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Abstract. It is known that the incompressible spanning surfaces for a fibred knot are

unique. Also for a 2-bridge knot its incompressible spanning surfaces were classified by

Hatcher and Thurston. In this paper we shall give the classification of the incom-

pressible spanning surfaces for prime knots of 10 or less crossings, which include many

non-fibred and non-2-bridge knots. Furthermore, we determine the associated sim-

plicial complex ISðKÞ for each prime knot K of 10 or less crossings, which describes the

relations between equivalence classes of incompressible spanning surfaces for K .

Introduction

It is known that the incompressible spanning surfaces for a fibred knot

are unique in the sense stated below (cf. [17]). Also for a 2-bridge knot its

incompressible spanning surfaces were classified by Hatcher and Thurston [8].

In this paper we shall give the classification of the incompressible spanning

surfaces for prime knots of 10 or less crossings which include many non-fibred

and non-2-bridge knots. Furthermore, we determine the associated simplicial

complex ISðKÞ for each prime knot K of 10 or less crossings, which was

introduced in [11] to describe the relations between equivalence classes of

incompressible spanning surfaces for K .

Let L be an oriented link in the 3-sphere S3, and let EðLÞ ¼ S3 � Int NðLÞ
be its exterior where NðLÞ is a fixed tubular neighborhood of L. We shall use

the term ‘‘spanning surface’’ for L to denote a surface S ¼ SVEðLÞ where S is

an oriented surface in S3 such that qS ¼ L, S has no closed component and is

possibly disconnected and that SVNðLÞ is a collar of qS in S. Two spanning

surfaces for L are said to be equivalent if they are ambient isotopic in EðLÞ to
each other. A spanning surface S is incompressible (resp. of minimal genus) if

each component of S is p1-injective in EðLÞ (resp. the Euler number wðSÞ is
maximum among all the spanning surfaces for L). In this paper ‘‘link’’ always

means oriented link. If L is a knot, then the classification of the incompres-
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sible spanning surfaces is independent of the choice of an orientation of L.

We prove the following

Theorem A. (I) The incompressible spanning surfaces for every prime

knot of 10 or less crossings are unique except for the following knots (see [15,

Appendix C] for the notation):

74 83 95 910 913 918 923 103 1011 1016 1018

2 2 2 4 2 3 2 2 2 4 3

1024 1028 1030 1031 1033 1037 1038 1053 1067 1068 1074

3 2 2 3 4 2 2 2 2 2 3

ðBÞ

(II) Each knot in the table (B) has exactly two, three or four equivalence

classes of incompressible spanning surfaces according to the number written under

the knot, moreover any of them is of minimal genus.

We note that a composite knot 52#52 has infinitely many non-equivalent

minimal genus spanning surfaces by Eisner [2]. Also in the case of 11 or

more crossings there are many prime knots which have infinitely many non-

equivalent incompressible spanning surfaces ([14], [7], [10] and others). For

each prime knot K of 10 or less crossings, it is easy to find a minimal genus

spanning surface S whose genus equal to one half of the degree of the

Alexander polynomial of K ; hence if K is out of the list in (B), then S is a

unique incompressible spanning surface for K . Each knot in (B) is a 2-bridge

knot except for the last four, 1053, 1067, 1068, 1074, and the assertion (II) for

these 2-bridge knots follows from Hatcher and Thurston [8]. The classification

of the incompressible spanning surfaces for the remaining four knots forms one

of the main parts of the paper: The concrete classification will be given in

§ 6.

Let L be a non-split link, and let ISðLÞ denote the set of equivalence

classes of incompressible spanning surfaces for L. For an incompressible

spanning surface S, ½S � denotes its equivalence class. In [11] we associated

a simplicial complex ISðLÞ with L as follows: The set of vertices is ISðLÞ.
Vertices s0; s1; . . . ; sk A ISðLÞ span a k-simplex if there are representatives

Si A si ð0a ia kÞ so that Si VSj ¼q for all i < j. Note that if ISðLÞ
consists only one equivalence class, then ISðLÞ is a point. We now quote the

following result.

Theorem 0.1 ([11, Th. A]). The associated complex ISðLÞ is connected.

It follows that if ISðLÞ consists of two equivalence classes s and s 0, then

ISðLÞ ¼ s s 0������. The complex ISðLÞ describes the relations between equiva-

lence classes in ISðLÞ. We will determine the complexes for the prime knots
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of 10 or less crossings. It seems that even for the 2-bridge knots in (B), their

complexes can not be determined by the results in [8]. We prove the following

Theorem C. (1) For the knots K ¼ 918; 1018; 1024 and 1031,

ISðKÞ ¼
s10 s11 s01���������������

(the definition of sij ¼ ½Sði; jÞ� is given in § 6).

