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Abstract. We show that PD4-complexes with free fundamental group are determined

by their intersection pairings and that every hermitian form on a finitely generated free

module over the group ring of a free group is realized by some such complex.

1. Introduction

The purpose of this article is to show that some of the basic properties

of PD4-complexes with free fundamental group can be derived homologically,

without reference to the topology of 4-manifolds or stabilization by connected

sums, as used in [4, 8, 13]. We also avoid explicit calculations of obstructions,

relying instead on the easily verified fact that the 3-skeletons of the complexes

considered have su‰ciently many self homotopy equivalences. In particular

we give a new proof of the fact that such complexes are determined by their

intersection pairings, and that every hermitian form on a finitely generated free

module over the group ring of a free group is realized by some such complex.

In the final section we consider briefly the classification (up to s-cobordism) of

closed 4-manifolds with free fundamental group.

2. Modules over free groups

Let F ðrÞ be the free group with basis fx1; . . . ; xrg, and let G ¼ Z½F ðrÞ�.
Let w : F ðrÞ ! fG1g be a homomorphism and define an involution on G by

g ¼ wðgÞg�1 for all g A F ðrÞ. If R is a right G-module let R be the corre-

sponding left G-module with the conjugate structure given by g:r ¼ r:g, for

all g A G and r A R. In particular, if L is a left G-module let Ly ¼ HomGðL;GÞ
be the conjugate dual module. Let e : G ! Z be the augmentation homo-

morphism, and let ew : G ! Zw be the w-twisted augmentation, determined by

ewðgÞ ¼ wðgÞ for all g A FðrÞ. Let Iw ¼ KerðewÞ.
Let q : G r ! G be the homomorphism given by qðg1; . . . grÞ ¼ Sgiðxi � 1Þ,

with image the augmentation ideal. Let dw ¼ qy : G ! G r and let E1
wZ ¼
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CokerðdwÞ ¼ Ext1GðZ;GÞ. (We emphasize that the conjugation depends on

w). If w 0 : F ðrÞ ! fG1g is another homomorphism then HomGðE1
wZ;E

1
w 0ZÞ ¼

HomGðZw 0
;ZwÞ, which is Z if w ¼ w 0 and is 0 if w0w 0. In particular,

EndGðE1
wZÞ ¼ Z and E1

wZ is hopfian, that is, surjective endomorphisms of E1
wZ

are automorphisms.

Lemma 1. If L is a finitely presentable left G-module then Ly is a free

module.

Proof. Let F1 !
p
F0 ! L be a presentation for L. Dualizing gives an

exact sequence 0 ! Ly ! F
y
0 !p

y

F
y
1 . Now CokerðpyÞ has a projective resolu-

tion of length at most 2, since G has global dimension 2. Hence Ly is

projective, by Schanuel’s Lemma, and therefore free [1]. r

3. The 3-skeleton

If X is a space with basepoint � and fundamental group p let ~XX be

the universal covering space and cX : X ! Kðp; 1Þ the classifying map for the

fundamental group, and let fX : X ! P2ðXÞ denote the second stage of the

Postnikov tower for X . Let EðX Þ and E�ðX Þ denote the groups of self

homotopy equivalences of the space X and the pair ðX ; �Þ, respectively, and let

EpðX Þ be the subgroup of self homotopy equivalences which induce the identity

on p. Then E�ðKðp; 1ÞÞGAutðpÞ and EpðXÞ ¼ KerðE�ðcX ÞÞ.
Let P be a PD4-complex with fundamental group pGFðrÞ. We may

assume that P is a finite complex, since projective G-modules are free [1], and

we shall fix an isomorphism p ¼ FðrÞ, once and for all. Let w ¼ w1ðPÞ be the

orientation character, and let Pþ be the orientable covering space associated to

pþ ¼ KerðwÞ. Let C� ¼ C�ðP;GÞ be the cellular chain complex of ~PP, with

respect to the natural p-equivariant cell structure. This is a complex of free

left G-modules. Let Bq aZq denote the q-dimensional boundaries and q-cycles

in Cq, respectively, and let Hq ¼ HqðC�Þ ¼ Zq=Bq, for qb 0. Then Hq ¼
HqðP;GÞ is isomorphic to Hqð ~PP;ZÞ, with the left G-module structure given by

the action of the covering group p on ~PP. In particular, H2 GP ¼ p2ðPÞ.
The equivariant cohomology modules are defined by Hq ¼ HqðP;GÞ ¼ HqðC �Þ,
where C � is the dual cochain complex, with Cq ¼ C y

q .

