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ABSTRACT. We show that PDs-complexes with free fundamental group are determined
by their intersection pairings and that every hermitian form on a finitely generated free
module over the group ring of a free group is realized by some such complex.

1. Introduction

The purpose of this article is to show that some of the basic properties
of PD4-complexes with free fundamental group can be derived homologically,
without reference to the topology of 4-manifolds or stabilization by connected
sums, as used in [4, 8, 13]. We also avoid explicit calculations of obstructions,
relying instead on the easily verified fact that the 3-skeletons of the complexes
considered have sufficiently many self homotopy equivalences. In particular
we give a new proof of the fact that such complexes are determined by their
intersection pairings, and that every hermitian form on a finitely generated free
module over the group ring of a free group is realized by some such complex.
In the final section we consider briefly the classification (up to s-cobordism) of
closed 4-manifolds with free fundamental group.

2. Modules over free groups

Let F(r) be the free group with basis {xj,...,x,}, and let I' = Z[F(r)].
Let w: F(r) — {£1} be a homomorphism and define an involution on I" by
g=w(g)g~! for all ge F(r). If R is a right I'-module let R be the corre-
sponding left I"-module with the conjugate structure given by yp.r=r.y, for
allge I' and re R. In particular, if L is a left I'-module let L' = Homj(L, T")
be the conjugate dual module. Let ¢: 1" — Z be the augmentation homo-
morphism, and let ¢, : I’ — Z" be the w-twisted augmentation, determined by
ew(g) = w(g) for all ge F(r). Let .9, = Ker(e,).

Let 0: I'" — I'" be the homomorphism given by d(y,,...7,) = Zy;(x; — 1),
with image the augmentation ideal. Let 6, =d':I'— I'" and let E'Z =
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Coker(d,) = Ext(Z,I"). (We emphasize that the conjugation depends on
w). If w': F(r) — {£1} is another homomorphism then Homp(E!Z, E},Z) =
Homp(Z"',Z"), which is Z if w=w' and is 0 if ww'. In particular,
Endr(E'Z) = Z and E!Z is hopfian, that is, surjective endomorphisms of E!Z

w
are automorphisms.

LemMmA 1. If L is a finitely presentable left I'-module then L' is a fiee
module.

Proor. Let F; & Fy— % be a presentation for L. Dualizing gives an
exact sequence 0 — L — Fg Z FlT . Now Coker(p') has a projective resolu-
tion of length at most 2, since I” has global dimension 2. Hence L' is
projective, by Schanuel’s Lemma, and therefore free [1]. [

3. The 3-skeleton

If X is a space with basepoint * and fundamental group 7 let X be
the universal covering space and cy : X — K(=x, 1) the classifying map for the
fundamental group, and let fy : X — P»(X) denote the second stage of the
Postnikov tower for X. Let E(X) and E.(X) denote the groups of self
homotopy equivalences of the space X and the pair (X, *), respectively, and let
E.(X) be the subgroup of self homotopy equivalences which induce the identity
on n. Then E.(K(rn,1)) = Aut(n) and E,(X) = Ker(E.(cx)).

Let P be a PD4-complex with fundamental group = =~ F(r). We may
assume that P is a finite complex, since projective I'-modules are free [1], and
we shall fix an isomorphism 7z = F(r), once and for all. Let w = w;(P) be the
orientation character, and let P™ be the orientable covering space associated to
nt =Ker(w). Let C, = C,(P;I') be the cellular chain complex of P, with
respect to the natural m-equivariant cell structure. This is a complex of free
left I-modules. Let B, < Z, denote the g-dimensional boundaries and g-cycles
in C,, respectively, and let H, = H,(C.) =Z,/B,, for ¢ >0. Then H, =
H,(P;T) is isomorphic to H,(P;Z), with the left I-module structure given by
the action of the covering group n on P. In particular, H, = IT = ny(P).
The equivariant cohomology modules are defined by H? = H1(P;I") = H1(C*),
where C* is the dual cochain complex, with C? = C;' .