(2)

ISð1074Þ ¼
½S 0� ½S � ½T 0�
���������������

where S 0, S and T are given by Figure 6.15.

(3) For the knots K ¼ 910; 1016 and 1033,

ISðKÞ ¼
s101 s111 s000 s010
����������������������

(the definition of sijk ¼ ½Sði; j; kÞ� is given in § 6).

Our approach is based on the works of Gabai [3], [6] and Kobayashi [13].

Gabai introduced and developed the theory of sutured manifolds which is

powerful in the study of knots and links. Using this theory Kobayashi gave a

su‰cient condition of the minimal genus spanning surfaces for the given link

being unique, and then showed that the knots in the table (B) is the prime

knots of a10 crossings whose minimal spanning surfaces are not unique. We

extend Kobayashi’s method in some directions.

We explain our method in brief. For a given S with ½S � A ISðLÞ,
let ISðL;SÞ denote the set of h A ISðLÞ such that h0 ½S � and there is a

representative F A h with F VS ¼q, i.e. there is an edge in ISðLÞ which

connects h and ½S �. Then, as corollaries of Theorem 0.1 we have

Corollary 0.2. ISðLÞ ¼ f½S �g if and only if ISðL;SÞ ¼q.

Corollary 0.3. Suppose that there exists an S 0 with ½S 0� A ISðL;SÞ.
Then ISðLÞ ¼

½S � ½S 0�
������ if and only if

ISðL;SÞ ¼ f½S 0�g and ISðL;S 0Þ ¼ f½S �g:ð*Þ

Thus, roughly speaking, Theorem 0.1 means that the problem of deciding

ISðLÞ can be reduced to the study of ‘‘essential g-surfaces’’ in the ‘‘comple-

mentary sutured manifolds’’ for some incompressible spanning surfaces. In § 1

and § 2 we give the definitions of these notions and investigate their basic

properties. The assertion (I) in Theorem A follows from Corollary 0.2 by

checking that each complementary sutured manifold for the given minimal
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genus spanning surface has no essential g-surface, and this work of checking

essentially due to Kobayashi [12] (see § 6). To prove the assertion (II) for non-

2-bridge knots 1053, 1067, 1068, we must apply Corollary 0.3 in the case that S

is a plumbing of two surfaces S1 and S2. In § 3, under the assumptions that

both Si are unique incompressible spanning surfaces for Li ¼ qSi and that

neither L1 nor L2 are fibred (in this case there exists an S 0, a ‘‘dual’’ of S, with

½S 0� A ISðL;SÞÞ, we give a criterion to satisfy the condition ð*Þ in Corollary

0.3 (Theorem 3.12). The assertion (II) for 1074 is shown as a corollary to

Theorem C (2). To prove the assertions in Theorem C we give, under the

same assumptions as above, a su‰cient condition that ISðLÞ consists of three

equivalence classes (Theorem 3.15). Moreover, in § 5 we treat some kind of

iterated plumbings and determine the associated complexes (Theorems 5.4 and

5.10). These theorems form the main parts of this paper in a technical sense,

and they are formulated in terms of ‘‘marked sutured manifolds’’. In § 4 we

consider decompositions of a marked sutured manifold. In § 6 by applying the

method developed in §§ 3, 4 and 5 we give a proof of Theorems A and C.

The author thanks Tsuyoshi Kobayashi, Hiroshi Goda and Makoto

Sakuma for valuable conversations and helpful comments.

1. Essential g-surfaces

A sutured manifold ðM; gÞ is a compact oriented 3-manifold M together

with a subset gH qM which is a union of finitely many pairwise disjoint annuli.

For each component of g a suture, i.e. an oriented core circle, is fixed, and sðgÞ
denotes the set of sutures. Moreover every component of RðgÞ ¼ qM � Int g is

oriented so that the orientations on RðgÞ are coherent with respect to sðgÞ. Let

RþðgÞ (resp. R�ðgÞÞ denotes the union of those components of RðgÞ whose

normal vectors point out of (resp. into) M. In the case that ðM; gÞ is

homeomorphic to ðF � ½0; 1�, qF � ½0; 1�Þ where F is a compact oriented 2-

manifold, ðM; gÞ is called a product sutured manifold.