We may assume that P ¼ Py ¼ Po Uy D
4, where Po is a 3-complex with one

0-cell and y A p3ðPoÞ is the attaching map for the 4-cell [18].

Theorem 2. P is free of rank b ¼ b2ðPÞ and Po F4 rðS14S3Þ4ð4b
S2Þ.

Proof. There are exact sequences

0 ! B0 ! C0 ! Z ! 0;
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0 ! B1 ! C1 ! B0 ! 0;

0 ! Z2 ! C2 ! B1 ! 0;

0 ! Z3 ! C3 ! Z2 ! P ! 0;

and

0 ! H4 ! C4 ! Z3 ! H3 ! 0:

Since p is a free group the augmentation module Z has a short free

resolution and so B0 is stably free, by Schanuel’s Lemma, and hence free

[1]. Therefore the second and third of these sequences are split exact. In

particular, B0;B1 and Z2 are finitely generated free G-modules. Poincaré

duality and the Universal Coe‰cient spectral sequence give H4 ¼ H4ð ~PP;ZÞ ¼
H 0ðC �Þ ¼ 0 and an isomorphism PGP y. Hence P is also a free left G-

module, by Lemma 1, and so the fourth sequence also splits. Therefore Z3 is

free and the complex C� is chain homotopy equivalent to the sum of the three

free complexes B0 ! C0, P and C4 ! Z3 (with C0 GC4 GG , B0 in degree 1,

P in degree 2 and the degrees otherwise given by the subscripts). Therefore

B0 GZ3 GG r, ZnG PGH2ðZnG C�ÞGH2ðP;ZÞGZb, and so PGG b.

If P is nonorientable then pþ GFð2r� 1Þ and P has rank 2b as a

Z½pþ�-module. It follows easily from Poincaré duality in Pþ that wðPÞ ¼
wðPþÞ=jwðpÞj ¼ 2� 2rþ b (in all cases). Hence wðPoÞ ¼ 1� 2rþ b, and so

H3ðPo;GÞ ¼ Z3 GG r.

The Hurewicz homomorphism in degree 3 for a 1-connected space is onto

([20], or see Section 6 below), and so we may represent a basis of H3ðPo;GÞ by

elements of p3ðPoÞ. Hence there is a map j : ð4r
S1Þ4ð4b

S2Þ4ð4r
S3Þ !

Po which induces isomorphisms p1ð jÞ; p2ð jÞ and H3ð j;GÞ, and which is

therefore a homotopy equivalence. r

In [13] a stable factorization theorem is used to prove this result for the

case when P is a closed 4-manifold. The fact that P is free also follows from

Theorem 3.12 of [9].

4. The case b ¼ 0

Let io : Qo ¼ 4rðS14S3Þ ! Po ¼ 4rðS14S3Þ4ð4b
S2Þ be the natural

inclusion and let c : Po ! Qo be the retraction which collapses the 2-spheres to

the basepoint. Let cf : Pf ! Qf ¼ Qo Ucf D
4 be the canonical extension of c.

If Pf is an orientable PD4-complex then so is Qf, and cf is a 2-connected

degree 1 map, and conversely, if Qf is a PD4 complex with fundamental class

½Qf� cap product with the corresponding class in H4ðPf;ZÞ induces duality

isomorphisms on the (co)homology of ePfPf, excepting perhaps in degree 2 [8].

Their argument extends immediately to the nonorientable case.
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Theorem 3. The complex Qf is a PD4-complex with orientation character

w if and only if cf ¼ adwð1Þ for some automorphism a A GLðr;GÞ.

Proof. We may identify p3ðQoÞ with H3ðfQoQo;ZÞGG r, by the Hurewicz

Theorem for fQoQo. The equivariant cellular chain complex for fQfQf is chain

homotopy equivalent to the complex C4 ! Z3 ! 0 ! B0 ! C0, where q1 ¼ q,

Z3 ¼ p3ðQoÞGG r, C4 GG , and q4 is given by q4ðgÞ ¼ g:cf. If Qf is a PD4-

complex with orientation character w then C� is chain homotopy equivalent

to C4�� and H3ðC�ÞGE1
wZ. Therefore Z ¼ H0ðC�ÞGCokerðqy4Þ, and so there

is an automorphism m A GLðr;GÞ such that qy4m ¼ q1 ¼ q : G r ! G . Therefore

cf ¼ adwð1Þ, where a ¼ umy
�1

for some unit u A G . The converse is clear. r

Let S1 ~��S3 be the nonorientable S3-bundle over S1.

