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Cobordism group of Morse functions on manifolds
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Abstract. The n-dimensional cobordism group of Morse functions on manifolds is

defined by using maps into R� ½0; 1� with only fold singularities. In this paper, we

show that in the un-oriented case it is a direct sum of the n-dimensional cobordism

group and a certain number of infinite cyclic groups. In the oriented case a finite cyclic

group Z2 is further added when n ¼ 4k þ 1.

1. Introduction

The n-dimensional oriented cobordism group Mn of Morse functions was

introduced in Ikegami–Saeki [2], where we used a di¤erent notation. The pur-

pose of this paper is to determine the structures of Mn and the n-dimensional

un-oriented cobordism group Nn of Morse functions. We use ‘‘elimination of

cusps’’ [4] and ‘‘semi-characteristics’’ [5]. Note that we showed in [2] that M2

is an infinite cyclic group, by a di¤erent method.

For the cobordism theory of smooth maps, Thom [8] showed that the

cobordism group of embeddings is isomorphic to a homotopy group of a

certain Thom complex by using the Pontrjagin-Thom construction. Wells [10]

studied the cobordism group of immersions in a similar way. Rimányi and

Szűcs [6] extended these results to the cobordism group of maps with singu-

larities by using the notion of a t-map.

Usually a cobordism group is computed by using the method of algebraic

topology as a certain homotopy group of a Thom complex. However, in this

paper the cobordism group of Morse functions is completely determined in a

geometric way.

Recently Saeki [7] considered another kind of n-dimensional cobordism

groups of special Morse functions and got a relation with the h-cobordism

group of homotopy n-spheres for nb 6.

The paper is organized as follows. In § 2 we recall the precise definition of

the n-dimensional cobordism group of Morse functions and state our main

theorem. In § 3 defining fold and cusp points of a smooth map into R2 to-
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gether with their absolute indices, we review Levine’s method for the elimi-

nation of cusps. In § 4 we define cobordism invariants of Morse functions and

prove our main theorem for the un-oriented case by using the elimination of

cusps. In § 5 we complete the proof of our main theorem in the oriented case

by using a method similar to the un-oriented case and especially the semi-

characteristics for n ¼ 4k þ 1.

Throughout the paper, all manifolds and maps are of class Cy. The

symbol ‘‘G’’ denotes an appropriate isomorphism between algebraic objects.

The author would like to express his thanks to Professor Takao Matumoto

and Professor Osamu Saeki for their precious suggestions. He would also like

to thank Professor Isao Takata for kindly indicating the Dold manifolds, and

Shun-ichiro Okuda for patiently teaching him how to use Latex.

2. Statement of the main theorems

A smooth real-valued function on a smooth manifold is called a Morse

function if its critical points are all non-degenerate. For a positive integer n,

we denote by MðnÞ and NðnÞ the sets of all Morse functions on closed, possibly

disconnected, oriented and un-oriented n-dimensional manifolds respectively.

We adopt the convention that the function on the empty set q is an element of

both MðnÞ and NðnÞ for all n.

Definition 2.1. Two Morse functions f0 : M0 ! R and f1 : M1 ! R in

MðnÞ are said to be oriented cobordant (or more precisely oriented fold

cobordant) if there exist a compact oriented ðnþ 1Þ-dimensional manifold X

and a smooth map F : X ! R� ½0; 1� which has only fold points as its singu-

larities (for the definition of a fold point, see Definition 3.1) such that

(1) the boundary qX of X is the disjoint union M0 q ð�M1Þ, where �M1

denotes the manifold M1 with the orientation reversed, and

(2) we have

F jM0�½0; eÞ ¼ f0 � id½0; eÞ : M0 � ½0; eÞ ! R� ½0; eÞ; and

F jM1�ð1�e;1� ¼ f1 � idð1�e;1� : M1 � ð1� e; 1� ! R� ð1� e; 1�

for some su‰ciently small e > 0, where we identify the collar neigh-

borhoods of M0 and M1 in X with M0 � ½0; eÞ and M1 � ð1� e; 1�
respectively.

In this case, we call F an oriented cobordism between f0 and f1.

If a Morse function in MðnÞ is oriented cobordant to the function on the

empty set, then we say that it is oriented null-cobordant.

It is easy to show that the above relation defines an equivalence relation
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on the set MðnÞ for each n. Furthermore, it is easy to see that the set of all

equivalence classes forms an additive group under the disjoint union: the neu-

tral element is the class corresponding to oriented null-cobordant Morse func-

tions, and the inverse of a class represented by a Morse function f : M ! R is

given by the class of �f : �M ! R, where ð�f ÞðxÞ ¼ �f ðxÞ for all x A M.

We denote by Mn the additive group of all oriented cobordism classes of

elements of MðnÞ and call it the cobordism group of Morse functions on oriented

manifolds of dimension n, or the n-dimensional oriented cobordism group of

Morse functions.

For the set NðnÞ of Morse functions on closed un-oriented manifolds, we

can define the relation of un-oriented cobordism by ignoring the orientations of

the manifolds in the above definition. We denote by Nn the additive group of

all un-oriented cobordism classes of elements of NðnÞ and call it the cobordism

group of Morse functions on un-oriented manifolds of dimension n, or the n-

dimensional un-oriented cobordism group of Morse functions.

For a Morse function f : M ! R on an n-dimensional closed manifold M,

we denote by Clð f Þ the number of its critical points of index l ð0a la nÞ.

