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Abstract. Let R be an integral domain that is finitely generated over a field k. Let

D : R ! R be a derivation over k. Our aim is to compute Ker D.

Under the assumptions that the characteristic of k is zero, D is locally nilpotent and

Ker D is finitely generated over k, Essen gave an explicit algorithm based on the

exponential of the derivation. In this paper we give an analogous algorithm in the

positive characteristic case using a truncated version of the exponential. It does not

require the nilpotence of D. We give several computational examples of application of

our algorithm.

Also using higher derivations, we obtain a word-by-word translation of Essen’s

formula to positive characteristics.

1. Introduction

Let R be an integral domain that is finitely generated over a field k. Let

D : R ! R be a derivation over k. The subject of this paper is to compute the

kernel Ker D in positive characteristic.

When the characteristic of k is zero, several techniques to compute the

derivation kernel are known. Essen gave one of such techniques in the case

that D is locally nilpotent and that Ker D is finitely generated over k ([6], [7,

Corollary 1.3.23]). The technique is based on the exponential of the derivation.

Note that in characteristic 0, some derivation kernels are not finitely generated

(counter-examples to Hilbert’s Fourteenth Problem), even if the derivations are

locally nilpotent (see [4], [8], [9], [14], [15]). Essen’s algorithm does not work

for these derivations.

In this paper we give an algorithm to compute the derivation kernel in

the positive characteristic case, inspired by Essen’s algorithm. And using our

algorithm, we can compute the kernel for any derivation, without assuming the

nilpotency of the derivations. The key points of our algorithm are that we

regard the derivation kernel as a k½Rp�-module, where k½Rp� is a sub k-domain

of R generated by fxp j x A Rg and that we compute the generators of the kernel

as the k½Rp�-module using the truncated version of the exponential of the der-
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ivation (Definition 2.2). In section 2, we calculate generators for the kernel of

D in case there exists an element s A R satisfying DðsÞ ¼ 1 (we call such an s as

a slice of D) and Dp ¼ 0 (Theorem 2.3 (1)). And we describe our algorithm

in Theorem 2.3 (2) and section 3. We exhibit our calculation techniques by

concrete examples in section 4 and give a complete list of the kernels of mono-

mial derivations in two variables in characteristic 2 and 3 (Appendix A).

Another idea to compute the derivation kernel is to consider a derivation

D : R ! R as a k½Rp�-module homomorphism, and to compute the kernel by

‘‘linear algebra’’ as a k½Rp�-module homomorphism (actually this is pointed

out by the referee). Experiments show that the linear algebra method is faster

than our method, but our method gives a filtration for Ker DHR, which should

reflect more informations of the derivation.

In fact, our algorithm is related with Ga-actions. One of the aims of

Essen’s algorithm is to compute the invariant ring of Ga-action on an a‰ne

variety in case the ring is finitely generated ([6]). In zero characteristic case,

Ga-actions correspond to locally nilpotent derivations, and the invariant rings

correspond to the derivation kernels. In positive characteristic case, as we will

see in section 5, Ga-action on an a‰ne variety is related to a locally finite iter-

ative higher derivation, and we can also calculate the invariant ring mimicking

Essen’s algorithm (Proposition 5.7).
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Notation and Convention.

Throughout this paper, k denotes a field, p its characteristic. Unless

otherwise stated, we assume that p > 0. When R is a commutative k-domain,

QðRÞ is the quotient field of R and k½Rp� is a sub k-domain of R generated by

fxp A R j x A Rg.
A map D : R ! R (resp. R ! QðRÞ) is said to be a k-derivation of R (resp.

k-derivation of R with values in QðRÞ) if D satisfies Dð f þ gÞ ¼ Dð f Þ þDðgÞ
and Dð fgÞ ¼ Dð f Þgþ fDðgÞ for f ; g A R, and DðaÞ ¼ 0 for a A k. The set of

all k-derivations of R (resp. with values QðRÞ) is denoted by Der kR (resp.

Der kðR;QðRÞÞ).
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For D A Der kðR;QðRÞÞ, we denote the unique extension of D to Der kQðRÞ
by ~DD. By abuse of notation, the map Dl : R ! QðRÞ is the restriction of
~DDl : QðRÞ ! QðRÞ.

A k-derivation D is called locally nilpotent if for every f A R there exists a

positive integer N such that DNð f Þ ¼ 0.

An element s A R is called a slice of a k-derivation D if DðsÞ ¼ 1.

2. Kernels of derivations in positive characteristic

Throughout this section, R is a finitely generated commutative k-domain.

Let D be a k-derivation of R. We denote by Ker D the kernel of D, which is

the set f f A R jDð f Þ ¼ 0g. When the characteristic p > 0, note that we have

xp A Ker D for x A R, hence Ker D contains k½Rp�.
In this section, we claim that we have an algorithm to calculate the kernel

of a k-derivation D of a finitely generated k-domain when k is of positive

characteristic p, and calculate generators for the kernel of D in case that D has

a slice and Dp ¼ 0. Our algorithm is inspired by Essen’s algorithm in the zero

characteristic case.

Proposition 2.1 (Essen [6], [7, Corollary 1.3.23]). Let k be a field of

characteristic zero, R :¼ k½x1; . . . ; xn� a finitely generated k-domain and D A
Der kR a locally nilpotent derivation.