Corollary A. If Qf is orientable then Qf F# rðS1 � S3Þ; otherwise

Qf F ðS1 ~��S3Þ#ð#r�1ðS1 � S3ÞÞ.

Proof. We may assume that wðxiÞ ¼ 1 for 2a ia r, as every auto-

morphism of FðrÞ may be realized by a basepoint-preserving self homotopy

equivalence of Qo. As these orientation characters are realized by the given

4-manifolds and as every automorphism of G r may be realized by a self

homotopy equivalence of Qo which is the identity on the 1-skeleton 4r
S1, the

result follows from the theorem. r

This argument is simpler than the Postnikov argument used in [10]. (The

argument for this result in [3] appears to have a gap on page 242, since p3ð ~YY �Þ
is not finitely generated, and so p3ðF �Þ0 0).

Corollary B. If Pf and Pc are PD4-complexes with the same 3-skeleton

Po and orientation character then c1 af mod GW ðp2Þ for some self homotopy

equivalence a A EðPoÞ.

Proof. The boundary map C4 ! C3 in the cellular chain complex for ~PPf

is essentially determined by hwzðfÞ, the image of the attaching map, and this

may be identified with cf. r

The corresponding assertion in [8] does not take into account the role of

self homotopy equivalences of Po.

5. Homotopy equivalences of pairs

We wish to determine how Pf ¼ Po Uf D
4 depends on the attaching

map f A p3ðPoÞ and when it is a PD4-complex. Let jf : Po ! Pf be the

inclusion. A homotopy equivalence f : Pf ! Pc is rel Po if fjf F jc.
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Theorem 4. Suppose that Pf and Pc are PD4-complexes. Then

( i ) there is a homotopy equivalence of pairs ðPf;PoÞF ðPc;PoÞ if and only if

there is a self homotopy equivalence a A EðPoÞ such that af ¼ c;

(ii) Pf FPc rel Po if and only if f ¼Gg:c for some g A p.

Proof. If f : ðPf;PoÞF ðPc;PoÞ is a map of pairs then f f is nullho-

motopic in Pc. Thus f f A Kerðp3ð jcÞÞ ¼ hci, which is freely generated as

a Z½p1ðPcÞ�-module by c, by the relative Hurewicz Theorem. If f is a

homotopy equivalence of pairs with homotopy inverse f �1 we must also have

f �1c A hfi, and so f f ¼ u:c for some unit u A Z½p1ðPcÞ��. Since free groups

are orderable their group rings have only trivial units and so u ¼Gg for some

g A p1ðPcÞ. If a is the composite of f jPo with a self homotopy equivalence of

Po which drags the basepoint around a loop representing g�1 then af ¼Gc.

We may adjust the sign by composition with a self homeomorphism of Po
which is the identity on the 2-skeleton and has degree �1 on each 3-sphere.

Conversely, a self homotopy equivalence a A EðPoÞ induces a homotopy

equivalence ðPf;PoÞF ðPaf;PoÞ.
Since Pf is a PD4-complex H3ðPf;GÞGH 1ðPf;GÞGE1

wZ. (Note that if

r ¼ 0 then Pf is orientable and H3ðPf;GÞ ¼ 0). If f : Pf ! Pc is a map such

that fjf @ jc then H3ð f ;GÞ is an epimorphism. Therefore if Pf and Pc are

each PD4-complexes they have the same orientation character ( f �w1ðPcÞ ¼
w1ðPfÞ) and H3ð f ;GÞ is an isomorphism (since E1

wZ is hopfian). Moreover

hfi ¼ hci, so f ¼Gg:c for some g A p, and there is a map f 0 : Pc ! Pf such

that f 0jc @ jf. Clearly f 0f @ 1Pf and ff 0 @ 1Pc
rel Po. The converse is

clear. (Here we may adjust the sign by composition with a degree �1 self

homeomorphism of S3). r

If f : Pf ! Pc is a homotopy equivalence, is it homotopic to a cellular

map F such that F jPo is a homotopy equivalence?