We may assume that P = Py = P,Uy D* where P, is a 3-complex with one
O-cell and 0 € n3(P,) is the attaching map for the 4-cell [18].

TrEOREM 2. 1T is free of rank = fy(P) and P, =~ \/"(S'v $%) v (\// $2).
ProOF. There are exact sequences

0—By— Cy—7Z — 0,
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0—>B1—>C1—>B()—>0,
0—>Zz—>C2—>Bl—>O,
023 —>C3—2Z,—> I —0,

and
0— Hy > C4y — Z3 — Hz; — 0.

Since 7 is a free group the augmentation module Z has a short free
resolution and so By is stably free, by Schanuel’s Lemma, and hence free
[1]. Therefore the second and third of these sequences are split exact. In
particular, By, By and Z, are finitely generated free I’-modules. Poincaré
duality and the Universal Coefficient spectral sequence give Hy = Hy(P;Z) =
H°(C*) =0 and an isomorphism I7 =~ IT'. Hence IT is also a free left I'-
module, by Lemma 1, and so the fourth sequence also splits. Therefore Z3 is
free and the complex C, is chain homotopy equivalent to the sum of the three
free complexes By — Cy, II and Cy — Z3 (with Cy = C4 = I', By in degree 1,
IT in degree 2 and the degrees otherwise given by the subscripts). Therefore
Bo=Zy=I", ZQ, Il = Hy(Z®; C.) =~ Hy(P;Z) =~ Z”, and so IT =~ T".

If P is nonorientable then znt =~ F(2r—1) and II has rank 28 as a
Z[r"]-module. It follows easily from Poincaré duality in Pt that y(P) =
x(PH)/Iw(r)]=2—-2r+p (in all cases). Hence y(P,)=1-2r+p, and so
H3(P0;F) =273 I’

The Hurewicz homomorphism in degree 3 for a 1-connected space is onto
([20], or see Section 6 below), and so we may represent a basis of H3(P,; ") by
elements of 73(P,). Hence there is a map j: (\/"S')v \/ﬂ SHv(\V'S3H —

P, which induces isomorphisms 7;(j),72(j) and H3( j;I'), and which is
therefore a homotopy equivalence. []

In [13] a stable factorization theorem is used to prove this result for the
case when P is a closed 4-manifold. The fact that 7 is free also follows from
Theorem 3.12 of [9].

4. The case f=0

Let iy:Q,=\/(S'vS®) — P, =\/(S'vS®)v(\/’5?) be the natural
inclusion and let ¢ : P, — Q, be the retraction which collapses the 2-spheres to
the basepoint. Let ¢ : Py — Qp = O, U D* be the canonical extension of c.
If P, is an orientable PD4-complex then so is Qy, and c4 is a 2-connected
degree 1 map, and conversely, if Qy is a PD4 complex with fundamental class
[Qy] cap product with the corresponding class in Hy(Py;Z) induces duality
isomorphisms on the (co)homology of }%, excepting perhaps in degree 2 [8].
Their argument extends immediately to the nonorientable case.
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THEOREM 3. The complex Qg4 is a PD4-complex with orientation character
w if and only if c¢ = 0d,,(1) for some automorphism o€ GL(r,T).

ProoOF. We may identify 73(Q,) with H3(Q:;Z) =~ I'", by the Hurewicz
Theorem for Q, The equivariant cellular chain complex for @ is chain
homotopy equivalent to the complex C4y — Z3 — 0 — By — Cj, where 0| = 0,
Zy=m(Q,) =TI, C4 =T, and 04 is given by 04(y) = y.cd. 1If Q4 is a PDy-
complex with orientation character w then C, is chain homotopy equivalent
to C** and H3(C,) = E'Z. Therefore Z = Hy(C.) = Coker(d}), and so there
is an automorphism u € GL(r,I") such that 61,11 =0, =0:I"— I. Therefore
c¢ = 00,(1), where o = u/ﬂ_l for some unit u € I'.  The converse is clear. []

Let S'% 83 be the nonorientable S3-bundle over S!.