Definition 2.2. For 0a la n, we define the maps jl : Nn ! Z and

~jjl : Mn ! Z by

jlð½ f �Þ ¼ Clð f Þ � Cn�lð f Þ A Z

and ~jjl ¼ jl � ðnatural map : Mn ! NnÞ. Here, ½ f � denotes the cobordism

class of f A NðnÞ.

Note that jl and ~jjl are well-defined by Lemma 4.1 which will be proved

in § 4, and that jl and ~jjl are homomorphisms, since we define the sum

½ f � þ ½g� as ½ f q g�, where f q g : M qN ! R is defined by

ð f q gÞðxÞ ¼ f ðxÞ ðx A MÞ
gðxÞ ðx A NÞ;

�
for f : M ! R and g : N ! R in NðnÞ (resp. in MðnÞ).

Definition 2.3. We define the maps F : Nn ! Zbn=2c and ~FF : Mn ! Zbn=2c

by

Fð½ f �Þ ¼ ðjbðnþ3Þ=2cð½ f �Þ; jbðnþ3Þ=2cþ1ð½ f �Þ; . . . ; jnð½ f �ÞÞ A Zbn=2c

and

~FFð½ f �Þ ¼ ð~jjbðnþ3Þ=2cð½ f �Þ; ~jjbðnþ3Þ=2cþ1ð½ f �Þ; . . . ; ~jjnð½ f �ÞÞ A Zbn=2c

respectively, where bxc means the greatest integer less than or equal to x for a

real number x, and ½ f � is the cobordism class of f .
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Definition 2.4. Let Nn and Wn be the usual n-dimensional un-oriented

and oriented cobordism groups of manifolds respectively (see [8] and [9]). We

define C : Nn ! Nn and ~CC : Mn ! Wn by

Cð½ f : M ! R�Þ ¼ ½M �2 A Nn

and

~CCð½ f : M ! R�Þ ¼ ½M � A Wn

respectively, where ½M �2 or ½M � is the un-oriented (resp. oriented) cobordism

class of M. Here, ½ f : M ! R� is the cobordism class of f .

It is clear that C and ~CC are well-defined homomorphisms. Moreover,

they are surjective, since there exist at least one Morse function on any

manifold.

We prepare some definitions which will be used in Theorem 2.9.

Definition 2.5. Let M be a closed oriented ð4k þ 1Þ-dimensional mani-

fold, and K a coe‰cient field (for example, Z2 or Q). The semi-characteristic

sðM;KÞ A Z2 of M with respect to the coe‰cient field K is defined as

follows:

sðM;KÞ ¼
X2k
i¼0

dim HiðM;KÞ ðmod 2Þ A Z2:

Definition 2.6. Let f : M ! R be a Morse function on a closed ori-

ented ð4k þ 1Þ-dimensional manifold. Then we define sð f Þ A Z2 as follows:

sð f Þ ¼
X2k
l¼0

Clð f Þ ðmod 2Þ A Z2:

Furthermore, we define the map L : M4kþ1 ! Z2 by

Lð½ f : M ! R�Þ ¼ sð f Þ � sðM;QÞ A Z2:

Note that the map L is a well-defined homomorphism by Lemma 5.3

which will be proved in § 5. See also Remark 5.4.

Main results of this paper are the following three theorems.

Theorem 2.7 (The un-oriented case). The n-dimensional un-oriented

cobordism group Nn of Morse functions is isomorphic to the direct sum of the

n-dimensional un-oriented cobordism group Nn and bn=2c copies of the infinite

cyclic group. More precisely, the map
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C lF : Nn ! Nn lZbn=2c

defined by

ðC lFÞð½ f : M ! R�Þ ¼ ð½M �2; jbðnþ3Þ=2cð½ f �Þ; jbðnþ3Þ=2cþ1ð½ f �Þ . . . ; jnð½ f �ÞÞ

is an isomorphism. Here bxc means the gratest integer less than or equal to x

for a real number x.

The oriented case is divided into the following two cases.

Theorem 2.8 (The oriented case with n0 4k þ 1). For nD 1 ðmod 4Þ the

n-dimensional oriented cobordism group Mn of Morse functions is isomorphic to

the direct sum of the n-dimensional oriented cobordism group Wn and bn=2c
copies of the infinite cyclic group. More precisely, the map

~CCl ~FF : Mn ! Wn lZbn=2c

defined by

ð ~CCl ~FFÞð½ f : M ! R�Þ ¼ ð½M �; ~jjbðnþ3Þ=2cð½ f �Þ; ~jjbðnþ3Þ=2cþ1ð½ f �Þ; . . . ; ~jjnð½ f �ÞÞ

is an isomorphism.

Theorem 2.9 (The oriented case with n ¼ 4k þ 1). For n1 1 ðmod 4Þ, the
n-dimensional oriented cobordism group Mn of Morse functions is isomorphic to

the direct sum of the n-dimensional oriented cobordism group Wn, bn=2c copies of

the infinite cyclic group, and the finite cyclic group of order two. More pre-

cisely, the map

~CCl ~FFlL : Mn ! Wn lZbn=2c lZ2

defined by

ð ~CCl ~FFlLÞð½ f : M ! R�Þ ¼ ð½M �; ~jjbðnþ3Þ=2cð½ f �Þ; . . . ; ~jjnð½ f �Þ; sð f Þ � sðM;QÞÞ

is an isomorphism.

