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Abstract. In this paper some continuation techniques based on the implicit function

theorem are combined with the topological degree to show the existence of solution

isolas, with respect to a given state, for a class of weighted boundary value problems of

superlinear indefinite elliptic type. No result of this nature seems to be available in the

literature. Further, pseudo-spectral methods coupled with path following solvers are

used to compute these isolas in some simple one-dimensional prototype models.

1. Introduction

Unexpected events often provoke drastic changes of mind in human beings

and mathematics do not escape from this general principle. As a matter of

fact, within the context of Nonlinear Analysis, one of most surprising features

is the emergence of solution isolas in semilinear elliptic boundary value prob-

lems; perhaps because at present no general scheme to generate them has been

described in the specialized literature. As finding out an isola with respect to a

given state requires the use of two parameters—one is needed for obtaining a

bounded component of the solution set as bifurcating from the given state, the

other for isolating the component itself from the given state—, the immersion

of a given particular problem into a two-dimensional variety of problems is

needed for generating solution isolas; perhaps a revolutionary idea, far from

being well understood yet.

This paper addresses this problem in its full generality. Section 2 makes

precise the concept of isola in the context of abstract Nonlinear Analysis and

uses the topological degree to give a multiplicity result. Then, in Section 3, the

abstract theory of Section 2 is applied to show the existence of a one-parameter

family of isolas in a general class of weighted boundary value problems of

super-linear indefinite elliptic type. Finally, in Section 4, we will discuss the
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results of some numerical computations that we have carried for a simple

one-dimensional prototype model. Although the abstract results of this paper

apply in much more general contexts than the one considered in Section 3, for

the sake of clarity in the exposition, we have refrained ourselves of giving the

most general results.

2. The concept of isola and a multiplicity result

Suppose U is a real Banach space, denote by LðUÞ the space of linear

continuous operators in U , and consider a continuous map

F : R�U ! U

of the form

Fðl; uÞ ¼ LðlÞuþNðl; uÞ;

where
0 L : R ! LðUÞ is a continuous map such that LðlÞ � I is compact for

each l A R, where I denotes the identity operator of U .
0 N : R�U ! U is a compact operator such that

lim
u!0

sup
l AK

Nðl; uÞ
kuk ¼ 0 ð2:1Þ

for every compact interval KHR.

Our main goal in this section is analyzing some fine properties of the compact

isolas of the set of non-trivial solutions of

Fðl; uÞ ¼ 0: ð2:2Þ

Note that ðl; uÞ ¼ ðl; 0Þ solves Equation (2.2) for each l A R. This is why any

solution of the form ðl; 0Þ will be referred to as a trivial solution, while solu-

tions of the form ðl; uÞ with u0 0 are said to be non-trivial solutions of (2.2).

Most precisely, though it may contain some trivial solution, the set of non-

trivial solutions of Equation (2.2) is defined by

S :¼ fðl; uÞ A R� ðUnf0gÞ : Fðl; uÞ ¼ 0gU ðS � f0gÞ; ð2:3Þ

where SHR stands for the real spectrum of the family LðlÞ, i.e., s A S if and

only if s A R and LðsÞ has a non-trivial kernel. Since LðlÞ is Fredholm of

index zero, by the open mapping theorem, LðlÞ is an isomorphism if l A RnS.
Within the general setting of this paper, it is well known that S is a closed
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subset of R and that all bifurcation values of l to non-trivial solutions of (2.2)

from the trivial solution ðl; 0Þ must lie in S. Actually, by the continuity of F,

S is a closed subset of R�U (cf. [10, Section 6.1]). The set S consists of all

non-trivial solutions of (2.2) plus all possible bifurcation points from the trivial

solution curve ðl; 0Þ.
Throughout this work, as usual within the context of global bifurcation

theory, by a component of S it is meant a maximal (for the inclusion) closed

and connected subset of S. A bounded component C of S, necessarily com-

pact, is said to be an isola—with respect to the trivial solution ðl; 0Þ—if

CV ðS � f0gÞ ¼ q; ð2:4Þ

i.e., if it is bounded away from the trivial solution. All isolas considered in

this paper will be understood as isolas with respect to the trivial solution curve

ðl; 0Þ. The following concept plays a crucial role in the abstract theory

developed in this section.

Definition 2.1. Suppose CHS is an isola. A bounded open set WH
R�U is said to be an open isolating neighborhood of C if

CHW and qWVS ¼ q: ð2:5Þ

The following result establishes the existence of open isolating neighborhoods.

Throughout this paper, we will denote by BRðl; uÞ the ball of radius R > 0

centered at ðl; uÞ A R�U , and by BRðuÞ the ball of radius R centered at u A U .

If u ¼ 0, we simply set BR :¼ BRð0Þ.