A properly embedded compact oriented 2-manifold (possibly disconnected)

SHM is said to be a g-surface if S has no closed component, the oriented

boundary qS is contained in Int g and isotopic to sðgÞ in g. A g-surface S

is parallel to a surface in RðgÞ if there is an embedding e : ðS; qSÞ � ½0; 1� !
ðM; gÞ so that e0 ¼ id : S ! S and e1ðSÞHRðgÞ: Note that e1ðSÞ is a union of

some components of RðgÞ. A g-surface S is essential if S is incompressible in

M and not parallel to a surface in RðgÞ. A g-isotopy of M is an isotopy fhtg
of M such that h0 ¼ id, htjRðgÞ ¼ id and htðgÞ ¼ g for all 0a ta 1. Two g-

surfaces in M are equivalent if they are ambient isotopic to each other by a

g-isotopy. Let EðM; gÞ denote the set of equivalence classes of essential g-

surfaces in M. For an essential g-surface S, ½S �g denotes its equivalence

class. It is easy to see the following
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Lemma 1.1. Let ðM; gÞ be a sutured manifold, and let S be a g-surface.

Suppose that qM is connected and that S is parallel to a surface in RðgÞ by an

embedding e : ðS; qSÞ � ½0; 1� ! ðM; gÞ with e0 ¼ idS and e1ðSÞHRðgÞ. Then

e1ðSÞ ¼ RþðgÞ or R�ðgÞ.

Example. (Figure 1.1 (1), (2))

We will state the definitions of two kind of operations on sutured

manifolds (cf. [3], [6]). Let ðM; gÞ be a sutured manifold. A product disk

DHM is a properly embedded disk such that qD intersects sðgÞ transversely

in two points. For a product disk DHM, we get a new sutured manifold

ðM 0; g 0Þ in the way shown in Figure 1.2. This decomposition

ðM; gÞ !D ðM 0; g 0Þ

is called a product decomposition. We note that

Fig. 1.1

Fig. 1.2
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(1.2) each component of RðgÞ is incompressible if and only if so is each

component of Rðg 0Þ.

We next introduce another kind of operation. An octagon WHM is a

properly embedded disk such that qW intersects sðgÞ transversely in four points.

Then we have two decompositions of ðM; gÞ:

ðMa; gaÞ  ��
aðWÞ ðM; gÞ ��!bðWÞ ðMb; gbÞ

in the way shown in Figure 1.3, and we call them octagonal decompositions.

Note that both Ma and Mb are homeomorphic to the manifold obtained by

cutting M along W.

Now let ðM; gÞ !D ðM 0; g 0Þ be a product decomposition of a sutured

manifold where D is a product disk, and let SHM be an essential g-surface.

Suppose that M is irreducible. Then we can move S by a g-isotopy so that

qS ¼ sðgÞ and that S VD is a single arc A connecting the two points of

qDV sðgÞ. By cutting S along A, we obtain a g 0-surface SD HM 0.

Lemma 1.3. Let ðM; gÞ !D ðM 0; g 0Þ be a product decomposition. Suppose

that M is irreducible and qM 0 is connected. Then for each essential g-surface

SHM, the g 0-surface SD HM 0 is also essential. Moreover if two essential g-

surfaces S and S 0HM are equivalent, then so are SD and S 0D.

Proof. First note that M 0 is irreducible and qM is connected since M

is irreducible and qM 0 is connected. Let SHM be an essential g-surface.

Fig. 1.3
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Clearly SD is incompressible in M 0. Suppose that SD is parallel to a surface

in Rðg 0Þ. Then there is an embedding e : ðSD; qSDÞ � ½0; 1� ! ðM 0; g 0Þ so that

e0 ¼ id : SD ! SD and e1ðSDÞHRðg 0Þ. Since qM 0 is connected, e1ðSDÞ ¼
Rþðg 0Þ or R�ðg 0Þ by Lemma 1.1. We assume that e1ðSDÞ ¼ Rþðg 0Þ. Since

Rþðg 0Þ is obtained by cutting RþðgÞ along the arc qDVRþðgÞ, the embedding

e : ðSD; qSDÞ � ½0; 1� ! ðM 0; g 0Þ can be extend to an embedding ~ee : ðS; qSÞ�
½0; 1� ! ðM; gÞ so that ~ee0 ¼ id : S ! S and ~ee1ðSÞ ¼ RþðgÞ. Hence S is parallel

to a surface in RðgÞ, and this is a contradiction. Thus SD is essential.