6. Intersection pairings

If X is a 1-connected cell complex there is an exact sequence

H4ðX ;ZÞ �!b4 GW ðp2ðXÞÞ �! p3ðX Þ �!hwz H3ðX ;ZÞ ! 0;

where A 7! GW ðAÞ is the universal quadratic functor of Whitehead and hwz is

the Hurewicz homomorphism [20]. (See Chapter 1 of [2] for a recent ex-

position of Whitehead’s work, in particular, for a description of the ‘‘secondary

boundary’’ b4). The Whitehead sequence is functorial, and so the Whitehead

sequence for ePoPo is an exact sequence of G-modules. If X has dimension at

most 3 the group of automorphisms of p3ðXÞ which preserve the Whitehead
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exact sequence for ~XX and restrict to the identity on GW ðPÞ is a semidirect

product HomZ½p�ðH3ðX ;Z½p�Þ;GW ðPÞÞzAutZ½p�ðH3ðX ;Z½p�ÞÞ:
We may use this observation to understand the action of EpðPoÞ on

p3ðPoÞ. Let V ¼ 4r
S14ð4b

S2Þ be the 2-skeleton of Po, jo : V ! Po the

inclusion and d : Po ! V be the retraction which collapses the 3-cells to the

basepoint. Then s ¼ ioc and t ¼ jod induce complementary projections on

p3ðPoÞ ¼ Imðs�Þl Imðt�ÞGG r lGW ðPÞ, splitting the Whitehead sequence for
ePoPo. Since H3ðPo;GÞ is free of rank r we have HomGðH3ðPo;GÞ;GW ðPÞÞG
GW ðPÞr and it is easily seen that EpðPoÞ has a subgroup GW ðPÞr z ðGLðr;GÞ�
GLðb;GÞÞ which acts on p3ðPoÞ via ðx;M;NÞ:ðg; vÞ ¼ ðMðgÞ;GW ðNÞðvÞ þ g:xÞ
for all ðg; vÞ A G r lGW ðPÞ, and thus generates the action of EpðPoÞ on p3ðPoÞ.
(It can be shown that EpðVÞGEpðP2ðPoÞÞGGLðb;GÞ and EpðQoÞGGLðr;GÞ).
If g ¼ dwð1Þ, the orbits of the action correspond bijectively to the orbits of the

induced action of GLðb;GÞ on Zw nG GW ðPÞ.
Tensoring the Whitehead sequence for ePfPf with the bimodule Zw gives a

homomorphism from TorG1 ðZw;H3Þ to Zw nG GW ðPÞ, while tensoring C� with

Zw gives an isomorphism H4ðPf;Z
wÞGTorG1 ðZw;H3Þ. If ðew n hwzÞðfÞ ¼ 0

½f� ¼ ðew n 1ÞðfÞ is in the subgroup Zw nG GW ðPÞ of Zw nG p3ðPoÞ. This is

the case if Pf is a PD4-complex, by Theorem 3.

Let G be a group and w : G ! fG1g a homomorphism, and denote the

w-twisted involution on Z½G� by an overbar, as in Section 2. A w-hermitian

form on a finitely generated projective Z½G�-module N is a pairing l : N �N

! Z½G � which is Z½G �-linear in the first variable, conjugate symmetric (i.e.,

lðn; n 0Þ ¼ lðn 0; nÞ, for all n; n 0 A N) and such that lðgn; gn 0Þ ¼ wðgÞglðn; n 0Þg�1,

for all n; n 0 A N and g A G. It is nonsingular if the adjoint map ~ll : N ! Ny

given by ~llðn 0ÞðnÞ ¼ lðn; n 0Þ (for all n; n 0 A N) is an isomorphism. The set

HerwðNÞ of w-hermitian forms on N is an abelian group with respect to

addition of the values of the forms. If N ¼ M y is the dual of a finitely

generated projective Z½G�-module M let evðmÞðn; n 0Þ ¼ nðmÞn 0ðmÞ, for all m A M

and n; n 0 A M y. Then evðmÞðn; n 0Þ is Z-quadratic in m and w-hermitian in n

and n 0, and so ev determines a homomorphism B from Zw nZ½G � GW ðMÞ to

HerwðM yÞ. (In our applications G shall be either trivial or p).

Lemma 5. Let MGG r. Then B : Zw nG GW ðMÞ ! HerwðM yÞ is an

isomorphism.

Proof. Let e1; . . . ; er be a basis for M as a free left G-module, and let

e�1 ; . . . ; e
�
r be the dual basis for M y, determined by e�i ðeiÞ ¼ 1 and e�i ðejÞ ¼ 0 if

i0 j.