Proposition 2.2. Suppose CHS is an isola. Then, for each e > 0, C

possesses an open isolating neighborhood WHR�U such that

WHCþ Beð0; 0Þ:

Proof. Thanks to (2.4), for any su‰ciently small d > 0, the open

neighborhood

U :¼ Cþ Bdð0; 0Þ

satisfies

UV ðS � f0gÞ ¼ q:

Fix one of these d’s. If qUVS ¼ q, then U provides us with an open

isolating neighborhood of C, but, in general, this does not occur. So, suppose

qUVS0q

Isolated compact solution components 179



and set

M :¼ UVS; A :¼ C; B :¼ qUVS:

Then, M is a compact metric space and A;B are two disjoint compact non-

empty subsets of M. By the maximality of C, no subcontinuum of M con-

nects A with B. Thus, by a celebrated result attributable to G. T. Whyburn

[12], there exist two disjoint compact subsets of M;MA and MB, such that

AHMA; BHMB; M ¼ MA UMB:

Then, the open set

W :¼ MA þ Bhð0; 0Þ

provides us with an open isolating neighborhood of C for any su‰ciently small

h > 0. Indeed, by construction,

A ¼ CHMA HW:

Moreover, since distðMA;MBÞ > 0 and M ¼ MA UMB, for any su‰ciently

small h > 0,

qWVM ¼ q:

Finally, since MA HU, for any su‰ciently small h > 0 we have that qWHU,

and, hence,

q ¼ qWVM ¼ qWVUVS ¼ qWVS:

Therefore, W is an open isolating neighborhood of C in R�U . r

Now, we will use Proposition 2.2 to obtain an important property satisfied by

any isola of S. To state the corresponding result, we need to introduce some

notations. For any subset SHR�U and l A R we will denote

Sl :¼ fu A U : ðl; uÞ A Sg;

and Pl will stand for the projection on the l-component, i.e., Plðl; uÞ :¼ l for

each ðl; uÞ A R�U .

Proposition 2.3. Suppose CHS is an isola and let W be any open

isolating neighborhood of C. Then, for each l A R,

DegðFðl; �Þ;WlÞ ¼ 0; ð2:6Þ

where DegðFðl; �Þ;WlÞ denotes the topological degree of Fðl; �Þ in Wl HU .

Proof. Since C is compact, there exist a; b A R, a < b, such that CH
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ða; bÞ �U . Then, by the homotopy invariance of the topological degree, we

have that, for each l A R,

DegðFðl; �Þ;WlÞ ¼ DegðFða; �Þ;WaÞ ¼ 0;

because qWVS ¼ q. r

The main result of this section reads as follows.

Theorem 2.4. Suppose CHS is an isola and set

l� :¼ minfl A R : Cl 0qg; l� :¼ maxfl A R : Cl 0qg:

Note that, necessarily, PlC ¼ ½l�; l��, since C is compact and connected.

Moreover, l� a l�—the equality l� ¼ l� might occur.

Suppose, in addition, that l� < l� and that there exist l1; l2 A ðl�; l�Þ,
l1 < l2, and a continuous curve g A Cð½l1; l2�;UÞ such that

(A1) The graph of g,

G :¼ fðl; gðlÞÞ : l A ½l1; l2�g;

is contained in the isola C and there exists e0 > 0 such that

½G þ Be0ð0; 0Þ�VSV ð½l1; l2� �UÞ ¼ G :

(A2) There exists l0 A ½l1; l2� such that

Indðgðl0Þ;Fðl0; �ÞÞ A f�1; 1g; ð2:7Þ

where Ind denotes the index—local topological degree—of an isolated

solution.

Then, for each l A ½l1; l2�,

ðCnGÞl 0q;

and, therefore, Cl possesses, at least, two nontrivial solutions of (2.2).

Assumption (A1) establishes that G is an isolated arc of curve within C. By

the homotopy invariance of the topological degree, Assumption (A2) guar-

antees that the index of any solution along G equals either 1, or �1.

Proof of Theorem 2.4. As we have just commented,

IndðgðlÞ;Fðl; �ÞÞ ¼ Indðgðl0Þ;Fðl0; �ÞÞ A f�1; 1g El A ½l1; l2�: ð2:8Þ

Now, pick e A ð0; e0Þ and let W be any open isolating neighborhood WHR�U

such that
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WHCþ Beð0; 0Þ:

The existence of W is guaranteed by Proposition 2.2. Thanks to Proposition

2.3,

DegðFðl; �Þ;WlÞ ¼ 0 El A ½l1; l2�:

Moreover, due to the additivity property of the degree, for each l A ½l1; l2�,

DegðFðl; �Þ;WlÞ ¼ DegðFðl; �Þ;WlnBeðgðlÞÞÞ þ IndðgðlÞ;Fðl; �ÞÞ

and, hence, thanks to (2.8),

DegðFðl; �Þ;WlnBeðgðlÞÞÞ ¼ �IndðgðlÞ;Fðl; �ÞÞ ð2:9Þ

equals either �1, or 1, for each l A ½l1; l2�. Consequently, for each l A ½l1; l2�
there exists ul A WlnBeðgðlÞÞ such that

Fðl; ulÞ ¼ 0;

though, in general, one cannot guarantee that ðl; ulÞ A C. Thus, in order to

prove ðCnGÞl 0q a further argument is needed.

