phi(t))^{-1-\delta} \exp\left(\frac{c g_r(\zeta)^2}{\Phi(t)}\right) \end{split}$$

for $r_0 < t < 1$. From (11), we obtain

$$\lim_{r \to 1} (\log \varPhi(r))^{-1-\delta} \exp\Biggl(\frac{(1+\delta)^{-1} c g_r(\zeta)^2}{\varPhi(r)}\Biggr) = 0,$$

which implies that

$$\frac{(1+\delta)^{-1}cg_r(\zeta)^2}{\varPhi(r)} \leq (1+\delta)\log\log\varPhi(r)$$

for r near 1. By letting $c \to 1/4$ and $\delta \to 0$, we have

$$\limsup_{r \to 1} \frac{g_r(\zeta)^2}{\Phi(r) \log \log \Phi(r)} \le 4,$$

which completes the proof of Theorem 2.

COROLLARY 2. Let φ and Φ be as in the Introduction. Let u be a harmonic function on \mathbf{B}^n satisfying

$$|\nabla u(x)|^2 \le \varphi(|x|)$$
 for all $x \in \mathbf{B}^n$.

Then

$$\limsup_{r \to 1} \frac{|u(r\zeta)|}{\sqrt{\Phi(r)\log\log\Phi(r)}} \le 2$$

for \mathcal{H}_{n-1} -a.e. $\zeta \in \mathbf{S}^{n-1}$.

PROOF. Consider the radial maximal function of u defined by

$$\mathcal{R}_u(r,\zeta) = \max_{0 \le t \le r} |u(t\zeta)|$$
 for $0 < r < 1$ and $\zeta \in \mathbf{S}^{n-1}$.

By the Hardy-Littlewood maximal theorem [1, Chapter 6] and Lemma 1,

$$\int_{\mathbf{S}^{n-1}} |\mathcal{R}_u(r,\zeta)|^{2k} dS(\zeta) \le c_1 \int_{\mathbf{S}^{n-1}} |u(r\zeta)|^{2k} dS(\zeta) \le c_1 \sigma_n 4^k k! [\Phi(r)]^k$$

for all k and 0 < r < 1, where c_1 is a constant depending only on n. As in the proof of Theorem 1, we have

$$\lim_{r \to 1} \int_{r}^{1} (1-t)\varphi(t)\varPhi(t)^{-1} (\log \varPhi(t))^{-1-\delta} \exp\left(\frac{c_{2}|\mathscr{R}_{u}(t,\zeta)|^{2}}{\varPhi(t)}\right) dt = 0$$

for \mathcal{H}_{n-1} -a.e. $\zeta \in \mathbf{S}^{n-1}$, all c_2 , $0 < c_2 < 1/4$, and $\delta > 0$. Hence we see as in the proof of Theorem 2 that

$$\limsup_{r \to 1} \frac{\mathscr{R}_u(r,\zeta)}{\sqrt{\Phi(r)\log\log\Phi(r)}} \le 2$$

holds for \mathcal{H}_{n-1} -a.e. $\zeta \in \mathbf{S}^{n-1}$. Since $\mathcal{R}_u(r,\zeta) \geq |u(r\zeta)|$, we have

$$\limsup_{r \to 1} \frac{|u(r\zeta)|}{\sqrt{\Phi(r)\log\log\Phi(r)}} \le 2$$

for \mathcal{H}_{n-1} -a.e. $\zeta \in \mathbf{S}^{n-1}$, which yields the required conclusion.

Remark 2. Let u be a harmonic function on \mathbf{B}^n satisfying

$$||u|| = \sup_{x \in \mathbf{B}^n} (1 - |x|) |\nabla u(x)| < \infty.$$

Then Corollary 2 says that

$$\limsup_{r \to 1} \frac{|u(r\zeta)|}{\sqrt{\log \frac{1}{1-r} \log \log \log \frac{1}{1-r}}} \le 2||u||$$

for \mathcal{H}_{n-1} -a.e. $\zeta \in \mathbf{S}^{n-1}$.

5. Hausdorff measures and radial growth

Let φ and Φ be as in the Introduction. Take a positive non-decreasing function Ψ on [0,1) satisfying

$$\frac{\varPhi(r) \log \log (1/(1-r))}{\left[\varPsi(r)\right]^2} \to 0 \quad \text{as } r \to 1.$$

For $\lambda > 0$, consider the measure function

$$h_{\lambda}(t) = t^{n-1} \exp\left(4^3 A^{-4} \lambda^2 \frac{[\Psi(1-t)]^2}{\Phi(1-t)}\right).$$

We finally establish the following result.

Theorem 3. If $\lambda > 0$ and u is as in Theorem 1, then

$$\limsup_{r \to 1} \frac{|u(r\zeta)|}{\Psi(r)} \le \lambda$$

for $\mathcal{H}_{h_{\lambda}}$ -a.e. $\zeta \in \mathbf{S}^{n-1}$.