If A is an abelian group the universal quadratic map gA : A ! GW ðAÞ
determines a map s from the symmetric product A �Z A to GW ðAÞ by sða � bÞ ¼
gðaþ bÞ � gðaÞ � gðbÞ, and there is an exact sequence
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A �Z A !s GW ðAÞ ! A=2A ! 0;

where the right-hand map is induced by the projection of A onto A=2A (which

is quadratic) [2]. If A and B are abelian groups the inclusions into AlB

induce a canonical splitting GW ðAlBÞGGW ðAÞlGW ðBÞl ðAnBÞ. Since

GðZÞGZ it follows by a finite induction that if AGZr then GW ðZrÞ is again

finitely generated and free, and that s is injective. The latter conditions hold

for A any free abelian group, since every finitely generated subgroup of such a

group lies in a finitely generated direct summand.

In particular, as M is a free abelian group there is a short exact sequence

0 ! M �Z M ! GW ðMÞ ! M=2M ! 0;

and GW ðMÞ is free as an abelian group. This is a sequence of G-modules and

homomorphisms, if we define the action on M �Z M by gðm � nÞ ¼ gm � gn, for
all g A p and m; n A M.

The sequence

0 ! Zw nG ðM �Z MÞ ! Zw nG GW ðMÞ ! F2 nG M ! 0

is also exact, since TorG1 ðZw;M=2MÞ ¼ Kerð2 : Zw nG M ! Zw nG MÞ ¼ 0.

Let hM : M ! Zw nG GW ðMÞ be the composite of gM with the reduction from

GW ðMÞ to Zw nG GW ðMÞ. Then the composite of hM with the projection to

F2 nG M is the canonical epimorphism.

Since m � gn ¼ gðg�1m � nÞ ¼ gm � n in Zw nG ðM �Z MÞ, the typical ele-

ment of Zw nG ðM �Z MÞ may be expressed in the form m ¼
P

iajðrijeiÞ � ej.
For such an element BðmÞðe�k ; e�l Þ ¼ rkl , if k < l, and ¼ rkk þ rkk, if k ¼ l. In

particular, BðmÞ is even: if e2 : G ! F2 is the composite of the augmentation

with reduction mod (2) then e2ðBðmÞðn; nÞÞ ¼ 0 for all n A M y.

If m A M has nontrivial image in F2 nG M then e2ðe�i ðmÞÞ0 0 for some

ia r. Hence BðhMðmÞÞ is not even, and it follows easily that KerðBÞa
Zw nG ðM �MÞ. Suppose that BðmÞ ¼ 0, for some m ¼

P
iajðrijeiÞ � ej. Then

rkl ¼ 0, if k < l, and rii þ rii ¼ 0, for all i. Therefore m ¼
P

ðriieiÞ � ei, and

rii ¼
P

g AFðiÞ aigðg� gÞ where FðiÞ is a finite subset of p, for 1a ia r. Since

ððg� gÞeiÞ � ei ¼ 0 it follows easily that m ¼ 0. Hence B is injective.

To show that B is surjective it shall su‰ce to assume that M has rank 1 or

2, since h is determined by the values hij ¼ hðe�i ; e�j Þ. Let ew½m;m 0� be the

image of m �m 0 in Zw nZ½G � GW ðMÞ. Then Bðew½m;m 0�Þðn; n 0Þ ¼ nðmÞn 0ðm 0Þ þ
nðm 0Þn 0ðmÞ, for all m;m 0 A M and n; n 0 A M y. Suppose first that M has rank

1. Since h11 ¼ h11 and KerðwÞ has no element of order 2 we may write h11 ¼
2bþ dþ

P
g AF ðgþ gÞ, where b ¼ b, d ¼ 1 or 0 and F is a finite subset of F ðrÞ.

Let m ¼ ew½ðbþ dþ
P

g AF gÞe1; e1� þ dhMðe1Þ. Then BðmÞðe�1 ; e�1 Þ ¼ h11. If M

has rank 2 and h11 ¼ h22 ¼ 0 let m ¼ ew½h12e1; e2�. Then BðmÞðe�i ; e�j Þ ¼ hij . In
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each case BðmÞ ¼ h, since each side of the equation is a w-hermitian form on

M y. r

If H4ðPf;Z
wÞ ¼ H4ðZw nG C�Þ0 0 then it is infinite cyclic; fix a generator

½Pf�. Cap product with ½Pf� defines a homomorphism from Py to P, and

hence determines a cohomology intersection pairing lf : Py �Py ! G, given

by lfðu; vÞ ¼ vðuV ½Pf�Þ for all u; v A Py. This pairing is a w-hermitian form,

by Proposition 4.58 of [15]. Let cf : P
y GH 2 ! P ¼ H2 be the homomor-

phism determined by cap product: cfðuÞ ¼ uV ½Pf�. Then ~llfðvÞðuÞ ¼ c
y
fðvÞðuÞ,

for all u; v A Py, and so ~llf ¼ c
y
f. Hence lf is nonsingular if and only if Pf is a

PD4-complex. In the latter case we may use duality to define the equivalent

homology intersection pairing lf. (In general it may be shown that the

cohomology intersection pairing of a PD4-complex with fundamental group G

is nonsingular if and only if HsðG;Z½G �Þ ¼ 0 for s ¼ 2 and 3).