First, we show that for any compact interval J :¼ ½m1; m2�H ½l1; l2�,
m1 < m2, there exists m0 A ½m1; m2� such that

Cm0
nfgðm0Þg0q:

In order to prove this we proceed by contradiction. So, suppose there exists

J :¼ ½m1; m2�H ½l1; l2�, m1 < m2, such that

ClnfgðlÞg ¼ q El A ½m1; m2�: ð2:10Þ

Pick

e A 0;min e0;
m2 � m1

3

� �� �

and let W be any open isolating neighborhood of C such that WHCþ Beð0; 0Þ.
Thanks to (2.10), for each l A ðm1 þ e; m2 � eÞ one has that

WlnBeðgðlÞÞ ¼ q

and, hence,

DegðFðl; �Þ;WlnBeðgðlÞÞÞ ¼ 0;

which is impossible, because of (2.9). This contradiction shows the validity of

the claim above.
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To complete the proof of the theorem, pick l A ½l1; l2� and consider a

sequence of compact intervals of positive length, Jn, nb 1, such that

Jnþ1 H Jn H ½l1; l2�; nb 1;

and

7
y

n¼1

Jn ¼ flg:

We already know that, for each nb 1, there exists rn A Jn such that

CrnnfgðrnÞg0q:

Now, for each nb 1, pick un A CrnnfgðrnÞg. Then, thanks to (A1), the se-

quence,

fðrn; unÞgnb1 HCnG

possesses a convergent subsequence, labeled again by n, to some point

ðly; uyÞ A CnG . Moreover, by construction,

lim
n!y

rn ¼ l;

and, hence, ly ¼ l. Therefore,

uy A ClnfgðlÞg;

which concludes the proof. r

3. The existence of isolas in semilinear elliptic b.v.p’s

In this section we construct a general class of semilinear weighted bound-

ary value problems of the form

Lu ¼ lVu� ðA� eBÞup in W;

u ¼ 0 on qW;

�
ð3:1Þ

exhibiting an isola of positive solutions—in l—for each su‰ciently small e > 0.

To carry out the mathematical analysis of this problem we make the following

assumptions:

A1. W is a bounded domain of RN , Nb 1, of class C2þn, for some n A ð0; 1Þ,
p > 1, eb 0, l A R, L is a second order uniformly elliptic operator in W

of the form
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L :¼ �
XN
i; j¼1

aijðxÞ
q2

qxiqxj
þ
XN
i¼1

aiðxÞ
q

qxi
þ a0ðxÞ ð3:2Þ

where aij ¼ aji A CnðWÞ, ai; a0 A CnðWÞ, 1a i; jaN.

A2. A;B A CnðWÞ, are two positive functions with disjoint supports,

Kþ
A :¼ supp A; Kþ

B :¼ supp B;

such that

W0
A :¼ WnKþ

A ; W0
B :¼ WnKþ

B ;

are two proper open subsets of W of class C2þn with a finite number of

separated components.

A3. Either N A f1; 2g, or else Nb 3, p < Nþ2
N�2 , and, for some constant

gb 2N
N�2 ,

B

½distð� ; qKþ
B Þ�

g A CðKþ
B ; ð0;yÞÞ:

A4. V A CnðWÞ is a function changing of sign in W0
A and satisfying

max
l AR

s1½L� lV ;W� < 0 < max
l AR

s1½L� lV ;W0
A�: ð3:3Þ

Subsequently, given any elliptic operator L in a smooth domain D, we

denote by s1½L;D� the principal eigenvalue of L in D under homogeneous

Dirichlet boundary conditions.

The existence of L;A;B and V satisfying (A1)–(A4) can be guaranteed as

follows. Choose A satisfying the requirements of (A2), V changing of sign in

W0
A, and any elliptic operator L0 in W. Then,

lim
l!Gy

s1½L0 � lV ;W0
A� ¼ �y

and, due to the monotonicity of the principal eigenvalue with respect to the

domain,

max
l AR

s1½L0 � lV ;W� < max
l AR

s1½L0 � lV ;W0
A�:

Thus, the elliptic operator L defined by

L :¼ L0 �
1

2
max
l AR

s1½L0 � lV ;W� þmax
l AR

s1½L0 � lV ;W0
A�

� �

satisfies (A4). Finally, choose any B satisfying (A2) and (A3). For these

choices, all requirements of this section are satisfied.
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For any D A fW;W0
Ag, consider the linear weighted boundary value

problem

Lj ¼ lVj in D;

j ¼ 0 on qD:

�
ð3:4Þ

Thanks to (3.3), Problem (3.4) does not admit a principal eigenvalue l if

D ¼ W, while it possesses two, denoted by l01 < l02, if D ¼ W0
A (cf. [9] and the

references there in). When s1½L;W0
A� > 0, this result is attributable to P. Hess

and T. Kato [6]. Within the setting of [6] one necessarily has l01 < 0 < l02,

although in our general setting l01 and l02 can have the same sign. The fol-

lowing result is well known (cf. e.g., [5]).