Next we suppose that S and S 0HM are two essential g-surfaces and

they are equivalent. We may assume that qS ¼ qS 0 ¼ sðgÞ, S VD ¼ S 0 VD

and A ¼ S VD is an arc connecting the two points of qDV sðgÞ. Let

h : M � ½0; 1� !M be a g-isotopy such that h0 ¼ id and h1ðSÞ ¼ S 0. By the

definition of g-isotopy and the above assumption, we may assume that

htjqM ¼ id ð0a ta 1Þ. Consider the restriction h : S � ½0; 1� !M. By the

standard method as in the proof of [9, Lemma 6.5], we can move hjS � ½0; 1�
to a homotopy g : S � ½0; 1� !M so that g0 ¼ id, g1 ¼ h1jS, gtjqM ¼ id and

gtjA ¼ id ð0a ta 1Þ. From this we have a homotopy g 0 : SD � ½0; 1� !M 0

so that g 00 ¼ id, g 01ðSDÞ ¼ S 0D and g 0t jqSD ¼ id ð0a ta 1Þ. Hence by Wald-

hausen [16, Cor 5.5], we get a g 0-isotopy fh 0tg of M 0 which carries SD to S 0D.

Lemma 1.3 is proved. r

Thus under the same assumption as in Lemma 1.3, we can define a map

ED : EðM; gÞ ! EðM 0; g 0Þ; ½S �g 7! ½SD�g 0 :

Moreover we can easily verify the following

Proposition 1.4. Let ðM; gÞ !D ðM 0; g 0Þ be a product decomposition.

Suppose that M is irreducible and qM 0 is connected. Then the map

ED : EðM; gÞ ! EðM 0; g 0Þ is bijective.

Now we consider another situation. Let ðM; gÞ !D ðM 0; g 0Þ be a product

decomposition where M is irreducible. Suppose that ðM 0; g 0Þ is a disjoint

union of two connected sutured manifolds ðM1; g1Þ and ðM2; g2Þ. Suppose

further that ðM2; g2Þ is a product sutured manifold. Let SHM be an essential

g-surface, and assume that S VD is a single arc. Then we obtain a g1-surface

SD;1 ¼ S VM1 HM1. It is easy to see that SD;1 is also essential. Moreover if

two essential g-surfaces S and S 0HM are equivalent, then so are SD;1 and

S 0D;1. Hence a map

ED;1 : EðM; gÞ ! EðM1; g1Þ; ½S �g 7! ½SD;1�g1
is well defined. We can easily verify the following

Proposition 1.5. Let ðM; gÞ !D ðM 0; g 0Þ be a product decomposition.

Suppose that M is irreducible and that ðM 0; g 0Þ has two components ðM1; g1Þ and
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ðM2; g2Þ. Suppose further that ðM2; g2Þ is a product sutured manifold and qM1

is connected. Then the map ED;1 : EðM; gÞ ! EðM1; g1Þ is bijective.

Now we consider octagonal decompositions.

Proposition 1.6. Let

ðMa; gaÞ  ��
aðWÞ ðM; gÞ ��!bðWÞ ðMb; gbÞ

be octagonal decompositions, where WHM is an octagon. Suppose that M is

irreducible and qMa ¼ qMb is connected. If ðM; gÞ has an essential g-surface,

then ðMa; gaÞ or ðMb; gbÞ has an essential ga- or gb-surface.

Proof. We note that qM is connected and Ma and Mb are irreducible by

the assumption. Let SHM be an essential g-surface. By using the cut and

paste argument, we can move S by a g-isotopy so that qS ¼ sðgÞ and S VW is

a union of two arcs. There are two cases as shown in Figure 1.4, where

fa; b; c; dg ¼ qWV sðgÞ. We assume that the case ðaÞ holds

Then we get a ga-surface Sa HMa by cutting S along S VW. Clearly Sa

is incompressible in Ma. We will show that Sa is not parallel to a surface

in RðgaÞ. If not, then there is an embedding e : ðSa; qSaÞ � ½0; 1� !Ma so

that e0 ¼ id : Sa ! Sa and e1ðSaÞHRðgaÞ. By Lemma 1.1, e1ðSaÞ ¼ RþðgaÞ or
e1ðSaÞ ¼ R�ðgaÞ. We assume that e1ðSaÞ ¼ RþðgaÞ. In this case there are two

possibility (i) and (ii) near the cutting disk W as shown in Figure 1.5. However

the case (ii) is impossible. In fact, for the g-surface S there is a compressing

disk B as shown in Figure 1.6, and this contradicts to the assumption that S is

incompressible. On the other hand, if the case (i) holds, then e : ðSa; qSaÞ�
½0; 1� ! ðMa; gaÞ can be extended to an embedding ~ee : ðS; qSÞ � ½0; 1� ! ðM; gÞ
so that ~ee0 ¼ idS and ~ee1ðSÞ ¼ RþðgÞ, and this is also a contradiction. Thus

Proposition 1.6 is proved. r

We close this section by showing the following lemma which is used in the

latter sections.