COROLLARY A. If Qy is orientable then Q4 ~#'(S'x S3); otherwise
Oy ~ (ST SHHH# (S! x §3)).

Proor. We may assume that w(x;) =1 for 2<i<r, as every auto-
morphism of F(r) may be realized by a basepoint-preserving self homotopy
equivalence of Q,. As these orientation characters are realized by the given
4-manifolds and as every automorphism of I'" may be realized by a self
homotopy equivalence of Q, which is the identity on the 1-skeleton \/"S!, the
result follows from the theorem. []

This argument is simpler than the Postnikov argument used in [10]. (The

argument for this result in [3] appears to have a gap on page 242, since 73(Y™)
is not finitely generated, and so 73(F*) # 0).

CorOLLARY B. If' Py and Py are PD4-complexes with the same 3-skeleton
P, and orientation character then = a¢ mod I'y (7)) for some self homotopy
equivalence o € E(F,).

Proor. The boundary map C4 — Cj in the cellular chain complex for 13¢
is essentially determined by hwz(¢), the image of the attaching map, and this
may be identified with ¢g. [

The corresponding assertion in [8] does not take into account the role of
self homotopy equivalences of F,.
5. Homotopy equivalences of pairs

We wish to determine how P, = P,UsD* depends on the attaching
map ¢emn3(P,) and when it is a PDs-complex. Let j,: P, — P, be the
inclusion. A homotopy equivalence f : Py — Py is rel P, if fiy ~ jy.
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THEOREM 4. Suppose that Py and Py are PD4-complexes. Then

(1) there is a homotopy equivalence of pairs (Py, F,) ~ (Py,F,) if and only if
there is a self homotopy equivalence o € E(P,) such that o¢ =\,

(ii) Py~ Py rel P, if and only if ¢ = +g.y for some gem.

Proor. If f:(Py,P,) ~(Py,F,) is a map of pairs then f¢ is nullho-
motopic in Py. Thus f¢ e Ker(ns(jy)) = <), which is freely generated as
a Z[n(Py)-module by i, by the relative Hurewicz Theorem. If f is a
homotopy equivalence of pairs with homotopy inverse f~! we must also have
/W ed¢), and so f¢ = u.yy for some unit u € Z[r;(P,)]*. Since free groups
are orderable their group rings have only trivial units and so # = +¢g for some
gemi(Py). 1If o is the composite of f|, with a self homotopy equivalence of
P, which drags the basepoint around a loop representing g~! then a¢ = +y.
We may adjust the sign by composition with a self homeomorphism of P,
which is the identity on the 2-skeleton and has degree —1 on each 3-sphere.
Conversely, a self homotopy equivalence « e E(P,) induces a homotopy
equivalence (Py, Fy) =~ (Pyy, Fp).

Since P; is a PDg-complex H;(Py;I') =~ H'(Py;I') = E!Z. (Note that if
r =0 then P, is orientable and H3(Py;I") =0). If f: P, — Py is a map such
that fj; ~ jy then H3(f;I') is an epimorphism. Therefore if P4, and P, are
each PDs-complexes they have the same orientation character (f*w;(Py) =
wi(Py)) and Hs(f;I") is an isomorphism (since E!Z is hopfian). Moreover
{p> =<Y), so ¢ = +g.y for some g € 7, and there is a map f’: P, — P, such
that f'j, ~ js. Clearly f'f ~1p, and ff’' ~1p, rel F,. The converse is
clear. (Here we may adjust the sign by composition with a degree —1 self
homeomorphism of S3). []

If f:P;— Py is a homotopy equivalence, is it homotopic to a cellular
map F such that F|p is a homotopy equivalence?