Theorem 3.1. Suppose e ¼ 0. Then, (3.1) possesses a positive solution if,

and only if,

l01 < l < l02: ð3:5Þ

Moreover, it is unique and linearly asymptotically stable, if it exists, i.e., the

principal eigenvalue of the linearization of (3.1) around it is always positive.

Actually, the positive solution attracts to all positive solutions of the parabolic

counterpart of (3.1). Furthermore, if we denote the positive solution by y½l;0�,

then

lim
l#l0

1

ky½l;0�kLyðWÞ ¼ y ¼ lim
l"l0

2

ky½l;0�kLyðWÞ;

and, therefore, l01 and l02 are bifurcation values from infinity to positive solutions

of (3.1). Note that, thanks to the first inequality of (3.3), zero is always linearly

unstable.

Figure 1(c) of [5] shows the bifurcation diagram of positive solutions of (3.1) in

case e ¼ 0. The a priori bounds of [1] and [2] show that the curve of positive

solutions ðl; y½l;0�Þ, l01 < l < l02, at e ¼ 0, becomes into an isola of solutions of

(3.1) for each su‰ciently small e > 0. This is the main result of this section,

which can be stated as follows.

Theorem 3.2. Suppose (A1)–(A4). Then, for each

d A ð0; ðl02 � l01Þ=2Þ ð3:6Þ

there exists e0 :¼ e0ðdÞ > 0 such that for any e A ð0; e0Þ the problem (3.1)

possesses an isola of positive solutions Cþ
e , satisfying the following properties:

(a) Setting

l�; e :¼ min
l AR

PlðCþ
e Þ; l�; e :¼ max

l AR
PlðCþ

e Þ; ð3:7Þ

Isolated compact solution components 185



one has that

l01 < l�; e < l01 þ d < l02 � d < l�; e < l02: ð3:8Þ

(b) For each l A ½l01 þ d; l02 � d�, Cþ
e possesses, at least, two positive solu-

tions.

(c) For each l A ½l01 þ d; l02 � d�, Cþ
e possesses, at least, one linearly asymp-

totically stable solution.

Proof. Fix any constant

K > �s1½L;W�

and consider, for each ðl; eÞ A R2, the operators

LðlÞ :¼ JðLþ KÞ�1½lV þ K � � I : Cn
0ðWÞ ! Cn

0ðWÞ;

and

Nðl; � ; eÞ :¼ �JðLþ KÞ�1½ðA� eBÞð�Þp� : Cn
0ðWÞ ! Cn

0ðWÞ;

where I is the identity map of Cn
0ðWÞ and J stands for the compact imbedding

C2þn
0 ðWÞ ,! Cn

0ðWÞ. Then, by Schauder’s theory, the positive solutions of (3.1)

are given by the positive solutions of the nonlinear abstract equation

Fðl; u; eÞ :¼ LðlÞuþNðl; u; eÞ ¼ 0; ðl; u; eÞ A X :¼ R� Cn
0ðWÞ � R:

Note that, for each eb 0, this equation fits into the abstract setting of Section

2. Moreover, since p > 1, F A C1ðX ;Cn
0ðWÞÞ, and, given any solution ðl; y; eÞ

of (3.1), ðl; y; eÞ is linearly asymptotically stable if, and only if,

sprðI þDuFðl; y; eÞÞ < 1:

Note that the linearization

I þDuFðl; y; eÞ ¼ JðLþ KÞ�1f½lV þ K � pðA� eBÞy p�1��g

is compact.

Let Cþ
0 denote the component of positive solutions of (3.1) for e ¼ 0.

Thanks to Theorem 3.1, Cþ
0 is the C1 curve of X consisting of all points of the

form ðl; y½l;0�; 0Þ with l01 < l < l02. Now, fix d satisfying (3.6) and consider the

compact arc of curve of class C1

G0 :¼ fðl; y½l;0�; 0Þ : l01 þ da la l02 � dgHCþ
0 :

Thanks to the implicit function theorem, there exist e0 ¼ e0ðdÞ > 0 and a map

of class C1,
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Y : ½l01 þ d; l02 � d� � ½�e0; e0�HR2 ! Cn
0ðWÞ;

such that:

(C1) For each l A ½l01 þ d; l02 � d�, Yðl; 0Þ ¼ y½l;0�.