Fig. 1.4
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Lemma 1.7. Let X be connected Haken 3-manifold such that qX is a union

of incompressible tori. Let Y be a compact irreducible 3-submanifold of X

(possibly disconnected) such that each component of FrðY Þ is a properly

embedded incompressible surface in X . Let F and F 0 be two properly embedded

orientable incompressible surfaces in X (possibly disconnected) which satisfy the

following properties (1)–(4). Then there is an isotopy fhtg of X keeping Y fixed

so that h0 ¼ id and h1ðFÞ ¼ F 0:

(1) F UF 0HX � Y .

(2) Each component of qX contains at most one component of qF, and F

has no closed component.

(3) There is a homotopy f : F � ½0; 1� ! X such that f0 ¼ id : F ! F,

f1 : F ! F 0 is a homeomorphism and f ðqF � ½0; 1�ÞH qX .

(4) There is no component of F which is parallel to a component of FrðY Þ.

Fig. 1.5

Fig. 1.6
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Proof. In the case when F is connected, the lemma is (essentially) proved

in [12, Lemma 2.4]. We prove the lemma in general cases by induction on the

number of the components of F . Let F1; . . . ;Fk denote the components of F .

Then F 0 has the same number of components F 01; . . . ;F
0
k by (3). We may

assume that each restriction f : Fi � ½0; 1� ! X of the homotopy in (3) gives a

homotopy between Fi and F 0i with f ðqFi � ½0; 1�ÞH qX ð1a ia kÞ.
We assume that the lemma holds for ka n, and we will prove it for

k ¼ n ðnb 2Þ. By the assumption, there is an isotopy fetg of X keeping Y

fixed so that e0 ¼ id and e1ð61aian�1 FiÞ ¼6
1aian�1 F

0
i . Put F � ¼ e1ðFnÞ.

Then F � UF 0n HX � ðY U6
1aian�1 F

0
i Þ and f � ¼ f � ððe1jFnÞ�1 � id½0;1�Þ:

F � � ½0; 1� ! X is a homotopy between F � and F 0n with f �ðqF � � ½0; 1�ÞH qX .

Take a regular neighborhood Y 0 of 6
1aian�1 F

0
n in X with Y 0 V ðY UF � U

F 0nÞ ¼q. We see that F � is not parallel to any component of FrðY ÞUFrðY 0Þ.
In fact F � ¼ e1ðFnÞ is not parallel to any component of FrðY Þ by (4). Also if

F � is parallel to a component of FrðY 0Þ, then Fn is parallel to F 0n for some

1a ia n� 1, and hence Fn is ambient isotopic to Fi. Since qFn 0q by (2),

some component of qX contains at least two components of qF , qFn and

qFi. This contradicts (2). Now we can apply the lemma in the case that F is

connected to ðX ;Y ;F ;F 0Þ ¼ ðX ;Y UY 0;F �;F 0nÞ. Hence we get an isotopy fe 0tg
of X keeping Y UY 0 fixed so that e 00 ¼ id and e 0ðF �1 Þ ¼ F 0n. By connecting two

isotopies fetg and fe 0tg, we have the desired isotopy fhtg, and Lemma 1.7 is

proved. r

2. Complementary sutured manifolds and Murasugi sums

We assume that the 3-sphere S3 is oriented. Let LHS3 be an (oriented)

link and SHEðLÞ a spanning surface for L. Let ðNðSÞ; dÞ ¼ ðS � ½�1; 1�,
qS � ½�1; 1�Þ be the product sutured manifold associated to S where

S � ½�1; 1�HEðLÞ is a regular neighborhood of S. We assume that the

orientation of qS induces that of sðdÞ so that R�ðdÞ ¼ S � f�1g and RþðdÞ ¼
S � f1g. The complementary sutured manifold for S is the sutured manifold

ðM; gÞ ¼ ðClðEðLÞ �NðSÞÞ;ClðqEðLÞ � dÞÞ with R�ðgÞ ¼ RþðdÞ and RþðgÞ ¼
R�ðdÞ. If L is non-split, then EðLÞ and M are irreducible. We also note

that qM is connected if and only if so is S. Let ISðLÞ denote the set of

equivalence classes of incompressible spanning surfaces for L. For a given

incompressible spanning surface S, let ISðL;SÞ denote the set of h A ISðLÞ
such that h0 ½S � and there is a representative F A h with F VS ¼q.