3. Elimination of cusps

In this section, we review some results of [4] which will be used in the

proof of the main theorems.

Definition 3.1. Let F : W ! R2 be a smooth map of an m-dimensional

manifold with mb 2. A singular point p A W of F is a fold point if we can

choose coordinates ðu; z1; . . . ; zm�1Þ centered at p and ðU ;YÞ centered at FðpÞ
so that we can express F as
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U ¼ u;

Y ¼ �
Xl

k¼1

z2k þ
Xm�1

k¼lþ1

z2k

8>><
>>:ð3:1Þ

for some 0a lam� 1 in a neighborhood of p. We set tð pÞ ¼
maxfl;m� 1� lg and call it the absolute index of the fold point p.

We say that p is a cusp point if we can choose coordinates ðu; x;
z1; . . . ; zm�2Þ centered at p and ðU ;YÞ centered at F ðpÞ so that we can express

F as

U ¼ u;

Y ¼ uxþ x3 �
Xl

k¼1

z2k þ
Xm�2

k¼lþ1

z2k

8>><
>>:ð3:2Þ

for some 0a lam� 2 in a neighborhood of p. We set tð pÞ ¼
maxfl;m� 2� lg and call it the absolute index of the cusp point p. Note

that tð pÞ is well-defined.

It is well-known that any smooth map of an m-dimensional manifold

W ðmb 2Þ into R2 can be approximated arbitrarily well by a Cy-map

F : W ! R2 which has the following properties (1), (2), (3), (4) and (5) (see, for

example, [4]).

(1) The rank of the di¤erential of F is never zero.

(2) If S1ðFÞ denotes the set of points in the domain of F at which the

di¤erential of F has rank one, then S1ðFÞ consists of smooth non-

intersecting curves.

(3) Let S2
1 ðF ÞHS1ðF Þ be the set of points where F jS1ðFÞ has zero dif-

ferential. Then S2
1 ðFÞ is a discrete set.

(4) If p A S1ðF Þ � S2
1 ðF Þ, then p is a fold point.

(5) If p A S2
1 ðF Þ, then p is a cusp point.

We say that a smooth map of an m-dimensional manifold into R2 is

generic if it has properties (1) through (5) above. If W is compact and

F : W ! R2 is generic, then S1ðF Þ is a compact 1-dimensional regular sub-

manifold of W and the number of cusps is finite.

In a neighborhood of a cusp point, the absolute index varies as follows.

First of all we note that the absolute index is constant on every component

of S1ðFÞ � S2
1 ðFÞ. For a cusp point p of absolute index i, the absolute in-

dices of the nearby fold points are as follows. If i > ðm� 2Þ=2 then they

are as depicted in Fig. 1, and if i ¼ ðm� 2Þ=2 then they are as depicted in

Fig. 2.

Let F : W ! R2 be a generic map and G be the cokernel bundle of
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dF : TW jS1ðFÞ ! ðF �TR2ÞjS1ðFÞ:

For a point p A S1ðF Þ, the index iðp; gÞ of p is defined to be tðpÞ or m�
1� tðpÞ if p is a fold point and tðpÞ or m� 2� tð pÞ if p is a cusp point

depending on the given orientation g of the fiber Gp over p (for details, see

[4]). Intuitively, the orientation g determines a positive direction of the Y -axis

with respect to the coordinates giving the normal form as in (3.1) or (3.2), and

iðp; gÞ counts the number of minus signs appearing in the expression of Y .

Let F : W ! R2 be a generic map, where W is an m-dimensional con-

nected manifold with mb 3. Suppose that F has two cusp points p1 and p2.

If they satisfy certain conditions, then we can eliminate them by homotopy of

F as follows (for details, see [4]). Let l : ½0; 1� ! W be a smooth embedding

such that lð0Þ ¼ p1, lð1Þ ¼ p2, lð½0; 1�ÞVS1ðFÞ ¼ fp1; p2g, that l 0ð0Þ (or l 0ð1Þ)
points upward (resp. downward) in the sense of [4, p. 284] and that F � l is

an immersion (see [4, (4.4)]). Note that such a joining curve l always exists,

since W is connected. Note also that ðF � lÞ�TR2 is orientable and we fix an

orientation. Let gj be an orientation of Gpj , j ¼ 1; 2, such that ðF � lÞ0ð0Þ5g1
and �ðF � lÞ0ð1Þ5g2 are consistent with the orientation of ðF � lÞ�TR2 as in

Fig. 3. Let iðpj ; gjÞ be the index of the cusp point pj with respect to gj,

j ¼ 1; 2. Then we say that the pair of cusp points p1 and p2 is a matching pair

if iðp1; g1Þ þ iðp2; g2Þ ¼ m� 2. In this case we can eliminate the cusp points

p1 and p2 by a homotopy of F whose support is contained in a small

neighborhood of lð½0; 1�Þ.

Fig. 1

Fig. 2

Fig. 3
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Although Levine [4] assumes that the source manifolds are orientable, the

method is applicable also for non-orientable source manifolds.

By [4] every generic map F : W ! R2 of a closed connected m-dimensional

manifold W with mb 3 into R2 is homotopic to a generic map without cusp

points if the Euler characteristic wðWÞ is even, and to a generic map with

exactly one cusp point if wðWÞ is odd.