(C2) For each ðl; eÞ A ½l01 þ d; l02 � d� � ½�e0; e0�, Fðl;Yðl; eÞ; eÞ ¼ 0, i.e.,

ðl;Yðl; eÞ; eÞ provides us with a solution of (3.1).

(C3) There exists r > 0 such that if Fðl; u; eÞ ¼ 0 for some ðl; u; eÞ A
½l01 þ d; l02 � d� � Cn

0ðWÞ � ½�e0; e0� with

ku� y½l;0�kCðWÞ a r; ð3:9Þ

then u ¼ Yðl; eÞ.
By elliptic regularity (3.9) implies an equivalent estimate in Cn

0ðWÞ. Moreover,

since

lim
e!0

kYðl; eÞ � y½l;0�kC0ðWÞ ¼ 0 uniformly in l A ½l01 þ d; l02 � d�;

reducing e0, if necessary, we can assume that ðl;Yðl; eÞ; eÞ is a positive solution

of (3.1) for each l A ½l01 þ d; l02 � d� and e A ½�e0; e0�. Actually, by the con-

tinuity of the map

%ðl; eÞ :¼ sprðI þDuFðl;Yðl; eÞ; eÞÞ; ð3:10Þ

one can make a further reduction of e0, if necessary, so that

%ðl; eÞao < 1; ðl; eÞ A ½l01 þ d; l02 � d� � ½�e0; e0�; ð3:11Þ

for some constant o < 1. Although the continuity of the map (3.10) can be

obtained from the abstract theory of T. Kato [7], in our particular setting

it is an easy consequence from the continuity of the principal eigenvalue of

the linearization of (3.1) at Yðl; eÞ with respect to the underlying potential.

Subsequently, we assume that e0 has been chosen to satisfy all these require-

ments, set

y½l; e� :¼ Yðl; eÞ

and fix e A ð0; e0�. Let Ce denote the component of the set of nontrivial solu-

tions of Fðl; u; eÞ ¼ 0 containing ðl; y½l; e�; eÞ, l01 þ da la l02 � d, and let Cþ
e be

the subcomponent of Ce lying in the interior of the cone of positive functions.

By the strong maximum principle, Ce ¼ Cþ
e , since the positive solutions of (3.1)

cannot bifurcate from ðl; 0; eÞ. To complete the proof of the theorem it suf-

fices to show that Cþ
e is an isola satisfying the conditions (a), (b) and (c) of the

statement.

Thanks to [1, Th. 3.3] and [2, Prop. 4.3], there exists h > 0 such that (3.1)

does not admit a positive solution if

Isolated compact solution components 187



l A ð�y; l01 þ hÞU ðl02 � h;yÞ:

Thus,

PlðCþ
e ÞH ½l01 þ h; l02 � h�: ð3:12Þ

Moreover, thanks to (A3), the positive solutions of (3.1) possess uniform Ly-

bounds in compact intervals of the parameter l within ðl01 ; l
0
2Þ (cf. e.g., [1] and

[2]). Therefore, Cþ
e is compact, and, consequently, Cþ

e is an isola entirely filled

in by positive solutions of (3.1)—with respect to the trivial state ðl; 0; eÞ.
Now, let l�; e and l�; e be the quantities defined through (3.7). Since Cþ

e is

connected and Pl is continuous,

PlðCþ
e Þ ¼ ½l�; e; l�; e�

and, hence, (3.12) implies

l01 < l�; e a l01 þ d < l02 � da l�; e < l02;

by construction. Actually, thanks to (3.11), we have that

%ðl01 þ d; eÞ < 1; %ðl02 � d; eÞ < 1;

and, hence, the operators

DuFðl01 þ d; y½l01þd; e�; eÞ and DuFðl02 � d; y½l02�d; e�; eÞ

are isomorphisms of Cn
0ðWÞ. Therefore, thanks to the implicit function the-

orem, the compact arc of C1-curve of Cþ
e defined by

Ge :¼ fðl; y½l; e�; eÞ : l01 þ da la l02 � dg

extends to a compact arc of curve of class C1, say ~GGe, such that

½l01 þ d; l02 � d�H Int Plð ~GGeÞ:

As Cþ
e is connected, necessarily ~GGe HCþ

e and, hence,

½l01 þ d; l02 � d�H Int PlðCþ
e Þ:

Therefore,

l�; e < l01 þ d < l02 � d < l�; e;

which shows (3.8) and completes the proof of Property (a).

As an immediate consequence from (3.10) and (3.11), for each l A
½l01 þ d; l02 � d�, ðl; y½l; e�; eÞ is a linearly asymptotically stable solution of the
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parabolic counterpart of (3.1), and, consequently, Property (c) holds. Actually,

thanks to Schauder’s formula for the local index, for each l A ½l01 þ d; l02 � d�,

Indðy½l; e�;Fðl; � ; eÞÞ ¼ 1 ð3:13Þ

and, therefore, thanks to Theorem 2.4, Cþ
e possesses, at least, two solutions.