(1) When D has a slice s A R, we define a map j�s : R ! R by

j�sð f Þ :¼ expðTDÞð f ÞjT¼�s ¼
Xy
l¼0

ð�sÞ l

l!
Dlð f Þ:

Then j�s is a k-algebra homomorphism and the image of j�s is equal

to Ker D. In particular Ker D ¼ k½j�sðx1Þ; . . . ; j�sðxnÞ�.
(2) When Ker D is a finitely generated k-algebra, without assuming the

existence of a slice, taking any t A R with DðtÞ ¼ u0 0, the derivation
1
u
D A Der kR

1
u

� �
has a slice t, hence (1) calculates Ker 1

u
D

� �
. One can

compute Ker D ¼ Ker 1
u
D

� �
VR by Groebner basis theory.

When one tries to use this algorithm in the positive characteristic, we have

three di‰culties.

The first di‰culty is that in the definition of j�s we cannot define 1
p! when

the characteristic p > 0. So we use the truncated version of j�s.

Definition 2.2. When D A Der kðR;QðRÞÞ and a A R, we define a Ker D-

module homomorphism EaD : R ! QðRÞ by

EaDð f Þ ¼
Xp�1

l¼0

al

l!
Dlð f Þ:
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Remark 2.2.1. In the following, we will use only E�sD with a slice s as in

Proposition 2.1.

Remark 2.2.2. It is a merit of this definition not to assume that D is

locally nilpotent, compared to the case of characteristic zero.

The second di‰culty is that E�sD is not necessarily a ring homomorphism.

But the morphism E�sD is a Ker D-module homomorphism, so we will get the

generators, not as a ring but as a Ker D-module.

The last di‰culty is that the image of E�sD is not necessarily equal to

Ker D, unless Dp ¼ 0. Hence by restricting D to Ker Dp (where Dp is also a

k-derivation), we can calculate Ker D. Now it is enough to calculate Ker Dp,

and we can proceed by induction.

Theorem 2.3. Let k be a field of characteristic p > 0, R :¼ k½x1; . . . ; xn� a
finitely generated k-domain and D A Der kR.

(1) We assume that D has a slice s and Dp ¼ 0. Then Ker D is equal to

the image of E�sD. In particular, as a k½Rp�-module,

Ker D ¼
X

0ai1;...; in<p

k½Rp�E�sDðxi1
1 . . . xin

n Þ;

where k½Rp� ¼ k½xp
1 ; . . . ; x

p
n �HKer D.

When D 0 A Der kðR;QðRÞÞ with a slice s and D 0p ¼ 0, we have

Ker D 0 ¼ Im E�sD
0 VR.

(2) Let D be a k-derivation, without assuming that D has a slice, D is

locally nilpotent nor Dp ¼ 0, still we have an algorithm to calculate

Ker D by repeatedly localizing R, using (1) and using the Groebner

basis theory.

Remark 2.3.1. Unlike the zero characteristic case, the derivation kernel is

always a finitely generated k-algebra, because it is a sub k½Rp�-module of R.

This fact is essentially due to Nowicki-Nagata [13, Proposition 4.1].

In the rest of this section we prove (1) of Theorem 2.3. And we give an

algorithm (2) in the next section.

Proposition 2.4. Let D A Der kðR;QðRÞÞ be a k-derivation having a slice s.

Then we have

~DDðE�sDð f ÞÞ ¼ �sp�1Dpð f Þ:

Hence, we have ~DDðE�sDð f ÞÞ ¼ 0 if and only if Dpð f Þ ¼ 0.

Proof. Easy calculation. r
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Proof of Theorem 2.3 (1). Let f A R. When f A Im E�sD, then f A
Ker D by Proposition 2.4. If f A Ker D, we have f ¼ E�sDð f Þ A Im E�sD.

We also have the equality Ker D ¼
P

0ai1;...; in<p k½Rp�E�sDðxi1
1 . . . xin

n Þ, since R

is a finitely generated k½Rp�-module generated by the elements xi1
1 . . . xin

n ð0a
i1; . . . ; in < pÞ.

We can show the last statement using the same proof. r

3. Algorithm

The goal of this section is to give the algorithm explicitly, claimed in

Theorem 2.3 (2).

Let D0 0 be a k-derivation of R ¼ k½x1; . . . ; xn�, and we assume that the

characteristic of k is p > 0. We do not assume that D has a slice or that

Dp ¼ 0. In this section, we give an algorithm to calculate the kernel of D

using Theorem 2.3 (1).

There exists s1 A R such that Dðs1Þ0 0. Define D1 :¼ 1
Dðs1ÞD A Der kðR;

QðRÞÞ, then D1 has a slice s1. We note that Dp
1 ðs1Þ ¼ 0, because D1ðD1ðs1ÞÞ ¼

D1ð1Þ ¼ 0. For every integer i > 0, we define Di A Der kðR;QðRÞÞ inductively

as follows. Since k is of characteristic p > 0, Dp
i�1 is also k-derivation of R

with values in QðRÞ. If Dp
i�100, then there exists si A R such that Dp

i�1ðsiÞ00.

Define Di :¼ 1
D

p

i�1
ðsiÞ

D
p
i�1 A Der kðR;QðRÞÞ. Then si is a slice of Di. By defi-

nition, we have Ker Di ¼ Ker Dp
i�1.

Lemma 3.1. There exists la n such that Dlþ1 ¼ 0.