Proposition 2.1. Let L be a non-split link, S a connected incompressible

spanning surface for L and ðM; gÞ the complementary sutured manifold for

S. Then the inclusion MHEðLÞ induces a well defined map iS : EðM; gÞ !
ISðL;SÞ, ½F �g 7! ½F �. Moreover iS is bijective.
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Proof. Every essential g-surface F is regarded as an incompressible

spanning surface for L which is not equivalent to S by the definitions. If two

g-surfaces F0 and F1 are isotopic by a g-isotopy fhtg of M, then the isotopy can

be extended to an isotopy of EðLÞ since ht jRðgÞ ¼ id ð0a ta 1Þ and NðSÞ ¼
S � ½�1; 1�. Thus MHEðLÞ induces a well defined map iS : EðM; gÞ !
ISðL;SÞ, ½F �g 7! ½F �.

For each h A ISðL;SÞ there is a representative F A h so that F HM.

Clearly F is an essential g-surface, and hence iS is surjective. Next suppose

that two essential g-surfaces F and F 0 are ambient isotopic in EðLÞ by

an isotopy fetg. Then we can apply Lemma 1.7 to ðX ;Y ;F ;F 0Þ ¼
ðEðLÞ;NðSÞ;F ;F 0Þ. In fact (1) holds clearly, (2) holds since F is a spanning

surface for L, and if we set ft ¼ etjF ð0a ta 1Þ, then f : F � ½0; 1� ! EðLÞ
satisfies the desired condition in (3). Moreover if there is a component A of F

which is parallel to some component of FrðNðSÞÞ, then A ¼ F and F is parallel

to RþðgÞ or R�ðgÞ in M. This contradicts the assumption that F is an es-

sential g-surface; hence (4) holds. Thus by Lemma 1.7, F and F 0 are ambient

isotopic in EðLÞ by an isotopy keeping NðSÞ fixed. This implies that iS is

injective. Proposition 2.1 is proved. r

An oriented surface SHS3 is a Murasugi sum of compact oriented

surfaces S1 and S2 HS3 if there are 3-balls V1 and V2 HS3 satisfying the

following property (see [4, § 0], [13, § 5]):

V1 UV2 ¼ S3; V1 VV2 ¼ qV1 ¼ qV2; Si HVi ði ¼ 1; 2Þ;ð2:2Þ

S ¼ S1 US2 and D ¼ S1 VS2 is a 2n-gon:

When D is a 4-gon the Murasugi sum is also called a plumbing of S1 and

S2. Put L ¼ qS, Li ¼ qSi, S ¼ SVEðLÞ and Si ¼ Si VEðLiÞ. Then we will

also say that S is a Murasugi sum of S1 and S2. Note that S 0 ¼ ðS �DÞUD 0

is an oriented surface with qS 0 ¼ L where D 0 ¼ qV1 � Int D. By a tiny

isotopy of S3 keeping L fixed we can move S 0 so that S 0 VSVEðLÞ ¼q (see

Figure 3.4). We will say that S 0 (resp. S 0 ¼ S 0 VEðLÞ) is a dual of S (resp.

S). Note that S 0 (resp. S 0) is also a Murasugi sum of S 01 and S 02 (resp. S 01 and

S 02) where S 0i ¼ ðSi �DÞUD 0 and S 0i ¼ S 0i VEðLiÞ ði ¼ 1; 2Þ. D 0 is also called

a dual of D. Gabai showed that the Murasugi sum operations hold the

following natural properties:

Proposition 2.3 ([4], [5]). (i) S is of minimal genus if and only if so are

both S1 and S2.

(ii) S is incompressible if so are both S1 and S2.

(iii) L is a fibred link with fibre S if and only if both L1 and L2 are fibred

links with fibres S1 and S2 respectively.
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Now we show the following

Proposition 2.4. Let L be a non-split oriented link and S a connected

incompressible spanning surface for L. Suppose that S is a Murasugi sum of

S1 and S2, where Si is a spanning surface for an oriented link Li ði ¼ 1; 2Þ.
Suppose further that L2 is a fibred link with fibre S2. Then L1 is non-split, and

S1 is connected and incompressible. Moreover there is a bijection

j : ISðL;SÞ ! ISðL1;S1Þ:

Proof. Clearly the connectedness of S implies that of S1. Let ðM; gÞ be
the complementary sutured manifold for S. Since S is connected so is qM.