We shall show that the two pairings just defined in terms of f are

equivalent, by using a Postnikov approximation to Po. The space P2ðPoÞ is the
total space of the KðP; 2Þ fibration over Kðp; 1Þ corresponding to the natural

action of p on P, which is uniquely determined since the k-invariant is in

H 3ðp;PÞ ¼ 0. We may construct P2ðPoÞ by adjoining cells of dimensionb 4

to Po to kill the higher homotopy. For clarity of notation let L ¼ P2ðPoÞ and

let j ¼ fPo : Po ! L be the (3-connected) map induced by the inclusion of Po
into L.

The following lemma is the crux of this section. Underlying this lemma is

the fact that GW ðPÞ may be viewed homotopically as the subgroup of p3ðPoÞ
generated from P by Whitehead products and composition with the Hopf map

and homologically as H4ðP2ðPoÞ;GÞ ¼ H4ðKðP; 2Þ;ZÞ.

Lemma 6. Let f A p3ðPoÞ have image 0 in H3ðPo;ZwÞ. Then H4ðPf;Z
wÞ

GZw and b ~LL induces an isomorphism b 0 : H4ðL;ZwÞGZw nG GW ðPÞ such that

b 0ð j�½Xf�Þ ¼ ½f�.

Proof. Let d A p4ðP;PoÞ be the map of pairs corresponding to f and let

dL be its image in p4ðL;LoÞ, corresponding to jf. Then f ¼ qPd and

jf ¼ qLdL, where qP and qL are the connecting homomorphisms in the exact

sequences of homotopy. Since Po is 3-dimensional and f has image 0 in

H3ðPo;ZwÞ the inclusion of H4ðPf;Z
wÞ into the relative group H4ðPf;Po;Z

wÞG
Zw is an isomorphism. The relative Hurewicz homomorphism p4ðPf;PoÞG
H4ðPf;Po;GÞ is an isomorphism, and comparison of the exact sequences of

homotopy and homology for the pair ðPf;PoÞ shows that ½Pf� and d have the

same image in H4ðPf;Po;Z
wÞ. Hence j�½Pf� and dL have the same image

in H4ðL;Lo;Z
wÞ, by naturality of the Hurewicz homomorphism. Now b ~LL :

H4ðL;GÞ ! GW ðPÞ is an isomorphism, since p3ðLÞ ¼ p4ðLÞ ¼ 0. Since P is
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free and H3ðL;GÞ ¼ H3ðKðP; 2Þ;ZÞ ¼ 0 the Cartan-Leray spectral sequence

for the projection p : ~LL ! L gives an isomorphism from Zw nG H4ðL;GÞ to

H4ðL;ZwÞ. Hence we obtain an isomorphism b 0 : H4ðL;ZwÞGZw nG GW ðPÞ.
Choose x A H4ðL;GÞ with image j�½Pf� in H4ðL;ZwÞ, and let xrel be its

image in H4ðL;Lo;GÞ under the monomorphism induced by the natural

map. Then xrel � dL has image 0 in H4ðL;Lo;Z
wÞ ¼ Zw nG H4ðL;Lo;GÞ, and

so is in IwH4ðL;Lo;GÞ. Hence qLðh�1
~LL
ðxrelÞ � dLÞ is in Iwp3ðLoÞ. Now

b ~LLðxÞ ¼ qLðh�1
~LL
ðxrelÞÞ (see [2]) and qLdL ¼ jf. Therefore b 0ð j�½Pf�Þ ¼ ½f�. r

Let G be a group and w : G ! fG1g a homomorphism as above and A

a finitely generated free abelian group. Let A� ¼ HomðA;ZÞ and ÂA ¼ A� nZ

Z½G�. If B : A� � A� ! Z is a symmetric bilinear pairing we may ex-

tend it to a w-hermitian pairing B̂B : ÂA� ÂA ! Z½G� by setting

B̂Bð
P

g AG agg;
P

h AG bhhÞ ¼
P

g;h AG agbhhg.