When m ¼ 2, we cannot always find a joining curve for a given pair of

cusps. So, one cannot directly apply Levine’s method, but can instead apply

Kálmán’s method for the elimination of a pair of cusps [3, Lemma 1.4].

4. Proof of the main theorem (un-oriented case)

In this section we prove Theorem 2.7. Let M;N be n-dimensional un-

oriented closed manifolds, f : M ! R, g : N ! R be Morse functions, and

F : X ! R� ½0; 1� a cobordism between f and g. For a Morse function f ,

Sð f Þ denotes the set of critical points of f .

For t A ½0; 1� put

Mt ¼ F�1ðR� ftgÞ;
ft ¼ F jMt

: Mt ! R� ftg:

(

Let p : R� ½0; 1� ! ½0; 1� be the projection to the second factor. Take a regu-

lar value t A ½0; 1� of p � F jS1ðFÞ : S1ðFÞ ! ½0; 1�. Then Mt is a smooth manifold

of dimension n and ft is a Morse function. Moreover, we have Sð ftÞ ¼
S1ðF ÞVMt. For each point p A Sð ftÞ ¼ S1ðFÞVMt, let tðpÞ be the absolute

index of the fold point p with respect to F , and let iðpÞ be the index of the

critical point p with respect to the Morse function ft. Then we have

tðpÞ ¼ iðpÞ ðið pÞb bn=2cÞ;
n� ið pÞ ðið pÞ < bn=2cÞ:

�
Here, F is considered to be a restriction of a map of M � ð�e; 0�UX UN �
½1; 1þ eÞ for some e > 0.

Lemma 4.1. If two Morse functions f and g are cobordant, then we have

Clð f Þ � Cn�lð f Þ ¼ ClðgÞ � Cn�lðgÞ
for all l.

Proof. Let us consider

p � F jS1ðF Þ : S1ðFÞ ! ½0; 1�:ð4:1Þ

By slightly perturbing F if necessary, we may assume that (4.1) is a Morse

function whose critical values are all distinct.
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Let us study the change of Clð ftÞ when t varies from 0 to 1. We see

easily that Clð ftÞ does not change if t does not cross a critical value of (4.1).

Let T be a critical value of (4.1) and we denote its corresponding critical point

by p A S1ðFÞ. For a su‰ciently small e > 0, set t0 ¼ T � e and t1 ¼ T þ e.

Let A be an arc neighborhood of p in S1ðFÞ so that FðAÞ is as depicted in Fig.

4; Mt0 VA (or Mt1 VA) consists of two points, say p1 and p2.

Let G be the cokernel bundle of

dF : TW jS1ðFÞ ! F �TðR� ½0; 1�ÞjS1ðFÞ:

Then GjA is a trivial line bundle and we fix an orientation. Since the

normal direction of F ðAÞ gives the opposite orientations at F ðp1Þ and F ðp2Þ,
compared with the natural orientation of R� ft0g (or R� ft1g), we see that

iðp1Þ þ iðp2Þ ¼ n, since tðp1Þ ¼ tðp2Þ. Hence, for t ¼ ið p1Þ, we have

Ctð ft0Þ � Cn�tð ft0Þ ¼ Ctð ft1Þ � Cn�tð ft1Þ;

since one of the following sets of equations holds:

Ctð ft0Þ � Ctð ft1Þ ¼ þ1;

Cn�tð ft0Þ � Cn�tð ft1Þ ¼ þ1

�
or

Ctð ft0Þ � Ctð ft1Þ ¼ �1;

Cn�tð ft0Þ � Cn�tð ft1Þ ¼ �1:

�
For l0 t; n� t, we see easily that Clð ft0Þ ¼ Clð ft1Þ and hence we have

Clð ft0Þ � Cn�lð ft0Þ ¼ Clð ft1Þ � Cn�lð ft1Þ

for all l. Therefore, we have the required conclusion. r

Now we can use the notation jlð½ f �Þ for Clð f Þ � Cn�lð f Þ as in Definition

2.2.

Proof of Theorem 2.7. We have only to show that the homomorphism

C lF is bijective.

Fig. 4
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Let us first show that it is surjective. We will show that for arbitrary

ð½M �2; abðnþ3Þ=2c; abðnþ3Þ=2cþ1; . . . ; anÞ A Nn lZbn=2c;

there exists a Morse function f : M ! R such that

ðClFÞð½ f �Þ ¼ ð½M �2; abðnþ3Þ=2c; abðnþ3Þ=2cþ1; . . . ; anÞ:

We may assume that there is a Morse function g0 : M ! R with

ðC lFÞð½g0�Þ ¼ ð½M �2; bbðnþ3Þ=2c; bbðnþ3Þ=2cþ1; . . . ; bnÞ:

Recall that bl ¼ jlð½g0�Þ ¼ Clðg0Þ � Cn�lðg0Þ and a pair of critical points of

indices lþ 1 and l can be created for 0a la n� 1. First we increase the

number of critical points of indices n; n� 1 if an > bn or 0; 1 if an < bn so that

we have Cnðg1Þ � C0ðg1Þ ¼ an, where g1 is the new Morse function. Similarly

by increasing the number of critical points of indices n� 1; n� 2 or 1; 2, we

get a Morse function g2 such that Cn�1ðg2Þ � C1ðg2Þ ¼ an�1. Repeating this

procedure, we can change bl to al inductively for nb lb bðnþ 3Þ=2c. Then

the resulting Morse function f satisfies the required property.