Proof. Since Ker D contains k½Rp�, the field extension degree

½QðRÞ : QðKer DÞ� is pn with some na n. On the other hand, we have

Ker D ¼ Ker D1 HKer D2 H � � �HKer Di HKer Diþ1 H � � �HR

and ½QðKer Diþ1Þ : QðKer DiÞ�b p since Di has a slice si A KerðDiþ1ÞnKerðDiÞ.
r

We take the integer l such that Dl 0 0 and Dlþ1 ¼ 0. We calculate the

kernels Ker Dl;Ker Dl�1; . . . ; and Ker D, inductively.

When i ¼ l, since D
p
l ¼ 0, we have Ker Dp

l ¼ R, which has trivial gen-

erators fxi1
1 . . . xin

n g as a k½Rp�-module. When i < l, Ker Dp
i ¼ Ker Diþ1 whose

generators are known by the induction hypothesis.

Proposition 3.2. We have Ker Di ¼ E�siDiðKer Dp
i ÞVR. In particular,

when Ker Dp
i ¼ k½Rp�a1 þ � � � þ k½Rp�at, then we have

Ker Di ¼ ðk½Rp�E�siDiða1Þ þ � � � þ k½Rp�E�siDiðatÞÞVR:

Proof. In order to calculate Ker Di, we consider Di as a k-derivation
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of Ker Dp
i with values in QðKer Dp

i Þ. Then we have D
p
i ¼ 0 and si is a slice

of Di. So we apply Theorem 2.3 (1) to D, the kernel of Di is equal to

the intersection of E�siDiðKer Dp
i Þ and Ker Dp

i . Hence we have Ker Di ¼
E�siDiðKer Dp

i ÞVR. For the last statement immediately follows. r

Lemma 3.3. We can explicitely find generators of

ðk½Rp�E�siDiða1Þ þ � � � þ k½Rp�E�siDiðatÞÞVR;

as a k½Rp�-module.

Proof. One can find b A k½Rp� and cj A R such that E�siDiðajÞ ¼ cj
b
for

every j (find the common divisor b 0 and multiply the numerator and the denom-

inator by b 0p�1). Generators of the k½Rp�-modules k½Rp�c1 þ � � � þ k½Rp�ct and
bR are known, so we need to calculate generators of the intersection of two

modules. For that purpose, one can apply the standard technique of calcu-

lating the ideal intersection (see [1, § 6.2], [2, Ch. 4 § 3 Theorem 11]) also for the

module intersections, using a suitable monomial order (for example, the TOP

order) (see [3, § 5.2] for the Groebner basis for modules). If we write the gen-

erators of ðk½Rp�c1 þ � � � þ k½Rp�ctÞV ðbRÞ as bd1; . . . ; bdt 0 with d1; . . . ; dt 0 A R,

then generators of ðk½Rp�E�siDiða1Þ þ � � � þ k½Rp�E�siDiðatÞÞVR are d1; . . . ; dt 0 .

r

Finally we get generators of Ker D1 ¼ Ker D as a k½Rp�-module, which we

write as f1; . . . ; fm. Hence we deduce that Ker D ¼ k½xp
1 ; . . . ; x

p
n ; f1; . . . ; fm�.

This is the algorithm which we claim in Theorem 2.3 (2). (End of the con-

struction of the algorithm, hence the proof of Theorem 2.3 (2).)

Remark 3.4. This algorithm can be implemented by the software ‘‘Sin-

gular’’ ([11]).

Remark 3.5. ‘‘Linear algebraic’’ approach expresses the derivation homo-

morphism as a k½Rp�-matrix, and computes its kernel by the Groebner basis

for modules. When M ¼ k½Rp�m1 þ � � � þ k½Rp�mr HR is a finitely generated

k½Rp�-module and f : M ! N an k½Rp�-homomorphism, then in MlN,

Ker f ¼ M V ðk½Rp�ðm1 � fðm1ÞÞ þ � � � þ k½Rp�ðmr � fðmrÞÞÞ, which can be

computed by the module intersection algorithm, and can be implemented by

‘‘Singular’’. Experiment shows that this approach is faster, at least for small

examples as in the next section.

4. Examples

We calculate the kernels of several derivations using the techniques in the

previous section.
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In Examples 4.1, 4.2, 4.3, 4.4 and 4.5, we treat monomial k-derivations D

of the polynomial ring k½X1; . . . ;Xn�. A k-derivation D A Der kk½X1; . . . ;Xn� is
called a monomial k-derivation when D ¼ a1

q
qX1

þ � � � þ an
q

qXn
for some mono-

mials a1; . . . ; an A k½X1; . . . ;Xn� with coe‰cient 1.

Example 4.6 is an example of a k-derivation of a finitely generated k-

domain which is not a polynomial ring.

Example 4.1. In this example, we assume that p ¼ 3 and write a1 b for

a1 b ðmod 3Þ. We take a k-derivation D of the polynomial ring k½x; y� as

D :¼ q

qx
þ xayb q

qy
; ða; b A Zb0Þ:

Let us calculate Ker D. Note that D has a slice x. We know

D3 ¼ ðaða� 1Þxa�2yb þ bð2b� 1Þx3ay3b�2Þ q

qy
:

In the right hand side, we have aða� 1Þxa�2yb þ bð2b� 1Þx3ay3b�2 ¼ 0 if and

only if aD 2 and bD 1.