6. Intersection pairings
If X is a l-connected cell complex there is an exact sequence
Hy(X:Z) = Ty (m(X)) — m3(X) ™5 Hy(X,Z) =0,

where A — I'y(A) is the universal quadratic functor of Whitehead and hwz is
the Hurewicz homomorphism [20]. (See Chapter 1 of [2] for a recent ex-
position of Whitehead’s work, in particular, for a description of the ‘“secondary
boundary” bs). The Whitehead sequence is functorial, and so the Whitehead
sequence for P, is an exact sequence of I'-modules. If X has dimension at
most 3 the group of automorphisms of 73(X) which preserve the Whitehead
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exact sequence for X and restrict to the identity on Iy (I7) is a semidirect
product Homgz,,(H3(X; Z[r]), I'w (IT)) > Autzy (H3(X; Z[n))).

We may use this observation to understand the action of E,(F,) on
n3(P,). Let V:\/rSlv(vﬁSz) be the 2-skeleton of P,, j,:V — P, the
inclusion and d : P, — V' be the retraction which collapses the 3-cells to the
basepoint. Then s=i,c and ¢= j,d induce complementary projections on
n3(B,) = Im(s,) @ Im(z.) = I'" ® I'y (IT), splitting the Whitehead sequence for
P,. Since H;(P,;I) is free of rank r we have Hom (H3(P,;I), Iy (IT)) =
TI'y(IT)" and it is easily seen that E,(P,) has a subgroup I'yy (I1)" < (GL(r,I') X
GL(p,I')) which acts on 73(F,) via (&, M,N).(y,v) = (M(y), [w(N)(v) + 7.£)
for all (y,v) e I'" ® Iy (II), and thus generates the action of E,(P,) on 73(F,).
(It can be shown that E,(V) = E;(P2(P,)) = GL(f,I') and E;(Q,) = GL(r,I")).
If y =0,(1), the orbits of the action correspond bijectively to the orbits of the
induced action of GL(f,I") on Z" @, I'y ().

Tensoring the Whitehead sequence for 1;;; with the bimodule Z" gives a
homomorphism from Tor{ (Z", H3) to Z" ® Iy (IT), while tensoring C, with
Z" gives an isomorphism Hy(Py;Z") = Tor{ (2", H;). If (e, ® hwz)(g) =0
[#] = (ew ® 1)(¢) is in the subgroup Z" ® I'y (1) of Z" ®; n3(F,). This is
the case if Py is a PD4-complex, by Theorem 3.

Let G be a group and w: G — {+1} a homomorphism, and denote the
w-twisted involution on Z[G] by an overbar, as in Section 2. A w-hermitian
form on a finitely generated projective Z[G]-module N is a pairing A: N x N
— Z[G] which is Z[G]-linear in the first variable, conjugate symmetric (i.e.,
A(n,n') = i(n’,n), for all n,n’ € N) and such that A(gn,gn’) = w(g)gi(n,n")g~",
for all n,n’ € N and g€ G. 1t is nonsingular if the adjoint map A:N— Nt
given by A(n')(n) = A(n,n’) (for all n,n' € N) is an isomorphism. The set
Her,(N) of w-hermitian forms on N is an abelian group with respect to
addition of the values of the forms. If N = M' is the dual of a finitely
generated projective Z[G]-module M let ev(m)(n,n') = n(m)n'(m), for all m e M
and n,n' € M'. Then ev(m)(n,n’) is Z-quadratic in m and w-hermitian in n
and n', and so ev determines a homomorphism B from Z" ®zq {w(M) to
Her,,(MT). (In our applications G shall be either trivial or 7).

LemMA 5. Let M =T". Then B:Z" ®; I'y(M)— Her, (M) is an
isomorphism.

ProoF. Let ej,...,e, be a basis for M as a free left I'-module, and let
ef,...,e; be the dual basis for M1, determined by e (e;) = 1 and ¢/ (¢;) =0 if
i#J.