Now let us consider the injectivity. Since the injectivity is equivalent to

KerðC lFÞ ¼ 0, we assume that ½ f : M ! R� A KerðC lFÞ and show that

½ f : M ! R� ¼ 0 in Nn. By the definition of C , we have ½M �2 ¼ 0 A Nn.

Lemma 4.2. We have jlð½ f �Þ ¼ 0, that is, Clð f Þ ¼ Cn�lð f Þ for all

0a la n.

Proof. When n is even, we put n ¼ 2k. By assumption, we have

jkþ1ð½ f �Þ ¼ jkþ2ð½ f �Þ ¼ � � � ¼ j2kð½ f �Þ ¼ 0. Since jlð½ f �Þ ¼ 0 is equivalent to

j2k�lð½ f �Þ ¼ 0 for each l, we have jk�1ð½ f �Þ ¼ jk�2ð½ f �Þ ¼ � � � ¼ j0ð½ f �Þ ¼ 0 as

well. Furthermore, we clearly have jkð½ f �Þ ¼ Ckð½ f �Þ � Ckð½ f �Þ ¼ 0.

When n is odd, we put n ¼ 2k þ 1. Similarly to the above we have

jlð½ f �Þ ¼ 0 for l0 k; k þ 1 and jkð½ f �Þ ¼ �jkþ1ð½ f �Þ. Since the Euler char-

acteristic wðMÞ of M satisfies

wðMÞ ¼
Xk

l¼0

ð�1Þljlð½ f �Þ ¼ 0;

we have jkð½ f �Þ ¼ 0. Therefore we have the desired conclusion. r

Since M is null-cobordant, there exists a compact ðnþ 1Þ-dimensional

manifold W with qW ¼ M. Then there exists a smooth map F : W !
R� ½0; 1� which satisfies the following properties.

(1) F is a generic map, i.e. F has only fold points and cusp points as its

singularities.
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(2) F jM�½0; eÞ ¼ f � id½0; eÞ for some su‰ciently small e > 0, where

M � ½0; eÞ is a collar neighborhood of M in W .

(3) For any cusp point p A S2
1 ðFÞ, we have F�1ðF ðpÞÞVS1ðF Þ ¼ fpg.

(4) F jðS1ðFÞ�S 2
1
ðFÞÞ is an immersion with normal crossings.

(5) S1ðF Þ is a compact 1-dimensional manifold which is properly em-

bedded in W .

Such a map F exists, since R� ½0; 1� is contractible and any smooth map

satisfying (2) can be approximated by a generic map satisfying items (1), (3), (4)

and (5).

If F has no cusps, then the proof is finished. When F has cusps, let us

remove the cusps of F . By composing a di¤eomorphism of R� ½0; 1� if

necessary, we may assume that the F -images of all the cusps lie on the line

R� f1=2þ dg for some small d > 0 and that the F -images of their neighbor-

hoods in S1ðF Þ are arranged as depicted in Fig. 5. Furthermore, we may also

assume that the map p � F : W ! ½0; 1� has no singular values on ½1=2; 1=2þ d�.

Set N ¼ F�1ðR� f1=2gÞ and g ¼ F jN : N ! R� f1=2g. Note that N is a

smooth closed n-dimensional manifold and that g is a Morse function. Since

there is no cusps of F on F�1ðR� ½0; 1=2�Þ, we see that f and g are fold

cobordant as Morse functions. Therefore, we have only to show that

½g : N ! R� is the neutral element in Nn.

Set V ¼ F�1ðR� ½1=2; 1�Þ, which is a compact ðnþ 1Þ-dimensional mani-

fold such that qV ¼ N. If V is not connected, then we take two points p1 and

p2 from distinct components of V such that they are definite fold points of

F jIntV . (Such points p1 and p2 always exist.) We remove small open disk

neighborhoods of p1 and p2 from V and attach Sn � ½�1; 1� along the sphere

boundaries. Then we can construct a generic map from the resulting manifold

into R� ½1=2; 1� appropriately by modifying F jV (see Fig. 6).

Since the number of connected components of the resulting manifold is

smaller than that of V by one, we may assume that V is connected by repeating

this procedure.

Fig. 5
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Note that there are two kinds of components of S1ðF jV Þ, i.e., arcs and

circles. The end points of the arc components lie on N and they form the set

of critical points of g. Furthermore by the special construction above of V

each arc component has at most one cusp point. Take an arc component

of S1ðF jV Þ without cusp points. Then the indices of its end points as critical

points of g are of the form (l; n� l) for some 0a la n by the property of a

regular plane arc, as is explained around Fig. 4.

Lemma 4.3. Take an arc component of S1ðF jV Þ which contains a cusp point

as in Fig. 5. Then the indices of its end points as critical points of g are of the

form ðlþ 1; lÞ for some 0a la n� 1, where the value of the critical point of

index lþ 1 is greater than that of index l.

Proof. Let us consider the normal form of a cusp point as follows:

U ¼ u;

Y ¼ uxþ x3 �
Xl

k¼1

z2k þ
Xn�1

k¼lþ1

z2k :

8>><
>>:

Then we have S1ðFÞ ¼ fu ¼ �3x2; z1 ¼ 0; z2 ¼ 0; . . . ; zn�1 ¼ 0g and F ðS1ðF ÞÞ ¼
fð�3x2;�2x3Þg. For the proof of the lemma, we may assume that R� f1=2g
corresponds to U ¼ �3e2 for some small e > 0 and that g corresponds to Y .