(i) In case of aD 2 and bD 1, we see D3 ¼ 0. We have the following

calculations:

E�xDð1Þ ¼ 1;

E�xDðyÞ ¼ y� ðaþ 1Þxaþ1yb � bx2aþ2y2b�1;

E�xDðy2Þ ¼ y2 þ ðaþ 1Þxaþ1ybþ1 þ ðbþ 1Þx2aþ2y2b;

E�xDðxÞ ¼ 0;

E�xDðxyÞ ¼ �axaþ2yb � bx2aþ3y2b�1;

E�xDðxy2Þ ¼ axaþ2ybþ1 þ ðbþ 1Þx2aþ3y2b;

E�xDðx2Þ ¼ 0;

E�xDðx2yÞ ¼ �ðaþ 2Þxaþ3yb � bx2aþ4y2b�1;

E�xDðx2y2Þ ¼ ðaþ 2Þxaþ3ybþ1 þ ðbþ 1Þx2aþ4y2b:

When a1 b1 0, by the calculations above, we find that Ker D is gen-

erated by the following elements as a k½x3; y3�-module:

1; y� xaþ1yb; y2 þ xaþ1ybþ1 þ x2aþ2y2b; x2aþ3y2b;

�2xaþ3yb; 2xaþ3ybþ1 þ x2aþ4y2b:
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Notice the following relations:

y2 þ xaþ1ybþ1 þ x2aþ2y2b ¼ ðy� xaþ1ybÞ2;

2xaþ3ybþ1 þ x2aþ4y2b ¼ �xaþ3ybðy� xaþ1ybÞ:

Therefore we deduce that Ker D is a k½x3; y3�-module generated by 1,

y� xaþ1yb and ðy� xaþ1ybÞ2, and hence

Ker D ¼ k½x3; y3; y� xaþ1yb�:

In the other cases, we can calculate similarly, and the results are as

follows:
. when a1 0 and b1 2;

Ker D ¼ k½x3; y3; y� xaþ1yb þ x2aþ2y2b�1; y2 þ xaþ1ybþ1�,
. when a1 1 and b1 0;

Ker D ¼ k½x3; y3; yþ xaþ1yb�,
. when a1 1 and b1 2;

Ker D ¼ k½x3; y3; yþ xaþ1yb þ x2aþ2y2b�1; y2 � xaþ1ybþ1�.
We remark that when a1 0 and b1 2 or when a1 1 and b1 2, we see

ðy2 G xaþ1ybþ1Þ2 ¼ y3ðyH xaþ1yb þ x2aþ2y2b�1Þ:

So, as a ring, we need two generators over k½x3; y3�, but, as a field, we need

one generator over kðx3; y3Þ.
(ii) In the other cases, namely a1 2 or b1 1, we see Ker D3 ¼ k½x; y3�,

which is a k½x3; y3�-module generated by 1, x and x2. We have E�xDð1Þ ¼ 1

and E�xDðxÞ ¼ E�xDðx2Þ ¼ 0. Hence we deduce that Ker D ¼ k½x3; y3�.

Example 4.2. In this example, we assume that p ¼ 2 and write a1 b for

a1 b ðmod 2Þ. We take a k-derivation D of the polynomial ring k½x; y� as

D :¼ xa q

qx
þ yb q

qy
; ða; b A Zb0Þ:

Let us calculate Ker D. Put D1 :¼ 1
xa D ¼ q

qx
þ yb

xa
q
qy
, then D1 has a slice x.

We know

D2
1 ¼ by2b�1 � axa�1yb

x2a

q

qy
:

The numerator by2b�1 � axa�1yb is 0 if and only if a1 b1 0 or a ¼ b ¼ 1.

(i) When a1 b1 0, then D2
1 ¼ 0. We have E�xD1ð1Þ ¼ 1, E�xD1ðxÞ ¼

0, E�xD1ðyÞ ¼ xay�xyb

xa and E�xD1ðxyÞ ¼ � yb

xa�2 . So we see that Ker D is the

intersection of k½x; y� and the k½x2; y2�-module generated by 1,
xay�xyb

xa and

� yb

xa�2 . Therefore, for f A Ker D, we can write
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f ¼ aþ b
xay� xyb

xa
þ g

�yb

xa�2

for some a; b; g A k½x2; y2�, and

f ¼ c0 þ c1xþ c2yþ c3xy

for some c0; c1; c2; c3 A k½x2; y2�. We get

xaðc0 þ c1xþ c2yþ c3xyÞ ¼ xaf ¼ xaaþ bðxay� xybÞ � gx2yb A k½x; y�;

and we obtain that xac0 ¼ xaa� gx2yb and xac1 ¼ �byb since xa; yb A k½x2; y2�.
So b is divisible by xa. Put ~bb A k½x2; y2� such that b ¼ ~bbxa. We have

f ¼ axa�2 � gyb

xa�2
þ b

xa
ðxay� xybÞ ¼ c0 þ ~bbðxay� xybÞ:

Therefore we deduce that Ker D is a k½x2; y2�-module generated by 1 and

xay� xyb, hence Ker D ¼ k½x2; y2; xay� xyb�.
(ii) When a ¼ b ¼ 1, then we see D2

1 ¼ 0. We have E�xD1ð1Þ ¼ 1,

E�xD1ðxÞ ¼ E�xD1ðyÞ ¼ 0 and E�xD1ðxyÞ ¼ �xy. Hence, we deduce that

Ker D ¼ k½x2; y2; xy�, similarly to (i).

(iii) In the other cases, we see Ker D2
1 ¼ k½x; y2�. Since E�xD1ð1Þ ¼ 1

and E�xD1ðxÞ ¼ 0, we deduce that Ker D ¼ k½x2; y2�.