If A is an abelian group the universal quadratic map y,: 4 — I'w(A)
determines a map s from the symmetric product 4 oz A to I'y(A) by s(aob) =
y(a+b) — y(a) — y(b), and there is an exact sequence
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AOZALFW(A)HA/ZAHO,

where the right-hand map is induced by the projection of 4 onto 4/2A4 (which
is quadratic) [2]. If 4 and B are abelian groups the inclusions into 4 @ B
induce a canonical splitting Iy (4 ® B) = I'y(4) ® I'w(B) ® (A ® B). Since
I'(Z) = Z it follows by a finite induction that if 4 =~ Z" then I'y(Z") is again
finitely generated and free, and that s is injective. The latter conditions hold
for A any free abelian group, since every finitely generated subgroup of such a
group lies in a finitely generated direct summand.

In particular, as M is a free abelian group there is a short exact sequence

0> Moz M —Twy(M)— M/2M — 0,

and I'y (M) is free as an abelian group. This is a sequence of I'-modules and
homomorphisms, if we define the action on M oz M by g(m o n) = gm o gn, for
all gen and m,ne M.

The sequence

0-Z2"®r Moz M) —-Z" ®@r I'y(M) - F, &M — 0

is also exact, since Tor{ (Z",M/2M)=Ker(2:Z" @ M — 2" @y M) = 0.
Let 7y, : M — Z" @ I'y(M) be the composite of y,, with the reduction from
TI'y(M) to Z" ®p I'y(M). Then the composite of #,, with the projection to
F, ® M is the canonical epimorphism.

Since mogn=g(g-'mon) =gmon in Z" @, (M oz M), the typical ele-
ment of Z" @, (M oz M) may be expressed in the form u=73;_.(rje;)oe;.
For such an element B(u)(e;,e;) = ru, if k <I, and = rig + Fi, if k=1 In
particular, B(u) is even: if & : I’ — F, is the composite of the augmentation
with reduction mod (2) then & (B(u)(n,n)) =0 for all ne M.

If m e M has nontrivial image in F» ® M then &(e](m)) # 0 for some
i <r. Hence B(n,/(m)) is not even, and it follows easily that Ker(B) <
Z" ®p (Mo M). Suppose that B(u) =0, for some u=3,_;(rye;) oe;. Then
r =0, if k<[, and r;+7; =0, for all i. Therefore u=> (rye;)oe;, and
Fi = D _ger( %ig(g — g) where F(i) is a finite subset of 7, for 1 <i<r. Since
((g — g)ei) oe; =0 it follows easily that 4 =0. Hence B is injective.

To show that B is surjective it shall suffice to assume that M has rank 1 or
2, since h is determined by the values hy; = h(ef,e’). Let &,[m,m'] be the
image of mom’ in Z" ®zg) I'w(M). Then B(ey[m,m'])(n,n") = n(m)n'(m’) +
n(m’)n'(m), for all m,m' e M and n,n’ € Mt. Suppose first that M has rank
1. Since sy = hy; and Ker(w) has no element of order 2 we may write /;; =
2b+6+ 3 ,c.p(9+g), where b= b,5=1 or 0 and F is a finite subset of F(r).
Let u=ey[(b+0+ >, cp 9er,e1] +0ny(er). Then B(u)(ef,ef) =hy. If M
has rank 2 and /j; = hyp =0 let 4 = g, [hze1,e2]. Then B(,u)(e,-*,ej*) =h;. In
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each case B(u) = h, since each side of the equation is a w-hermitian form on
Mt O

If Hy(Py; Z") = Hy(Z" ®p C,) # 0 then it is infinite cyclic; fix a generator
[P;]. Cap product with [P;] defines a homomorphism from 7' to 77, and
hence determines a cohomology intersection pairing A% : IT' x ITT — I, given
by 2%(u,v) = v(uN[Py)) for all u,ve II'. This pairing is a w-hermitian form,
by Proposition 4.58 of [15]. Let ¢, : ITT = H? — IT = H, be the homomor-
phism determined by cap product: c4(u) = uN[Ps]. Then A (0)(u) = c;(v)(u),
for all u,ve IT', and so A’ = CL. Hence A* is nonsingular if and only if Pjisa
PDgs-complex. In the latter case we may use duality to define the equivalent
homology intersection pairing A4. (In general it may be shown that the
cohomology intersection pairing of a PD4-complex with fundamental group G
is nonsingular if and only if H*(G;Z[G]) =0 for s =2 and 3).