Then the corresponding critical points are pG ¼ ð�3e2;Ge; 0; . . . ; 0Þ and the

Hessians are given by the diagonal matrices whose diagonal entries are

ðG6e;�2; . . . ;�2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
l

; 2; . . . ; 2|fflfflfflffl{zfflfflfflffl}
n�l�1

Þ:

Therefore, the index of pþ (or p�) with respect to the Morse function g is equal

to l (resp. lþ 1). Finally we have gðp�Þ > gð pþÞ and the conclusion follows.

r

Fig. 6
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By Lemma 4.2 we have

Clð f Þ ¼ Cn�lð f Þ

for all 0a la n. Since the Morse functions f and g are cobordant we have

ClðgÞ ¼ Cn�lðgÞ

for all 0a la n by Lemma 4.1. Let C 0
l be the number of critical points of

g of index l which are end points of arc components of S1ðF jV Þ containing

cusps. Then, we see that C 0
l ¼ C 0

n�l for all 0a la n, since C 00
l ¼ C 00

n�l for the

number C 00
l of critical points of g of index l which are end points of arc

components of S1ðF jV Þ without cusps. Let m be the greatest integer l with

C 0
l 0 0. Then we have C 0

m ¼ C 0
n�m 0 0 and C 0

l ¼ 0 for all l > m and for all

l < n� m. Note also that tðpÞa m� 1 for each cusp point p of F jV .
(A) When n is even.

Suppose that m� 1 > n� m. We take two distinct arc components of

S1ðF jV Þ which contain cusps and have end points of critical points with indices

m and n� m respectively. Let p1 and p2 be the corresponding cusp points as in

Fig. 7, where m; m� 1; n� mþ 1 and n� m indicate the indices of the corre-

sponding critical points of g.

If we take the orientation gi of the fiber Gpi over pi ði ¼ 1; 2Þ parallel to

the orientation of R� f1=2g as in Fig. 7, then we see that the indices of the

cusp points p1 and p2 are given by ið p1; g1Þ ¼ m� 1 and iðp2; g2Þ ¼ n� m

respectively. Let l : ½0; 1� ! Int V be a joining curve connecting p1 and p2.

Then ðF jV � lÞ0ð0Þ5g1 and �ðF jV � lÞ0ð1Þ5g2 are consistent with an orienta-

tion of ðF jV � lÞ�TðR� ½0; 1�Þ, as is depicted in Fig. 7. Therefore, the pair of

cusp points p1 and p2 is a matching pair in the sense of Levine [4], since we

have ið p1; g1Þ þ ið p2; g2Þ ¼ ðnþ 1Þ � 2. Thus, we can eliminate the pair of two

cusps by a homotopy of F jV by using Levine’s method, since nþ 1b 3.

Repeating this procedure, we can eliminate all the cusp points p with

tð pÞ ¼ m� 1 if m� 1 > n� m. Since the absolute index of a cusp point is in

Fig. 7
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fn=2; n=2þ 1; . . . ; n� 1g, we see that we can eliminate all the cusp points in

this case.

(B) When n is odd.

Repeating the procedure in (A) we finally reach the case where m� 1 ¼
n� m. Now the absolute indices of the two end points of the relevant arc

component are both equal to m ¼ ðnþ 1Þ=2, and hence the absolute index of

the relevant cusp point is equal to ðn� 1Þ=2. So, any joining curve connecting

two cusp points gives a matching pair at least when nb 3. Therefore if the

number of cusp points of absolute index ðn� 1Þ=2 of F jV is even, then we can

eliminate all such cusp points by a homotopy of F jV by using Levine’s method

[4] when nb 3 and Kálmán’s method [3, Lemma 1.4] when n ¼ 1. If the

number of such cusp points is odd, then we modify F jV as follows.

Since n is odd, we can take a closed non-orientable ðnþ 1Þ-dimensional

manifold Y with odd Euler characteristic. (For example Y ¼ RPnþ1.) Then

there exists a generic map F1 : Y ! R� ð1=2; 1Þ which has a unique cusp point

by [4]. This cusp point has absolute index ðn� 1Þ=2. Now we apply the

argument that we used in order to make V connected: we combine F jV and F1

to get a new generic map of the connected sum V#Y into R� ½1=2; 1�. Then,

the number of cusp points of absolute index ðn� 1Þ=2 of the resulting map is

even and hence we can eliminate them by pairs by homotopy.

Therefore, we have removed all the cusps in both cases (A) and (B). This

completes the proof of the injectivity of C lF, and hence the proof of

Theorem 2.7. r

5. Proof of the main theorem (oriented case)

In this section, we prove Theorems 2.8 and 2.9.

Proof of Theorem 2.8. We can prove that ~CCl ~FF is well-defined and

surjective as in the un-oriented case.

The injectivity can also be proved as in the un-oriented case when n is

even. So, we will prove that ~CC l ~FF is injective when n ¼ 4k � 1.

Let ½ f : M ! R� be an arbitrary element in Kerð ~CCl ~FFÞ. Since the

ð4k � 1Þ-dimensional manifold M is oriented null-cobordant, there exists a

compact oriented 4k-dimensional manifold W with qW ¼ M. Then we con-

struct a generic map F : W ! R� ½0; 1� of a special kind as in the un-

oriented case and set N ¼ F�1ðR� f1=2gÞ, g ¼ F jN : N ! R� f1=2g and V ¼
F�1ðR� ½1=2; 1�Þ. We may assume that V is connected.