This shows Property (b) and concludes the proof of the theorem. r

4. Numerical experiments

In this section we treat numerically the following one-dimensional pro-

totype model in W ¼ ð0; 1Þ:

�u 00 þ mu ¼ l sinð2pxÞu� aðxÞu2;
uð0Þ ¼ uð1Þ ¼ 0;

�
ð4:1Þ

where

aðxÞ ¼
�0:2 sin p

0:2 ð0:2� xÞ
� �

if 0a xa 0:2;

sin p
0:6 ðx� 0:2Þ
� �

if 0:2 < xa 0:8;

�0:2 sin p
0:2 ðx� 0:8Þ
� �

if 0:8 < xa 1;

8><
>: ð4:2Þ

and ðl; mÞ A R2 are regarded as two real parameters. Note that a > 0 in

ð0:2; 0:8Þ, a < 0 in ð0; 0:2ÞU ð0:8; 1Þ, and að0Þ ¼ að0:2Þ ¼ að0:8Þ ¼ að1Þ ¼ 0.

For an adequate choice of the parameter m, this problem fits into the abstract

setting of Section 3 by choosing

W :¼ ð0; 1Þ; L :¼ � d 2

dx2
þ m; V :¼ sinð2p�Þ; p ¼ 2;

and, e.g.,

AðxÞ :¼
0 if 0a xa 0:2;

sin p
0:6 ðx� 0:2Þ
� �

if 0:2 < xa 0:8;

0 if 0:8 < xa 1;

8<
:

e ¼ 0:2, and

BðxÞ ¼
sin p

0:2 ð0:2� xÞ
� �

if 0a xa 0:2;

0 if 0:2 < xa 0:8;

sin p
0:2 ðx� 0:8Þ
� �

if 0:8 < xa 1:

8><
>:

Indeed, since N ¼ 1, W0
A ¼ ð0; 0:2ÞU ð0:8; 1Þ, W0

B ¼ ð0:2; 0:8Þ, and

Isolated compact solution components 189



max
l AR

s1½L� lV ;W� ¼ s1 � d 2

dx2
þ m;W

� �
¼ p2 þ m; ð4:3Þ

max
l AR

s1½L� lV ;W0
A� ¼ s1 � d 2

dx2
þ m;W0

A

� �
¼ 25p2 þ m; ð4:4Þ

condition (3.3) is satisfied as soon as

�25p2 < m < �p2: ð4:5Þ

Moreover, since V > 0 in ð0; 0:2Þ and V < 0 in ð0:8; 1Þ, V changes sign in W0
A.

The validity of (4.3) follows straight away from the fact that, for each l < 0,

any eigenfunction of s1 � d 2

dx2 þ m� l sinð2p�Þ;W
h i

must be the vertical reflection

around 0.5 of a principal eigenfunction of s1 � d 2

dx2 þ mþ l sinð2p�Þ;W
h i

. Thus,

the zeroes of the map

l 7! s1 � d 2

dx2
þ m� l sinð2p�Þ;W

� �

always have opposite sign, if it has two. This entails that its maximum must

be reached at l ¼ 0. A similar argument, whose details are omitted here,

shows (4.4).

Actually, as a result of the symmetry of aðxÞ, if u is a positive solution of

(4.1) for some l > 0, then its vertical reflection around x ¼ 0:5 provides us with

a positive solution of (4.1) for �l. Consequently, for each m A R, the set of

values of l for which (4.1) possesses a positive solution must be an interval

centered at l ¼ 0. As a consequence, any bifurcation diagram of positive solu-

tions where we represent the parameter l versus the Ly-norm of the solutions

must be symmetric around l ¼ 0. These features have been confirmed by all

our numerical computations.

Suppose

m A ð�p2; 0�: ð4:6Þ

Then, s1½L;W� > 0 and, due to Kato-Hess’s Theorem, there exist l�ðmÞ < 0 <

lþðmÞ such that

s1½L� l�ðmÞV ;W� ¼ s1½L� lþðmÞV ;W� ¼ 0:

Actually, these are the unique zeroes of l 7! s1½L� lV ;W� and, thanks to the

symmetry properties of the problem, l�ðmÞ ¼ �lþðmÞ. As m decreases from

zero approaching the critical value �p2, l�ðmÞ increases, and, hence, lþðmÞ
decreases, approaching 0, i.e.,
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lim
m#�p2

l�ðmÞ ¼ 0 ¼ lim
m#�p2

lþðmÞ:

It should be noted that, if m < �p2, then the map l 7! s1½L� lV ;W� is always
negative. Under assumption (4.6), l�ðmÞ and lþðmÞ are simple eigenvalues, in

the sense of [4], and, hence, they are bifurcation values to positive solutions

from the trivial state ðl; uÞ ¼ ðl; 0Þ. Actually, these are the unique bifurcation

values to positive solutions from ðl; 0Þ. Moreover, thanks to [2, Prop. 4.3], it

is easy to see that (4.1) does not admit a positive solution if

l A ð�y; l0�ðmÞ�U ½l0þðmÞ;yÞ;

where l0�ðmÞ and l0þðmÞ are the unique zeroes of the map

l 7! s1½L� lV ; ð0; 0:2Þ�:

Note that l0�ðmÞ ¼ �l0þðmÞ < 0. As we have at our disposal Ly a priori

bounds, uniform in compact intervals of the parameter l, for all positive

solutions of (4.1)—because N ¼ 1—, it is apparent, from the abstract uni-

lateral bifurcation results of [10], that there is a continuum of positive solu-

tions of (4.1) connecting ðl0�ðmÞ; 0Þ with ðl0þðmÞ; 0Þ. The left plot of Figure

4.1 shows it for the special choice m ¼ 0. In this case, lþð0Þ@ 28:0233 and

l�ð0Þ@�28:0233. The central and right plots of Figure 4.1 show the per-
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Fig. 4.1. Three components of positive solutions for m ¼ 0;�14;�40, respectively.
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turbations of the positive solutions of the left plot as the secondary parameter

m decreases from zero up to reach the values m ¼ �14 and m ¼ �40, for which

ðl; 0Þ always is linearly unstable, and, consequently, no bifurcation value to

positive solutions from it is available. Therefore, the perturbed continua of

positive solutions must be isolas with respect to ðl; 0Þ.
In Figure 4.1 we are plotting the value of l against the Ly-norm of the

corresponding positive solution. Stable solutions are indicated by solid lines,

unstable by dotted lines. As there are some ranges of values of l where the

model possesses at least two solutions with very similar Ly-norms, the plot did

not allow us distinguishing them, but rather plotted twice these pieces. This is

why the bifurcation diagrams exhibit a darker arc of curve. To explain in full

detail what’s going on, in Figure 4.2 we have magnified a very small area

around the apparent crossing point of the curve of positive solution shown in

the second plot of Figure 4.1.

The crossing point in Figure 4.2 represents two positive solutions for l ¼ 0

with the same Ly-norm; each of them the vertical reflection around x ¼ 0:5 of

the other. The solutions on the main diagonals possess a one-dimensional

unstable manifold, while the solutions on the 4-shaped curve have two-

dimensional unstable manifolds. Actually, in all cases the fine structure of

the upper part of the global bifurcation diagram obeys the following general

scheme

–0.5 –0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5
820

821

822

823

824

825

826
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Fig. 4.2. Magnified piece of the bifurcation diagrams.
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As we across the first turning point, R1, the solutions become unstable with one-

dimensional unstable manifold, until reaching the second turning point along

the curve, R2, where the dimension of the unstable manifold increases

by one. Then, all solutions along the 4-shaped arc of curve have two-

dimensional unstable manifolds until reaching the third turning point, R3,

where such dimension reduces by one. All solutions along the arc of curve in

between R3 and R4 have one-dimensional unstable manifold. Finally, when

R4 is crossed, all solutions become stable. It should be noted that, thanks to

the symmetry properties of (4.1),

R1 ¼ �R4; R3 ¼ �R2:

To compute the plots of Figure 4.1 we have coupled a pure spectral method

with collocation and a path continuation solver. In all our numerical com-

putations we have used trigonometric modes and the collocation points have

been taken to be equidistant; the number of modes equaling the number of

collocation points. Let N denote the number of modes, set x0 ¼ 0, xNþ1 ¼ 1,

h ¼ 1=ðN þ 1Þ, and

xi ¼ xi�1 þ h; 1a iaN;

the N collocation points. Then, the solutions uðxÞ of (4.1) are approximated

by the Fourier truncated series

uNðxÞ ¼
XN
j¼1

cj sinð jpxÞ;

where C ¼ ðc1; . . . ; cNÞ is a solution of

R1

23

4

R

R

R

Fig. 4.3. Scheme of the upper parts of the bifurcation diagrams.
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ðLCT Þi ¼ lVðxiÞðJCT Þi � aðxiÞððJCTÞiÞ
2; 1a iaN: ð4:7Þ

In (4.7) we have denoted

J :¼ ðsinð jpxiÞÞ1ai; jaN ; L :¼ ðð jpÞ2 sinð jpxiÞÞ1ai; jaN : ð4:8Þ

For this choice the zero solution of (4.1) is preserved and, as the number of

modes increases, any compact arc of approximated non-trivial solution curve

approximates the corresponding curve of the continuous problem (e.g., [11]

and the references therein). Since u is a function of class C2, its jth Fourier

coe‰cient cj decays as Oð j�2Þ as j " y (cf. C. Canuto et al. [3, pp. 35]) and,

hence,

max
0axa1

juNþ1ðxÞ � uNðxÞj ¼ OðN�2Þ

as N " y. Due to these features we have used the following criterion to

choose the number of modes in all our computations

max
0aja10

jcN�jja
1

2
10�4:

Actually, in order to respect it we have needed 80aNa 132 nodes in all our

computations. The global continuation solvers we use to compute the solution

curves and the dimensions of the unstable manifolds of all the solutions along

them come from [8], [11], and the references therein.