We shall show that the two pairings just defined in terms of ¢ are
equivalent, by using a Postnikov approximation to P,. The space P,(F,) is the
total space of the K(/1,2) fibration over K(=x, 1) corresponding to the natural
action of 7= on I1, which is uniquely determined since the k-invariant is in
H3(m; IT) = 0. We may construct P»(P,) by adjoining cells of dimension > 4
to P, to kill the higher homotopy. For clarity of notation let L = P»(P,) and
let j=fp:P, — L be the (3-connected) map induced by the inclusion of P,
into L.

The following lemma is the crux of this section. Underlying this lemma is
the fact that I'y/(IT) may be viewed homotopically as the subgroup of 73(FP,)
generated from /7 by Whitehead products and composition with the Hopf map
and homologically as Hy(P,(PR,); ") = Hy(K(I1,2);Z).

LemMA 6. Let ¢ € n3(P,) have image 0O in H3(Py;Z"). Then Hy(Py; L")
~ 7" and b; induces an isomorphism b': Hy(L; Z") = Z" ®p I'w (II) such that
b'(j.[X4]) = [4]-

PrOOF. Let 0 € my(P, P,) be the map of pairs corresponding to ¢ and let
Jr be its image in m4(L,L,), corresponding to j¢. Then ¢ = Jpd and
j¢ = 0101, where 0p and 0 are the connecting homomorphisms in the exact
sequences of homotopy. Since P, is 3-dimensional and ¢ has image 0 in
H;(P,; Z") the inclusion of Hy(Py; Z") into the relative group Hy(Py, P); ") =
Z" is an isomorphism. The relative Hurewicz homomorphism 74(Py, P,) =
Hy(Py, P,;I') is an isomorphism, and comparison of the exact sequences of
homotopy and homology for the pair (P4, P,) shows that [P4] and ¢ have the
same image in H4(P;,P,;Z"). Hence j.[Psj] and J; have the same image
in Hy(L,L,;Z"), by naturality of the Hurewicz homomorphism. Now b; :
Hy(L;I') — I'y(I) is an isomorphism, since 7n3(L) = m4(L) = 0. Since IT is
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free and Hi(L;I') = H3(K(I1,2);Z) =0 the Cartan-Leray spectral sequence
for the projection p: L — L gives an isomorphism from Z" ®, Hy(L;T) to
Hy(L;Z"). Hence we obtain an isomorphism b’ : Hy(L; Z") = Z" @ I'w (IT).

Choose ¢ e Hy(L;I') with image j.[Ps] in H4(L;Z"), and let &, be its
image in Hy(L,L,;I") under the monomorphism induced by the natural
map. Then &, — 0, has image 0 in Hy(L,L,;Z") =Z" ®; Hs(L,L,; "), and
so is in S Hy(L,L,;I"). Hence dp(h;'(&e) —0r) is in Fyms(L,). Now
bi (&) = 6L(hzl(fr€,)) (see [2]) and 010r = j¢. Therefore b'(j.[Py]) =[¢]. O

Let G be a group and w: G — {+1} a homomorphism as above and 4
a finitely generated free abelian group. Let A* = Hom(A4,Z) and A=4"Q®,
Z|G]. If B:A*xA*—Z is a symmetric bilinear pairing we may ex-
tend it to a w-hermitian pairing B:Ax A — Z|G] by setting
B3 ycc @992 nec buh) = 224 neg gbuhy.