PROOF. In view of Lemma 2, we see that

$$\int_{\mathbf{B}^n} (1 - |x|)^{-1} \left(\log \frac{2}{1 - |x|} \right)^{-2} \exp \left(\frac{c_1 |u(x)|^2}{\Phi(|x|)} \right) dx < \infty$$

for all c_1 , $0 < c_1 < 1/4$. By the covering theorem, there exists a set $F \subset \mathbf{S}^{n-1}$ such that $\mathscr{H}_{h_{\lambda}}(F) = 0$ and

$$\lim_{t \to 0} [h_{\lambda}(5t)]^{-1} \int_{B(\zeta, t) \cap \mathbf{B}^n} (1 - |x|)^{-1} \left(\log \frac{2}{1 - |x|} \right)^{-2} \exp \left(\frac{c_1 |u(x)|^2}{\Phi(|x|)} \right) dx = 0 \quad (12)$$

for $\zeta \in \mathbf{S}^{n-1} \setminus F$ and $0 < c_1 < 1/4$ (cf. [6, Lemma 5.8.2]). Fix $\zeta \in \mathbf{S}^{n-1} \setminus F$. For 0 < t < 1, write $D_t = B((1-t)\zeta + 4^{-1}t\zeta, 4^{-1}t)$. Since $D_t \subset B(\zeta, t) \cap \mathbf{B}^n$, we have

$$[h_{\lambda}(5t)]^{-1} \int_{B(\zeta,t)\cap\mathbf{B}^{n}} (1-|x|)^{-1} \left(\log\frac{2}{1-|x|}\right)^{-2} \exp\left(\frac{c_{1}|u(x)|^{2}}{\varPhi(|x|)}\right) dx$$

$$\geq [h_{\lambda}(5t)]^{-1} \int_{D_{t}} (1-|x|)^{-1} \left(\log\frac{2}{1-|x|}\right)^{-2} \exp\left(\frac{c_{1}|u(x)|^{2}}{\varPhi(|x|)}\right) dx$$

$$\geq [h_{\lambda}(5t)]^{-1} |D_{t}| t^{-1} \left(\log\frac{4}{t}\right)^{-2} \exp\left(\frac{c_{1}\inf_{x\in D_{t}}|u(x)|^{2}}{\varPhi(1-t/2)}\right)$$

$$\geq c_{2} \exp\left(-4^{3}A^{-4}\lambda^{2} \frac{[\varPsi(1-5t)]^{2}}{\varPhi(1-5t)} - 2\log\log(1/t) + \frac{c_{1}\inf_{x\in D_{t}}|u(x)|^{2}}{\varPhi(1-t/2)}\right),$$

where c_2 is a positive constant. From (12), we obtain

$$\frac{c_1 \inf_{x \in D_t} |u(x)|^2}{\varPhi(1 - t/2)} \le 4^3 A^{-4} \lambda^2 \frac{\left[\varPsi(1 - 5t)\right]^2}{\varPhi(1 - 5t)} + 2 \log \log(1/t)$$

for sufficiently small t > 0. By Lemma 3, we have

$$\frac{c_1 \inf_{x \in D_t} |u(x)|^2}{4^{-1} A \Phi(1-t) + \Phi(1/2)} \le A^{-1} \lambda^2 \frac{\Psi(1-t)^2}{\Phi(1-t) - c_3} + 2 \log \log(1/t)$$

where $c_3 = \Phi(1/2)((A/4)^3 + (A/4)^2 + (A/4))$, which implies that

$$\limsup_{t\to 0} \frac{\inf_{x\in D_t} |u(x)|^2}{\Psi(1-t)^2} \le \frac{1}{4c_1}\lambda^2.$$

Hence it follows from Lemma 4 that

$$\limsup_{t\to 0} \frac{|u((1-t)\zeta)|}{\Psi(1-t)} \le \frac{\lambda}{\sqrt{4c_1}}.$$

Letting $c_1 \rightarrow 1/4$, we obtain

$$\limsup_{t\to 0} \frac{|u((1-t)\zeta)|}{\Psi(1-t)} \le \lambda,$$

which proves Theorem 3.

Remark 3. If we take $\varphi(r) = (1-r)^{-2} \{\log(2/(1-r))\}^{-\gamma}$, $\gamma < 1$, then the conclusion of Theorem 3 says that

$$\limsup_{r \to 1} \frac{|u(r\zeta)|}{\left\{\log(1/(1-r))\right\}^{\alpha}} \le \lambda$$

for \mathcal{H}_h -a.e. $\zeta \in \mathbf{S}^{n-1}$, where $2\alpha > 1 - \gamma$ and

$$h(t) = t^{n-1} \exp[4^3 A^{-4} \lambda^2 \{ \log(1/t) \}^{2\alpha + \gamma - 1}].$$

Thus Theorem 3 can not cover [3, Theorem 1.3] by González-Koskela.

References

- [1] S. Axler, P. Bourdon and W. Ramey, Harmonic function theory, Springer-Verlag, 1992.
- [2] J. G. Clunie and T. H. MacGregor, Radial growth of the derivative of univalent functions, Commentari Math. Helv. 59 (1984), 362–375.
- [3] M. J. González and P. Koskela, Radial growth of solutions to the Poisson Equation, Complex Variables, 46 (2001), 59–72.
- [4] B. Korenblum, BMO estimates and radial growth of Bloch functions, Bull. Amer. Math. Soc. 12 (1985), 99–102.
- [5] N. G. Makarov, On the distortion of boundary sets under conformal mappings, Proc. London Math. Soc. 51 (1985), 369–384.
- [6] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosyo, Tokyo, 1996.
- [7] Ch. Pommerenke, Boundary behaviour of conformal maps, Springer-Verlag, 1992.

Toshihide Futamura
Department of Mathematics
Graduate School of Science
Hiroshima University
Higashi-Hiroshima 739-8526, Japan
E-mail address: toshi@mis.hiroshima-u.ac.jp

Yoshihiro Mizuta
The Division of Mathematical and Information Sciences
Faculty of Integrated Arts and Sciences
Hiroshima University
Higashi-Hiroshima 739-8521, Japan
E-mail address: mizuta@mis.hiroshima-u.ac.jp