If the number of cusps of the generic map F jV : V ! R� ½1=2; 1� is odd,

then we use a generic map of Y ¼ CP2k into R� ð1=2; 1Þ in order to modify

F jV . Note that CP2k is an oriented closed manifold of dimension 4k ¼ nþ 1
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and that the Euler characteristic wðCP2kÞ is odd. Thus, as in the un-oriented

case, we may assume that the number of cusps is even. Then we can remove

all the cusp points by homotopy by using the theory of matching pairs. This

completes the proof. r

In order to prove Theorem 2.9, we need the following.

Lemma 5.1. Let W be a compact oriented ð4k þ 2Þ-dimensional manifold

with qW ¼ M. Then we have

sðM;QÞ1 wðWÞ ðmod 2Þ;

where wðWÞ denotes the Euler characteristic of W.

Proof. We consider the exact sequence of homology with Q-coe‰cients

of the pair ðW ;MÞ:

0 ¼ H4kþ2ðMÞ ! H4kþ2ðWÞ ! H4kþ2ðW ;MÞ

! H4kþ1ðMÞ ! H4kþ1ðWÞ ! H4kþ1ðW ;MÞ

..

. ..
. ..

.

! H2kþ2ðMÞ ! H2kþ2ðWÞ ! H2kþ2ðW ;MÞ

! H2kþ1ðMÞ ! H2kþ1ðWÞ !j H2kþ1ðW ;MÞ:

By Poincaré-Lefschetz duality and the universal coe‰cient theorem, we

have

Hð4kþ2Þ�qðW ;MÞGHqðWÞGHomðHqðWÞ;QÞ

for every q. Furthermore, we have HomðHqðWÞ;QÞGHqðWÞ and hence

bð4kþ2Þ�qðW ;MÞ ¼ bqðWÞ;

where bi denotes the dimension of the i-th homology. By Poincaré duality we

also have bð4kþ1Þ�qðMÞ ¼ bqðMÞ.
Then by the above exact sequence, we have

ðb0ðMÞ þ b1ðMÞ þ � � � þ b2kðMÞÞ þ ðb0ðWÞ þ b1ðWÞ þ � � � þ b2kðWÞ þ rank jÞ

1 b4kþ2ðWÞ þ b4kþ1ðWÞ þ � � � þ b2kþ1ðWÞ ðmod 2Þ:

Therefore we have

sðM;QÞ � wðWÞ1 rank j ðmod 2Þ:

Hence, we have only to show that rank j is even.
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Since we have H2kþ1ðW ;MÞGH 2kþ1ðWÞGHomðH2kþ1ðWÞ;QÞ by

Poincaré-Lefschetz duality and the universal coe‰cient theorem,

j : H2kþ1ðWÞ ! HomðH2kþ1ðWÞ;QÞ

can be identified with the intersection form

I : H2kþ1ðWÞ �H2kþ1ðWÞ ! Q

of W . Note that this is a skew-symmetric bilinear form. Let Q be a skew-

symmetric matrix representing the intersection form I . It is easy to see that

rank j ¼ rank Q. So we have only to prove the following.

Lemma 5.2. The rank of a skew-symmetric matrix Q whose components are

complex numbers is always even.

Proof. The charactristic polynomial DQðtÞ satisfies the following:

DQðtÞ ¼ detðtE �QÞ ¼ detððtE �QÞ tÞ ¼ detðtE þQÞ

¼ ð�1Þr detð�tE �QÞ ¼ ð�1ÞrDQð�tÞ;

where r is the size of Q and E is the unit matrix of degree r. Hence, if l

is a non-zero eigenvalue of Q, then �l is also a non-zero eigenvalue and

their multiplicities coincide. Therefore counting the number of non-zero eigen-

values, we get the result. r

This completes the proof of Lemma 5.1. r

Lemma 5.3. If two Morse functions f : M ! R and g : N ! R of closed

oriented ð4k þ 1Þ-dimensional manifolds are oriented cobordant, then we have

sð f Þ � sðM;QÞ ¼ sðgÞ � sðN;QÞ:

Proof. Let F : W ! R� ½0; 1� be an oriented cobordism between f and

g. Then by Lemma 5.1 we have

sðM;QÞ þ sðN;QÞ1 wðWÞ ðmod 2Þ:

Consequently we have

sðM;QÞ � sðN;QÞ1 wðWÞ ðmod 2Þ:ð5:1Þ

Let p : R� ½0; 1� ! ½0; 1� be the projection to the second factor, and we

consider the composite function h ¼ p � F : W ! R. Slightly perturbing F if

necessary, we may assume that the composite function h : W ! R is a Morse

function. As in the un-oriented case we may assume that W is connected,

although we have to be careful about the orientation of the components of W .

The components of S1ðFÞ are divided into four types as follows.
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(1) An arc joining two points, say p1 and p2, of M. Such an arc

contains an odd number of critical points of h. The indices of p1
and p2 as critical points of f are of the form l, 4k þ 1� l for some

0a la 4k þ 1.