Lemma 7. Let bh ¼ BðbðCPyÞ nðhÞÞ, for h A H4ððCPyÞn;ZÞ, and let

G be a group. Then bbhbhðu; vÞ ¼ vðuV hÞ for all u; v A H 2ððCPyÞn;Z½G �ÞG
H 2ððCPyÞn;ZÞnZ Z½G� and h A H4ððCPyÞn;ZÞ.

Proof. As each side of the equation is linear in h and H4ððCPyÞn;ZÞ
is generated by the images of homomorphisms induced by maps from CPy or

ðCPyÞ2, it su‰ces to assume n ¼ 1 or 2. Since moreover bbhbhðu; vÞ and vðuV hÞ
are bilinear in u and v we may reduce to the case G ¼ 1. As these func-

tions have integral values and 2ðxn yÞ ¼ ðxþ yÞn ðxþ yÞ � xn x� yn y

in H4ððCPyÞ2;ZÞ, for all x; y A PGZ2, we may reduce further to the case

n ¼ 1, which is easy. r

Lemma 8. Let x A H4ðL;ZwÞ. Then Bðb 0ðxÞÞðu; vÞ ¼ vðuV xÞ for all

u; v A Py.

Proof. Let p : ~LL ! L be the covering projection. Then x ¼ p�ð~xxÞ
for some ~xx A H4ðL;GÞ. Since P is the union of its finitely generated free

abelian subgroups and homology commutes with direct limits there is an

n > 0 and a map k : ðCPyÞn ! ~LL such that ~xx ¼ k�ðxÞ for some x A H4ððCPyÞn;
ZÞ. As vðuV ðpkÞ�xÞ ¼ k �vðk �uV xÞ, and evðk� yÞðu; vÞ ¼ devðyÞevðyÞðk �u; k �vÞ, for

all u; v A Py, x A H4ððCPyÞn;ZÞ and y A H2ððCPyÞn;ZÞ, the lemma follows

easily from Lemma 7. r

Theorem 9. Let f A p3ðPoÞ and let w : p ! fG1g be a homomorphism, and

assume that f has image 0 in H3ðPo;ZwÞ. Then

( i ) Bð½f�ÞG lf;

( ii ) Pf ¼ Po Uf D
4 is a PD4-complex with w1ðPfÞ ¼ w if and only if hwzðfÞ ¼

adwð1Þ in H3ðPo;GÞGG r for some automorphism a A GLðr;GÞ and Bð½f�Þ
is nonsingular;
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(iii) every nonsingular w-hermitian form on a finitely generated free G-module

is the cohomology intersection pairing of some PD4-complex P with

p1ðPÞGFðrÞ and w1ðPÞ ¼ w;

(iv) two such PD4-complexes Pf and Pc are homotopy equivalent via a map

f : Pf ! Pc such that f�ð½Pf�Þ ¼ ½Pc� and cPc
f @ cPf if and only if lf G lc.

Proof. The map j : Po ! L is 3-connected. Since b 0ð j�½Pf�Þ ¼ ½f�, by

Lemma 6, we have Bð½f�Þðu; vÞ ¼ vðuV j�½Pf�Þ for all u; v A Py, by Lemma 8,

and so Bð½f�ÞG lf.

If Pf is a PD4-complex with w1ðPfÞ ¼ w then hwzðfÞ ¼ adwð1Þ, by

Theorem 3, and lf is nonsingular, so the conditions in part (ii) are necessary.

Suppose that they hold. Then Qf is a PD4-complex, by Theorem 3 and the

assumption on hwzðfÞ. Cap product with ½Pf� induces an isomorphism

H 2 GH2, by the assumption on lf, and induces isomorphisms Hq GH4�q in

all other degrees, by comparison with Qf. (In fact H 0 ¼ H4 ¼ H 3 ¼ H1 ¼ 0,

so it is only necessary to check that 7½Pf� : H 1 ! H3 is an isomorphism).

The final assertions follow from the fact that B induces a bijection from

the EpðPoÞ orbits in p3ðPoÞ via the GLðb;GÞ orbits in Zw nG GW ðPÞ to the

equivalence classes of G-sequilinear pairings on Py �Py. r

The notion of PD4-polarized Postnikov 2-stage from [6] is used in [3] to

prove that Pf FPc if and only if lf GGlc, for oriented closed 4-manifolds

with b0 0. In [4] it is asserted that the image of ½Pf� in Zw nG p3ðPoÞ may be

identified with the homology intersection pairing lf, via Poincaré duality.