By the same argument as in the proofs of [6, Th. 3.1] and [13, Th. 5.1], there is

a finite sequence of product decompositions

ðM; gÞ !D1 ðN1; d1Þ !
D2 � � � !Dn ðNn; dnÞ

so that ðNn; dnÞ is homeomorphic to the complementary sutured manifold for S1

and that qNi are all connected. Since S is incompressible in EðLÞ, each

component of RðgÞ is incompressible in M. Hence each component of RðdnÞ is
incompressible in Nn by (1.2), and then S1 is incompressible in EðL1Þ.

Since L is non-split, M is irreducible. This implies that Nn is irreducible,

and hence L1 is non-split. By Proposition 2.1 there are bijection iS : EðM; gÞ !
ISðL;SÞ and iS1

: EðNn; dnÞ ! ISðL1;S1Þ. Thus by applying Proposition 1.4

to each step of the above sequence of product decompositions, we get a bi-

jection j : ISðL;SÞ ! ISðL1;S1Þ. r

Also Boileau and Gabai showed the following

Proposition 2.5 ([6, Cor. 3.2]). Let L be a non-split link and S a

spanning surface for L. Suppose that S is a Murasugi sum of S1 and S2 where

Si is an incompressible spanning surface for a link Li ði ¼ 1; 2Þ. Suppose

further that Li is not a fibred link (i ¼ 1; 2). Then S and its dual S 0 are not

equivalent.

Propositions 2.4 and 2.5 together with Corollary 0.2 in the introduction

imply the following

Corollary 2.6. Let L be a non-split link and S a connected spanning

surface for L which is a Murasugi sum of S1 and S2 where Si is a incompressible

spanning surface for a link Li ði ¼ 1; 2Þ. Then ISðLÞ ¼ f½S �g if and only if one

of L1 and L2, say L1, is a fibred link and ISðL2Þ ¼ f½S2�g.
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3. Plumbings and marked sutured manifolds

Let L be a non-split link and S its spanning surface. We suppose that

(3.1) S is connected, and S is a plumbing of S1 and S2 which are unique

incompressible spanning surfaces for links L1 and L2 respectively.

Hence S1, S2 and S are of minimal genus by Proposition 2.3 (i). If L1 or L2 is

fibred, then we have ISðLÞ ¼ f½S �g by Corollary 2.6. On the other hand, in

the case

(3.2) neither L1 nor L2 are fibred,

ISðLÞ contains at least two distinct equivalence classes ½S � and ½S 0� where S 0

is a dual of S by Proposition 2.5. If the plumbing is in the form shown in

Figure 3.1 in addition, then S can be regarded as a connected sum of S1 and

S2, and hence ISðLÞ contains infinitely many equivalence classes of minimal

genus by Eisner [2]. In this section, under the assumptions (3.1) and (3.2), we

will give a necessary and su‰cient condition that ISðLÞ consists of exactly

two equivalence classes ½S � and ½S 0� (Theorem 3.12), and also give a su‰cient

condition that ISðLÞ consists of three equivalence classes (Theorem 3.15).

These conditions will be formulated in terms of marked sutured manifolds.

A marked sutured manifold ðM; g;AÞ is a sutured manifold ðM; gÞ together
with a properly embedded arc AHRðgÞ, and we call A a mark on ðM; gÞ. If

there is a product disk DHM with A as an edge (see Figure 3.2), then

ðM; g;BÞ is also a marked sutured manifold where B is the opposite edge of A,

Fig. 3.1
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and we call B an opposite mark of A relative to D. The following lemma is

easily verified.

Lemma 3.3. Let ðM; g;AÞ be a marked sutured manifold. Suppose that M

is irreducible and each component of RðgÞ is incompressible. If there is a

product disk with A as an edge, then the ambient isotopy types of such disks are

unique, and hence so are the isotopy types in RðgÞ of opposite marks of A.

Let L be a non-split link and S its spanning surface. Suppose that S is a

plumbing of S1 and S2 where Si is a spanning surface for a link Li ði ¼ 1; 2Þ.
We call D ¼ S1 VS2 the plumbing disk. Let ðM1; g1Þ and ðM2; g2Þ (resp.