Lemma 7. Let B, = B(bcp»)r(h)), for he Hs((CP*)"Z), and let
G be a group. Then B,(u,v)=v(Nh) for all u,ve H*((CP*)";Z[G]) =
H?*((CP*)";Z) ®4 Z]G] and h e Hy((CP*)";Z).

PrROOF. As each side of the equation is linear in 2 and Hy4((CP*)";Z)
is generated by the images of homomorphisms induced by maps from CP* or
(CP*)?, it suffices to assume n = 1 or 2. Since moreover ,B/;,(u, v) and v(uNh)
are bilinear in ¥ and v we may reduce to the case G=1. As these func-
tions have integral values and 2(x® y) = (x+ )@ (x+y) —xRx -y y
in H,((CP*)* Z), for all x,ye Il ~Z% we may reduce further to the case
n =1, which is easy. []

LemMma 8. Let xe€ Hy(L;Z"). Then B(b'(x))(u,v) =v(mNx) for all
umeHT.

Proor. Let p:L — L be the covering projection. Then x = P«(X)
for some x e Hy(L;I'). Since IT is the union of its finitely generated free
abelian subgroups and homology commutes with direct limits there is an
n>0and a map k : (CP*)" — L such that ¥ = k. (&) for some & € Hy((CP*)";
7). As v(uN(pk), &) =k*v(k*ung), and ev(k.y)(u,v) = ev(y)(k*u,k*v), for
all u,vell', &e Hy((CP®)";Z) and y e Hy((CP*)";Z), the lemma follows
easily from Lemma 7. []

THEOREM 9. Let ¢ € n3(P,) and let w: m — {£1} be a homomorphism, and

assume that ¢ has image 0 in Hy(P,;Z"). Then

(i) B(g) =A%,

(ii) Py = P,U,; D* is a PDy-complex with wi(Ps) = w if and only if hwz(¢) =
wdy(1) in Hy(Py; ') = I'" for some automorphism o € GL(r,I") and B([#])
is nonsingular;
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(ili) every nonsingular w-hermitian form on a finitely generated free I'-module
is the cohomology intersection pairing of some PDg4-complex P with
m(P) = F(r) and wi(P) =w;

(iv) two such PD4-complexes P, and Py are homotopy equivalent via a map
S Py — Py such that f.([Py]) = [Py] and cp, f ~ cp, if and only if 10 =0

Proor. The map j: P, — L is 3-connected. Since b'(j.[Py]) = 4], by
Lemma 6, we have B([¢])(u,v) = v(uN j.[Py]) for all u,ve II', by Lemma 8,
and so B([g]) = /7.

If Py is a PDs-complex with wi(P;) =w then hwz(¢) = ad, (1), by
Theorem 3, and A7 is nonsingular, so the conditions in part (ii) are necessary.
Suppose that they hold. Then Q4 is a PD4-complex, by Theorem 3 and the
assumption on hwz(¢). Cap product with [Py] induces an isomorphism
H? =~ H,, by the assumption on 4, and induces isomorphisms HY =~ Hy_, in
all other degrees, by comparison with Q. (In fact H° = Hy = H*> = H, =0,
so it is only necessary to check that (\[Py]: H' — Hj is an isomorphism).

The final assertions follow from the fact that B induces a bijection from
the E,(P,) orbits in n3(P,) via the GL(f,I") orbits in Z" ®, ['w(II) to the
equivalence classes of I'-sequilinear pairings on I7 x ITT. [

The notion of PD4-polarized Postnikov 2-stage from [6] is used in [3] to
prove that Py ~ Py if and only if A4 = 44y, for oriented closed 4-manifolds
with f# 0. 1In [4] it is asserted that the image of [Py] in Z" ®  n3(P,) may be
identified with the homology intersection pairing A4, via Poincaré duality.

7. 4-Manifolds

If r=0 or 1 the fundamental group = = F(r) is abelian, and so we may
use topological surgery to classify 4-manifolds with fundamental group =.