(2) An arc joining two points, say q1 and q2, of N. Such an arc con-

tains an odd number of critical points of h. The indices of q1 and

q2 as critical points of g are of the form l, 4k þ 1� l for some

0a la 4k þ 1.

(3) An arc joining a point, say p3, of M and a point, say q3, of N. Such

an arc contains an even number of critical points of h. The indices

of p3 A M and q3 A N as critical points of f and g respectively are

equal to each other.

(4) A circle. Such a component contains an even number of critical

points of h.

Therefore we have

sð f Þ � sðgÞ1 c ðmod 2Þ;ð5:2Þ

where c is the number of critical points of h. Hence, we have wðWÞ1
c ðmod 2Þ, since wðMÞ ¼ 0. Therefore by (5.1) and (5.2) we have

sð f Þ � sðgÞ1 sðM;QÞ � sðN;QÞ ðmod 2Þ:

This completes the proof of Lemma 5.3. r

Proof of Theorem 2.9. It is clear that the map ~CCl ~FFlL is a well-

defined homomorphism by Lemmas 4.1 and 5.3.

Let us show that ~CCl ~FFlL is surjective. For any element ð½M �;
a2kþ2; . . . ; a4kþ1; lÞ A Wn lZ2k lZ2, we can prove, by the argument similar

to that in the proof of Theorem 2.7, that there exists a Morse function

f : M ! R such that ð ~CCl ~FFÞð½ f �Þ ¼ ð½M �; a2kþ2; . . . ; a4kþ1Þ. By creating a

pair of critical points of indices 2k and 2k þ 1, we can change sð f Þ without

changing ð ~CC l ~FFÞð½ f �Þ. Therefore, we can arrange so that Lð½ f �Þ ¼ sð f Þ�
sðM;QÞ ¼ l.

Now we have only to show that ~CCl ~FFlL is injective. Let ½ f : M ! R�
be an arbitrary element of Kerð ~CC l ~FFlLÞ. Since the ð4k þ 1Þ-dimensional

manifold M is oriented null-cobordant, there exists a compact oriented

ð4k þ 2Þ-dimensional manifold W with qW ¼ M. Then we construct a generic

map F : W ! R� ½0; 1� such that the F -images of the cusp neighborhoods are

as depicted in Fig. 5 as in the un-oriented case, and set N ¼ F�1ðR� f1=2gÞ,
g ¼ F jN : N ! R� f1=2g and V ¼ F�1ðR� ½1=2; 1�Þ. Note that the Morse

function g is oriented cobordant to f . Therefore, ½g� is an element of

Kerð ~CC l ~FFlLÞ, and it satisfies
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sðgÞ � sðN;QÞ ¼ 0 A Z2

by Lemma 5.3. Then we have

sðN;QÞ1 wðVÞ ðmod 2Þ

for the semi-characteristic of N with respect to the coe‰cient field Q by

Lemma 5.1, and so

sðgÞ1 wðVÞ ðmod 2Þ:

Let p : R� ½0; 1� ! ½0; 1� be the projection to the second factor. We may

assume that p � F is a Morse function. Then we have that

wðVÞ1 c ðmod 2Þ

as in the proof of Lemma 5.3, and hence

sðgÞ1 c ðmod 2Þ;ð5:3Þ

where c denotes the number of critical points of p � F .
As in the un-oriented case we may assume that V is connected, although

we have to be careful about the orientations of the components of V .

Furthermore, we can eliminate all the cusps whose absolute indices are di¤erent

from 2k by using Levine’s method [4].

Let us show that then the number of cusps is even assuming that all

the remaining cusps are of absolute index 2k. Take an arc component a of

S1ðF jV Þ. We have two cases: a contains a cusp or no cusps. In both cases

the indices of the end points of a as critical points of g are equal to l and

ð4k þ 1Þ � l for some l. Hence, the number sðgÞ of critical points of g whose

indices are between 0 and 2k is equal to the number of arc components of

S1ðF jV Þ (see Fig. 8). Note that an arc component a contains an odd number

of critical points of p � F if it contains no cusps, and a contains no critical

points of p � F if it contains a cusp. By (5.3), we have that the number of

arc components of S1ðF jV Þ which contain a cusp point is even. Hence, the

number of cusp points is even.

Finally we can remove all the cusps by using the theory of matching pairs

by [4] for n0 1 and by [3] for n ¼ 1. This completes the proof of Theorem

2.9. r

Remark 5.4. In the definition of L : M4kþ1 ! Z2 (Definition 2.6), we

used the field of rational numbers Q. In fact, we could as well use any other

field K , for example Z2, since the semi-characteristic sðM;KÞ is independent of
K for an orientable ð4k þ 1Þ-dimensional manifold M which is null-cobordant

[5].
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In fact, in [5] it is shown that

sðM;Z2Þ � sðM;QÞ ¼ W2W4k�1½M �;

where M is a closed orientable ð4k þ 1Þ-dimensional manifold and W2W4k�1½M �
denotes the Stiefel-Whitney number. So, we have another isomorphism

~CC l ~FFlL 0 : Mn ! Wn lZbn=2c lZ2;

where L 0 : Mn ! Z2 is the homomorphism defined by L 0ð½ f : M ! R�Þ ¼
sð f Þ � sðM;Z2Þ A Z2. Since there exists an M with W2W4k�1½M �0 0 (for

example, the Dold manifold [1], or see [5, Remark 4]), this isomorphism is

di¤erent from the one obtained in Theorem 2.9.
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