Example 4.3. We treat the k-derivation

D :¼ q

qx1
þ x1

q

qx2
þ x2

q

qx3
þ x3

q

qx4

of a polynomial ring k½x1; x2; x3; x4�.
Before considering the positive characteristic case, we calculate the kernel

of D when char k ¼ 0, using [6], [7, Corollary 1.3.23] or Proposition 2.1.

The derivation D has a slice x1. For the map j�x1
in Proposition 2.1 (1),

we have

j�x1
ðx1Þ ¼ 0;

j�x1
ðx2Þ ¼ x2 �

1

2
x2
1 ;

j�x1
ðx3Þ ¼ x3 � x1x2 þ

1

3
x3
1 ;

j�x1
ðx4Þ ¼ x4 � x1x3 þ

1

2
x2
1x2 �

1

8
x4
1 :

Hence we obtain
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Ker D ¼ k½2x2 � x2
1 ; 3x3 � 3x1x2 þ x3

1 ; 8x4 � 8x1x3 þ 4x2
1x2 � x4

1 �:

Now, we calculate the Ker D for p ¼ 2; 3.

(i) We assume that p ¼ 2.

We see D2 ¼ q
qx2

þ x1
q
qx3

þ x2
q
qx4

and D4 ¼ q
qx4

, and we have

Ker D4 ¼ k½x1; x2; x3; x2
4 � ¼

X
i1; i2; i3¼0;1

k½x2
1 ; x

2
2 ; x

2
3 ; x

2
4 �x

i1
1 x

i2
2 x

i3
3 :

Using Ker D4, we see that Ker D2 is a k½x2
1 ; x

2
2 ; x

2
3 ; x

2
4 �-module generated

by 1, x1, x3 � x1x2, x1ðx3 � x1x2Þ, since we have E�x2D
2ðx3Þ ¼ x3 � x1x2,

E�x2D
2ðx1x3Þ ¼ x1ðx3 � x1x2Þ and so on.

We calculate E�x1Dð1Þ ¼ 1, E�x1Dðx1Þ ¼ 0, E�x1Dðx3 � x1x2Þ ¼ x3 �
x1x2 þ x3

1 and E�x1Dðx1ðx3 � x1x2ÞÞ ¼ �x4
1 . Therefore we deduce that

Ker D ¼ k½x2
1 ; x

2
2 ; x

2
3 ; x

2
4 ; x3 � x1x2 þ x3

1 �:

To compare with the characteristic zero case, we have the following cal-

culations;

2x2 � x2
1 1 x2

1 ;

3x3 � 3x1x2 þ x3
1 1 x3 � x1x2 þ x3

1 ;

8x4 � 8x1x3 þ 4x2
1x2 � x4

1 1 x4
1 :

(ii) We assume that p ¼ 3.

We have D3 ¼ q
qx3

þ x1
q
qx4

and D9 ¼ 0.

The k-derivation D3 has a slice x3. So we see that Ker D3 is a

k½x3
1 ; x

3
2 ; x

3
3 ; x

3
4 �-module generated by fxi1

1 x
i2
2 ðx4 � x1x3Þ i3 j 0a i1; i2; i3 a 2g,

since E�x3D
3ðx4Þ ¼ x4 � x1x3 and so on.

Going on to Ker D, we see

E�x1Dðx2Þ ¼ x2 þ x2
1 ;

E�x1Dðx4 � x1x3Þ ¼ x4 þ 2x1x3 þ 2x2
1x2 þ x4

1 ;

and so on. So we have that Ker D is a k½x3
1 ; x

3
2 ; x

3
3 ; x

3
4 �-module generated by

fðx2 þ x2
1Þ

i1ðx4 þ 2x1x3 þ 2x2
1x2 þ x4

1Þ
i2 j 0a i1; i2 a 2g;

hence we deduce that

Ker D ¼ k½x3
1 ; x

3
2 ; x

3
3 ; x

3
4 ; x2 þ x2

1 ; x4 þ 2x1x3 þ 2x2
1x2 þ x4

1 �:

To compare with the characteristic zero case, we have the following

calculations;
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2x2 � x2
1 1 2ðx2 þ x2

1Þ;

3x3 � 3x1x2 þ x3
1 1 x3

1 ;

8x4 � 8x1x3 þ 4x2
1x2 � x4

1 1 2ðx4 þ 2x1x3 þ 2x2
1x2 þ x4

1Þ:

Example 4.4. We treat D :¼ x1
q
qx1

þ x2
2

q
qx2

þ x3
3

q
qx3

, a k-derivation of the

polynomial ring k½x1; x2; x3�.
We calculate the Ker D for p ¼ 2; 3.

(i) We assume that p ¼ 2.

We set

D1 :¼
1

x3
3

D ¼ x1

x3
3

q

qx1
þ x2

2

x3
3

q

qx2
þ q

qx3
:

Then we have

D2
1 ¼ x1ð1þ x2

3Þ
x6
3

q

qx1
þ x2

2

x4
3

q

qx2
:

In addition, we set

D2 :¼
x4
3

x2
2

D2
1 ¼ x1ð1þ x2

3Þ
x2
2x

2
3

q

qx1
þ q

qx2
;

a k-derivation of k½x1; x2; x3�. Then we get

D2
2 ¼ x1ð1þ x2

3Þ
2

x4
2x

4
3

q

qx1
;

so we see that Ker D2
2 is k½x2

1 ; x2; x3�, which is a k½x2
1 ; x

2
2 ; x

2
3 �-module generated

by 1, x2, x3 and x2x3.