The central and right plots of Figure 4.1 show two isolas of positive

solutions of (4.1) for m ¼ �14 and m ¼ �40, respectively. To compute them

we have taken the minimal positive solution of the first plot of Figure 4.1 for a

value of l greater and su‰ciently close to lþð0Þ, and then we have fixed l and

used m as the main continuation parameter to construct a positive solution of

(4.1) for m ¼ �14 at the fixed value of l. Further, we fixed m ¼ �14 and used

l as the main continuation parameter to compute the whole solution isola. A

posterior continuation in m, up to reach the value m ¼ �40 provided us with the

isola shown in the third plot of Figure 4.1. It should be noted that m ¼ �14

and m ¼ �40 satisfy (4.5). Therefore, they are within the range of values of m

for which no positive solution can bifurcate from u ¼ 0, because of the absence

of principal eigenvalues for the corresponding linearized problem. The turning

points of the third diagram of Figure 4.1 are the following

R1 @�18:9693; R2 @ 18:3983; R3 @�18:3983; R4 @ 18:9693:

In the next figures we have plotted the profiles of some representative positive

solutions along the third isola of Figure 4.1. We have chosen clock-wise

orientation. Precisely, Figure 4.4 provides us with the plots of 6 solutions

along the arc of curve joining R4 with R1. All those solutions are stable.
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As predicted by the theory, the first and sixth plots of Figure 4.4 are vertical

reflection around x ¼ 0:5 of each other.

In Figure 4.5 we have represented the plots of 4 representative solutions

along the arc of curve joining R1 with R2. The first and fourth solutions

correspond with R1 and R2, respectively, and, hence, they are neutrally stable,

whereas the two intermediate solutions are unstable with one-dimensional

unstable manifold.

The solutions along the arc of curve dR1R2R1R2 exhibit a genuine super-linear

behaviour at each of the intervals ð0; 0:2Þ and ð0:8; 1Þ, where they have a pick

around x ¼ 0:1 and x ¼ 0:9, respectively. It should be noted that 0.1 and 0.9

are the points where the absolute minimum of aðxÞ is attained. Clearly, along

this arc of curve the super-linear behaviour of the positive solutions is much

more emphasized in the interval ð0:8; 1Þ than in ð0; 0:2Þ.
In Figure 4.6 we have represented the plots of 6 representative solutions

along the arc of curve joining R2 with R3. All these solutions are linearly

unstable with two-dimensional unstable manifolds. Note that they exhibit a

genuine super-linear behavior with two picks around each of the points x ¼ 0:1

and x ¼ 0:9. Along this arc of curve, the solutions of (4.1) for l < 0 are
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Fig. 4.4. Some positive solutions along the arc of curve dR4R1R4R1.
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obtained through vertical reflection around x ¼ 0:5 from the corresponding

solutions for �l > 0.

The solutions of (4.1) along the arc of curve joining R3 with R4 are the

vertical reflection around x ¼ 0:5 of the corresponding solutions of (4.1) (sub-

stituting l by �l) along the arc of curve dR1R2R1R2. Therefore, they can be easily

reconstructed from the ones shown in Figure 4.5.

Finally, in Figure 4.8 we have super-imposed the profiles of some of the

most representative solutions along each of the four arcs of curve delimited

by the four turning points R1;R2;R3 and R4. It is a very suggestive picture

because it reveals the symmetries exhibited by the solutions along dR4R1R4R1 anddR3R4R3R4. It also shows that the super-linear behaviour of the solutions alongdR1R2R1R2 is substantially stronger in ð0:8; 1Þ than in ð0; 0:2Þ, while the super-linear

behaviour of the solutions along dR3R4R3R4 is substantially stronger in ð0; 0:2Þ than

in ð0:8; 1Þ.
When the parameter m decreases up to reach the critical value �25p2

the corresponding isolas shrink to a single point at m ¼ �25p2, while they

disappear if m < �25p2. Indeed, for this range of values of m one has

that
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Fig. 4.5. Some positive solutions along the arc of curve dR1R2R1R2.
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Fig. 4.6. Some positive solutions along the arc of curve dR2R3R2R3.

Fig. 4.7. Some positive solutions along the arc of curve dR3R4R3R4.
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max
l AR

s1½L� lV ;W� < max
l AR

s1½L� lV ;W0
A� < 0

and, hence, thanks to [2, Prop. 4.3], (4.1) cannot admit a positive solution.
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