Suppose first that » =0. Then 7 =1, P, ~ \/ﬁ S?, n3(P,) = 'y (I) and
E.(P,) =~ GL(f,Z). The homomorphism B from Iy (IT) to the set of sym-
metric forms on /17 is an isomorphism which maps ¢ to A% and the orbits of
the natural action of GL(f,Z) on I'y/(IT) correspond to the equivalence classes
of such forms. Hence every nonsingular symmetric form over Z is the
intersection form of a 1-connected PD4-complex, which is well defined up to
homotopy equivalence. Every such complex is homotopy equivalent to a
closed 4-manifold, and two such manifolds are homeomorphic if and only if
their intersection pairings are isomorphic and the KS smoothing obstructions
agree. (If the intersection pairing is even the KS invariant is determined by
the signature). See [5].

A similar result holds when r=1 (i.e., # = Z). Every nonsingular her-
mitian form A on a finitely generated free Z[Z]-module is the equivariant
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intersection form of some closed oriented 4-manifold with fundamental group
Z, and two such manifolds are homeomorphic if and only if their intersection
pairings are isomorphic and the KS invariants agree. (The KS invariant is
again determined by the signature in the even-dimensional case). See Chapter
10 of [5] (as corrected in [17]). The classification is extended to the non-
orientable cases in [19]. Every such manifold is stably homeomorphic to the
connected sum of S!' x $3 or §'%x S3 with a 1-connected 4-manifold [7, 19].
(However stabilization is necessary, as there are intersection forms over Z[Z]
which are not extended from symmetric forms over Z [7]).

If > 1, the most we can hope for at present is to obtain classifications
up to s-cobordism or up to stabilization by connected sum with copies of
S? x S2. Homotopy equivalences are simple, since Wh(F(r)) =0 [16]. It
follows from Lemma 6.9 of [9] that if M is a closed 4-manifold and 7;(M) is
a free group then homotopy equivalences fi: My — M and f,: My — M are
s-cobordant if and only if they have the same normal invariants in
[M,G/TOP]. The Hurewicz homomorphism from 7,(M) to Hy(M;Z/2Z) is
onto since 7;(M) is free. Hence if moreover M is orientable and wy(M) = 0
every normal invariant with surgery obstruction 0 is realizable by a self
homotopy equivalence ([14]—see Lemma 6.5 of [Hi’]), and so 4-manifolds
homotopy equivalent to M are s-cobordant to M. In the remaining cases
(wz(ls;;) # 0) there are at most two s-cobordism classes in each homotopy
type. In [11] it is shown that if M is orientable and n;(M) is free then M
is s-cobordant to the connected sum of #'(S' x $3) with a l-connected 4-
manifold if and only if the intersection form is extended from a form over Z.

If M and N are h-cobordant closed 4-manifolds then M#(#S? x S?) is
homeomorphic to N#(#%S? x §?) for some k > 0. (See Chapter VII of [5]).
In the spin case wy(M) = 0 this is an elementary consequence of the existence
of a well-indexed handle decomposition of the A-cobordism. Moreover, the
KS invariant of a TOP 4-manifold M is 0 if and only if M#(#S? x §?) is
smoothable for some k& >0 [12].

If a nonsingular hermitian form on a finitely generated free I'-module is
even then it is stably equivalent to one extended from a form over Z, since it
may be equipped with a quadratic enhancement, and the inclusion of the trivial
group induces an epimorphism of quadratic surgery groups: IL4(1)=Z —
Ly(F(r),w)=Z or Z/2Z. In the odd case one needs to know the corre-
sponding result for the Witt groups (symmetric surgery groups) L°(z) and
that T(I") = Z/2Z, as in Section 3 of [7]. Thus every PD4-complex P, with
free fundamental group and wz(ﬁﬁ) =0 is stably homotopy equivalent to a
connected sum of Q4 with a l-connected manifold [3, 13]. Is this so in the
remaining cases? Is every such complex itself homotopy equivalent to a closed
4-manifold?
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