We have E�x2D2ð1Þ ¼ 1, E�x2D2ðx3Þ ¼ x3 and E�x2D2ðx2Þ ¼
E�x2D2ðx2x3Þ ¼ 0. So we obtain that Ker D2

1 is a k½x2
1 ; x

2
2 ; x

2
3 �-module

generated by 1 and x3.

We see that E�x3D1ð1Þ ¼ 1 and E�x3D1ðx3Þ ¼ 0, hence we deduce that

Ker D ¼ k½x2
1 ; x

2
2 ; x

2
3 �.

(ii) We assume that p ¼ 3.

We consider, as in the case p ¼ 2,

D1 :¼
1

x3
3

D ¼ x1

x3
3

q

qx1
þ x2

2

x3
3

q

qx2
þ q

qx3
:

Then we have D3
1 ¼ x1

x9
3

q
qx1

and we see that Ker D3
1 is k½x3

1 ; x2; x3�, which is

a k½x3
1 ; x

3
2 ; x

3
3 �-module generated by fxi2

2 x
i3
3 j 0a i2; i3 a 2g.

We have
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E�x3D1ðx2Þ ¼
x2x

6
3 þ 2x2

2x
4
3 þ x3

2x
2
3

x6
3

; E�x3D1ðx2
2Þ ¼

x2
2x

3
3 þ x3

2x3

x3
3

and so on. So we obtain that Ker D is a k½x2
1 ; x

2
2 ; x

2
3 �-module generated by 1,

x2
2x

3
3 þ x3

2x3 and x2x
6
3 þ 2x2

2x
4
3 þ x3

2x
2
3 , hence we deduce that

Ker D ¼ k½x3
1 ; x

3
2 ; x

3
3 ; x

2
2x

3
3 þ x3

2x3; x2x
6
3 þ 2x2

2x
4
3 þ x3

2x
2
3 �:

Example 4.5. In this example, we assume that p ¼ 2.

We consider D, the k-derivation of the polynomial ring k½x; s; t; u; v�,

D :¼ x3 q

qs
þ s

q

qt
þ t

q

qu
þ x2 q

qv
:

When char k ¼ 0, this D is an example of a k-derivation whose kernel is

not a finitely generated k-algebra (Daigle and Freudenburg [4, Example 3.2]).

Set

D1 :¼
1

x2
D ¼ x

q

qs
þ s

x2

q

qt
þ t

x2

q

qu
þ q

qv
:

Then we have D2
1 ¼ 1

x
q
qt
þ s

x4
q
qu
.

In addition, we set

D2 :¼ xD2
1 ¼ q

qt
þ s

x3

q

qu
:

We see that D2
2 ¼ 0 and that D2 has a slice t. We have the following cal-

culations; E�tD2ð1Þ ¼ 1, E�tD2ðtÞ ¼ 0, E�tD2ðuÞ ¼ u� st
x3 and E�tD2ðtuÞ ¼ st2

x3 ,

and so on. So we see that Ker D2
1 is a k½x2; s2; t2; u2; v2�-module generated by

fxi1si2vi3ðx3u� tsÞ i4 j i1; i2; i3; i4 ¼ 0; 1g:

Furthermore, we have

E�vD1ðsÞ ¼ sþ xv;

E�vD1ðx3u� stÞ ¼ x5uþ x2stþ s2v

x2
;

E�vD1ðsðx3u� tsÞÞ ¼ ðsþ xvÞðx2stþ s2vþ x5uÞ � xs2v2

x2
;

and so on. We obtain that Ker D1 is a k½x2; s2; t2; u2; v2�-module generated by

fxi1ðsþ xvÞ i2ðx2stþ s2vþ x5uÞ i3 j i1; i2; i3 ¼ 0; 1g;

hence Ker D ¼ k½x; s2; t2; u2; v2; sþ xv; x2stþ s2vþ x5u�.

Shun-Ichiro Okuda12



When char k ¼ 0, Ker D is contained in k þ ðx; s; t; uÞH k½x; s; t; u; v�, and
contains elements of the form xvm þ (lower-degree v-terms) for each mb 1,

which implies that Ker D is not a finitely generated k-algebra ([4, Example

3.2], [8, § 3], [10]). When p ¼ char k > 0, then vp is in Ker D, and the above

argument fails.

Example 4.6. In this example, we assume that p ¼ 2. We consider a fi-

nitely generated k-domain R :¼ k½X ;Y �=ðX 3 þ Y 3 þ 1Þ ¼ k½x; y�, where k½X ;Y �
is the polynomial ring and x and y are images of X and Y in R respectively.

We can define the k-derivation D A Der kR such that DðxÞ ¼ y2 and

DðyÞ ¼ x2. We calculate the kernel of D.

We consider 1
y2
D, the derivation of R, which has a slice x and which

satisfies 1
y2
D

� �2
ðxÞ ¼ 1

y2
D

� �2
ðyÞ ¼ 0. So we see Ker 1

y2 D
� �2

¼ R. We calcu-

late as follows: E�x
1
y2
D

� �
ð1Þ ¼ 1, E�x

1
y2 D
� �

ðxÞ ¼ 0, E�x
1
y2 D
� �

ðyÞ ¼ 1
y2 and

E�x
1
y2 D
� �

ðxyÞ ¼ x4

y2 . Therefore,

Ker
1

y2
D

� �
¼ k½x2; y2�1þ k½x2; y2� 1

y2
þ k½x2; y2� x

4

y2

� �
VR ¼ k½x2; y2�:

Hence we deduce that Ker D ¼ k½x2; y2�.