7. 4-Manifolds

If r ¼ 0 or 1 the fundamental group p ¼ F ðrÞ is abelian, and so we may

use topological surgery to classify 4-manifolds with fundamental group p.

Suppose first that r ¼ 0. Then p ¼ 1, Po F4b
S2, p3ðPoÞ ¼ GW ðPÞ and

EpðPoÞGGLðb;ZÞ. The homomorphism B from GW ðPÞ to the set of sym-

metric forms on Py is an isomorphism which maps f to lf and the orbits of

the natural action of GLðb;ZÞ on GW ðPÞ correspond to the equivalence classes

of such forms. Hence every nonsingular symmetric form over Z is the

intersection form of a 1-connected PD4-complex, which is well defined up to

homotopy equivalence. Every such complex is homotopy equivalent to a

closed 4-manifold, and two such manifolds are homeomorphic if and only if

their intersection pairings are isomorphic and the KS smoothing obstructions

agree. (If the intersection pairing is even the KS invariant is determined by

the signature). See [5].

A similar result holds when r ¼ 1 (i.e., p ¼ Z). Every nonsingular her-

mitian form l on a finitely generated free Z½Z�-module is the equivariant
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intersection form of some closed oriented 4-manifold with fundamental group

Z, and two such manifolds are homeomorphic if and only if their intersection

pairings are isomorphic and the KS invariants agree. (The KS invariant is

again determined by the signature in the even-dimensional case). See Chapter

10 of [5] (as corrected in [17]). The classification is extended to the non-

orientable cases in [19]. Every such manifold is stably homeomorphic to the

connected sum of S1 � S3 or S1 ~��S3 with a 1-connected 4-manifold [7, 19].

(However stabilization is necessary, as there are intersection forms over Z½Z�
which are not extended from symmetric forms over Z [7]).

If r > 1, the most we can hope for at present is to obtain classifications

up to s-cobordism or up to stabilization by connected sum with copies of

S2 � S2. Homotopy equivalences are simple, since WhðFðrÞÞ ¼ 0 [16]. It

follows from Lemma 6.9 of [9] that if M is a closed 4-manifold and p1ðMÞ is

a free group then homotopy equivalences f1 : M1 ! M and f2 : M2 ! M are

s-cobordant if and only if they have the same normal invariants in

½M;G=TOP�. The Hurewicz homomorphism from p2ðMÞ to H2ðM;Z=2ZÞ is

onto since p1ðMÞ is free. Hence if moreover M is orientable and w2ð ~MMÞ ¼ 0

every normal invariant with surgery obstruction 0 is realizable by a self

homotopy equivalence ([14]—see Lemma 6.5 of [Hi’]), and so 4-manifolds

homotopy equivalent to M are s-cobordant to M. In the remaining cases

(w2ð ePfPfÞ0 0) there are at most two s-cobordism classes in each homotopy

type. In [11] it is shown that if M is orientable and p1ðMÞ is free then M

is s-cobordant to the connected sum of #rðS1 � S3Þ with a 1-connected 4-

manifold if and only if the intersection form is extended from a form over Z.

If M and N are h-cobordant closed 4-manifolds then M#ð#kS2 � S2Þ is

homeomorphic to N#ð#kS2 � S2Þ for some kb 0. (See Chapter VII of [5]).

In the spin case w2ðMÞ ¼ 0 this is an elementary consequence of the existence

of a well-indexed handle decomposition of the h-cobordism. Moreover, the

KS invariant of a TOP 4-manifold M is 0 if and only if M#ð#kS2 � S2Þ is

smoothable for some kb 0 [12].

If a nonsingular hermitian form on a finitely generated free G-module is

even then it is stably equivalent to one extended from a form over Z, since it

may be equipped with a quadratic enhancement, and the inclusion of the trivial

group induces an epimorphism of quadratic surgery groups: L4ð1ÞGZ !
L4ðFðrÞ;wÞGZ or Z=2Z. In the odd case one needs to know the corre-

sponding result for the Witt groups (symmetric surgery groups) L0ðpÞ and

that TðGÞ ¼ Z=2Z, as in Section 3 of [7]. Thus every PD4-complex Pf with

free fundamental group and w2ð ePfPfÞ ¼ 0 is stably homotopy equivalent to a

connected sum of Qf with a 1-connected manifold [3, 13]. Is this so in the

remaining cases? Is every such complex itself homotopy equivalent to a closed

4-manifold?
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