5. On higher derivations

The spirit of the Essen formula (Proposition 2.1) can be translated into

positive characteristic, more straightforward, if we use the higher derivations.

This section is a fruit of the referee’s comment for the first draft of this

paper.

Throughout this section, R is a finitely generated commutative k-domain.

Definition 5.1 ([12, 1.1]). A locally finite higher derivation on R is a set

of k-linear endomorphisms D ¼ fD0;D1;D2; . . .g of the k-vector space R sat-

isfying the following conditions:

(1) The morphism D0 is an identity, and for any integer i A N, DiðabÞ ¼P
jþl¼i DjðaÞDlðbÞ for any a; b A R.

(2) For any element a of R, there exists an integer n A N such that

DmðaÞ ¼ 0 for every integer mb n.

Definition 5.2. The kernel of a locally finite higher derivation D is the set

f f A R jDið f Þ ¼ 0 ðib 1Þg. We denote it by Ker D.

Definition 5.3. An element s A R is called a slice of D, a locally finite

higher derivation, if D1ðsÞ ¼ 1 and DiðsÞ ¼ 0 for every ib 2.
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Definition 5.4 ([12, 1.1]). The locally finite higher derivation D on R is

called iterative if D satisfies the additional condition:

(1) DiDj ¼ iþj
i

� �
Diþj for all i; jb 0.

Remark 5.4.1 ([12, 1.1]). Let D be iterative.

(1) When the characteristic p ¼ 0, Di ¼ 1
i! ðD1Þ i for every i > 0.

(2) When the characteristic p > 0, Di ¼ ðD1Þ i0 ðDpÞ i1 ...ðDpr Þ ir
ði0Þ!ði1Þ!...ðirÞ!

for every i > 0,

where i ¼ i0 þ i1 pþ � � � þ ir p
r is a p-adic expansion of i. In par-

ticular, Ker D ¼ f f A R jDpl ð f Þ ¼ 0 ðlb 0Þg.

Remark 5.4.2 ([5, § 1], [12, 1.2]). The locally finite higher derivation D

on R leads to a map s : R ! R½t� given by sðaÞ ¼
P

ib0 DiðaÞti, where t is an

indeterminate. By the conditions in Definition 5.1, the map s is a ring homo-

morphism. Moreover, when D is iterative, the map s induces a Ga-action on

an a‰ne algebraic variety Spec R, which is an algebraic group action of the

additive group Ga of the field k.

By this correspondence, giving a locally finite iterative higher derivation D

is equivalent to giving a Ga-action on Spec R.

Definition 5.5. Let D be a locally finite higher derivation of R and a A R.

We define a homomorphism EaD : R ! R by

EaDð f Þ ¼
Xy
l¼0

Dlð f Þal :

Remark 5.5.1. In the following, we will use only E�sD with a slice s, as

in section 2.

Proposition 5.6. The homomorphism EaD in Definition 5.5 is a ring

homomorphism.

Proof. Follows immediately from Definition 5.1, and left to the reader.

r

Proposition 5.7. We assume p > 0. Let D be a locally finite iterative

higher derivation of R. We assume that D has a slice s A R. Then Ker D is

the image of E�sD. In particular, when R ¼ k½a1; . . . ; an�, we have

Ker D ¼ Im E�sD ¼ k½E�sDða1Þ; . . . ;E�sDðanÞ�:

Remark 5.7.1. When we handle the kernel of a derivation or of a higher

derivation in the zero characteristic case, we can extend the proposition by

mechanically making a slice. But, for a higher derivation in the positive char-

acteristic case, it is di‰cult to extend the proposition, because we cannot make

a slice easily.
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Lemma 5.7.2. We have Djðð�sÞnÞ ¼ n
j

� �
ð�1Þnsn�j for n; j A N, where

n
j

� �
¼ 0 for j > n.

Proof. We use the ring homomorphism s : R ! R½t� of Remark 5.4.2.

We have sðð�sÞnÞ ¼ ðsð�sÞÞn ¼ ð�s� tÞn, since s is a slice of D. So, because

sðð�sÞnÞ ¼
P

ib0 Diðð�sÞnÞti and t is an indeterminant, we deduce that

Djðð�sÞnÞ ¼ n

j

� �
ð�1Þ jð�sÞn�j ¼ n

j

� �
ð�1Þnsn�j: r

Proof of Proposition 5.7. When f A Ker D, then f ¼ E�sDð f Þ A
Im E�sD.

Conversely, we assume that f ¼ E�sDðgÞ A Im E�sD, for some g A R. By

Remark 5.4.1, we only have to show that Dpl ðE�sDðgÞÞ ¼ 0 for every lb 0.

In fact, using Lemma 5.7.2, we have

Dpl ðE�sDðgÞÞ

¼ Dpl

Xy
n¼0

DnðgÞð�sÞn
 !

¼
Xy
n¼0

X
iþj¼p l

DiðDnðgÞÞDjðð�sÞnÞ

¼
Xy
n¼0

X
iþj¼p l

nþ i

i

� �
n

j

� �
ð�1ÞnDnþiðgÞsn�j

¼
Xy
n¼0

n

0

� �
n

pl

� �
ð�1ÞnDnðgÞsn�p l þ nþ pl

pl

� �
n

0

� �
ð�1ÞnDnþp l ðgÞsn

� �

¼
Xy
n¼p l

n

pl

� �
ð�1ÞnDnðgÞsn�pl þ

Xy
n¼0

nþ pl

pl

� �
ð�1ÞnDnþpl ðgÞsn

¼
Xy
n¼p l

ðð�1Þn þ ð�1Þn�p l

Þ n

pl

� �
DnðgÞsn�p l

¼ 0: r

Appendix A. List—kernels of monomial derivations in two variables

In this section, we give a complete list of the kernel of monomial deri-

vations of k½x; y�, the polynomial ring in two variables, in p ¼ 2 and 3. A
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k-derivation D A Der kk½x; y� is called a monomial k-derivation when D ¼
a q
qx
þ b q

qy
for some monomials a; b A k½x; y� with coe‰cients 1.

If a monomial derivation D0 0 satisfies DðxÞ ¼ 0, then Ker D ¼ k½x; yp�.
So we treat a monomial derivation D with DðxÞ;DðyÞ0 0. We note that

such k-derivations are classified into three types q
qx
þ xayb q

qy
, xa q

qx
þ yb q

qy
and

ya q
qx
þ xb q

qy
, up to multiplication by monomials.

A.1. In case of char k ¼ 2. In this subsection, a1 b means a1 b ðmod 2Þ.

Example A.1. D ¼ q
qx
þ xayb q

qy
ða; b A Zb0Þ

case

a1 0, b1 0 Ker D ¼ k½x2; y2; yþ xaþ1yb�

a1 0, b1 1 Ker D ¼ k½x2; y2�

a1 1, b1 0 Ker D ¼ k½x2; y2�

a1 1, b1 1 Ker D ¼ k½x2; y2�

Example A.2. D ¼ xa q
qx
þ yb q

qy
ða; b A Zb0Þ

case

a1 0, b1 0 Ker D ¼ k½x2; y2; xayþ xyb�

a1 0, b1 1 Ker D ¼ k½x2; y2�

a1 1, b1 0 Ker D ¼ k½x2; y2�

a1 1, b1 1

ða; bÞ0 ð1; 1Þ
Ker D ¼ k½x2; y2�

ða; bÞ ¼ ð1; 1Þ Ker D ¼ k½x2; y2; xy�

Example A.3. D ¼ ya q
qx
þ xb q

qy
ða; b A Zb0Þ

case

a1 0, b1 0 Ker D ¼ k½x2; y2; xbþ1 þ yaþ1�

a1 0, b1 1 Ker D ¼ k½x2; y2�

a1 1, b1 0 Ker D ¼ k½x2; y2�

a1 1, b1 1 Ker D ¼ k½x2; y2�
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A.2. In case of char k ¼ 3. In this subsection, a1 b means a1 b ðmod 3Þ.

Example A.4. D ¼ q
qx
þ xayb q

qy
ða; b A Zb0Þ

case

a1 0, b1 0 Ker D ¼ k½x3; y3; y� xaþ1yb�

a1 0, b1 1 Ker D ¼ k½x3; y3�

a1 0, b1 2 Ker D ¼ k½x3; y3; y� xaþ1yb þ x2aþ2y2b�1; y2 þ xaþ1ybþ1�

a1 1, b1 0 Ker D ¼ k½x3; y3; yþ xaþ1yb�

a1 1, b1 1 Ker D ¼ k½x3; y3�

a1 1, b1 2 Ker D ¼ k½x3; y3; yþ xaþ1yb þ x2aþ2y2b�1; y2 � xaþ1ybþ1�

a1 2, b1 0 Ker D ¼ k½x3; y3�

a1 2, b1 1 Ker D ¼ k½x3; y3�

a1 2, b1 2 Ker D ¼ k½x3; y3�

Example A.5. D ¼ xa q
qx
þ yb q

qy
ða; b A Zb0Þ

case

a1 0, b1 0 Ker D ¼ k½x3; y3; xyb � xay�

a1 0, b1 1 Ker D ¼ k½x3; y3�

a1 0, b1 2 Ker D ¼ k½x3; y3; xybþ1 þ xay2; x2y2b�1 � xaþ1yb þ x2ay�

a1 1, b1 0 Ker D ¼ k½x3; y3�

a1 1, b1 1

ða; bÞ0 ð1; 1Þ
Ker D ¼ k½x3; y3�

ða; bÞ ¼ ð1; 1Þ Ker D ¼ k½x3; y3; x2y; xy2�

a1 1, b1 2 Ker D ¼ k½x3; y3�

a1 2, b1 0 Ker D ¼ k½x3; y3; x2yb þ xaþ1y; xy2b � xaybþ1 þ x2a�1y2�

a1 2, b1 1 Ker D ¼ k½x3; y3�

a1 2, b1 2 Ker D ¼ k½x3; y3; x2ybþ1 � xaþ1y2; xy2b�1 þ xayb þ x2a�1y�
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Example A.6. D ¼ ya q
qx
þ xb q

qy
ða; b A Zb0Þ

case

a1 0, b1 0 Ker D ¼ k½x3; y3; yaþ1 � xbþ1�

a1 0, b1 1 Ker D ¼ k½x3; y3; yaþ1 þ xbþ1�

a1 0, b1 2 Ker D ¼ k½x3; y3�

a1 1, b1 0 Ker D ¼ k½x3; y3; yaþ1 þ xbþ1�

a1 1, b1 1 Ker D ¼ k½x3; y3; yaþ1 � xbþ1�

a1 1, b1 2 Ker D ¼ k½x3; y3�

a1 2, b1 0 Ker D ¼ k½x3; y3�

a1 2, b1 1 Ker D ¼ k½x3; y3�

a1 2, b1 2 Ker D ¼ k½x3; y3�
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