ðN1; d1Þ and ðN2; d2Þ) be the complementary sutured manifolds (resp. the

associated product sutured manifolds) for S, S1 and S2 respectively. We will

make marked sutured manifolds ðMi; gi;AiÞ and ðNi; di;AiÞ ði ¼ 1; 2Þ as fol-

lows: We first consider ðM1; g1Þ and ðN1; d1Þ. Let I1 be a core arc of D

relative to the embedding DHS1, i.e. I1 is a properly embedded arc in S1 so

that D is a regular neighborhood of I1 in S1. Push out I1 from S1 to the side

on which S2 is attached, and consider this arc A1 to be properly embedded in

Rðg1Þ ¼ Rðd1Þ. Thus we get marked sutured manifolds ðM1; g1;A1Þ and

ðN1; d1;A1Þ. By the same way we also get ðM2; g2;A2Þ and ðN2; d2;A2Þ (see

Figure 3.3). These markings correspond to the way of plumbing of S1 and S2.

Proposition 3.4. Let L be a non-split link and S a spanning surface for

L. Suppose that (3.1) and (3.2) hold. Let ðMi; gi;AiÞ ði ¼ 1; 2Þ be the marked

complementary sutured manifolds associated with the plumbing S ¼ S1 US2.

Suppose that there is no product disk in Mi with Ai as an edge for each

i ¼ 1; 2. Then ISðL;SÞ ¼ f½S 0�g where S 0 is a dual of S.

Proof. By the definition of the plumbing S ¼ S1 US2, there are 3-balls

V1, V2 HS3 such that S3 ¼ V1 UV2, V1 VV2 ¼ qV1 ¼ qV2, Si HVi ði ¼ 1; 2Þ

Fig. 3.2
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and D ¼ S1 VS2 H qV1 is a 4-gon. Also S 0 is a plumbing of two surfaces S 01
and S 02 such that S 0i HVi, S 01 VS 02 ¼ D 0H qV1 and ClðS 0i �D 0Þ is a parallel

copy of ClðSi �DÞ (see Figure 3.4).

Let ðM; gÞ, ðM1; g1Þ and ðM2; g2Þ be the complementary sutured manifolds

for S, S1 and S2 respectively. We may assume as in the proof of [6, Th. 3.1]

that (Figure 3.5)

V1 VR�ðgÞ ¼ R�ðg1Þ; V1 VRþðgÞ ¼ Rþðg1Þ � Int NðDÞ;ð3:5Þ

V2 VR�ðgÞ ¼ R�ðg2Þ � Int NðDÞ; V2 VRþðgÞ ¼ Rþðg2Þ:

Fig. 3.3

Fig. 3.4
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Now let F be an incompressible spanning surface for L such that

½F � A ISðL;SÞ. We can regard F as a g-surface in M. Consider the disk

X ¼M V qV1: X is properly embedded in M and qX intersects sðgÞ trans-

versely in four points. By moving F by a g-isotopy, we may assume that F

intersects X transversely in two arcs, and there are two cases as shown in

Figure 3.6. We may assume without loss of generality that the case (1) holds.

Put M 0
i ¼M VVi and Fi ¼ F VVi ði ¼ 1; 2Þ. Then we get a sutured manifold

ðM 0
2; g
0
2Þ so that F2 becomes an incompressible g 02-surface in M 0

2. Note that

ðM 0
2; g
0
2Þ is homeomorphic to ðM2; g2Þ. By the assumption that S2 is a unique

incompressible spanning surface for L2, F2 is parallel to a surface in Rðg 02Þ in
M 0

2. Let e : ðF2; qF2Þ � ½0; 1� ! ðM 0
2; g
0
2Þ be an embedding so that e0 ¼ id : F2

! F2 and e1ðF2Þ is a union of some components of Rðg 02Þ. Since S is

Fig. 3.5

Fig. 3.6
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connected, so are S1 and S2 and also Rþðg 02Þ and R�ðg 02Þ. Thus e1ðF2Þ ¼
Rþðg 02Þ or R�ðg 02Þ.

Now let ðP; lÞ denote the sutured manifold

ðClðEðLÞ �NðS US 0ÞÞ;ClðqEðLÞ �NðqS U qS 0ÞÞÞ

¼ ðClðM �NðS 0ÞÞ;Clðg�NðqS 0ÞÞÞ

Then ðP; lÞ has two components ðP1; l1Þ and ðP2; l2Þ which satisfy the fol-

lowing properties: (for i ¼ 1; 2) Pi V qV1 is a union of two disks Di, D
0
i which

are product disks in Pi, and Di UD 0i decomposes ðPi; liÞ into two sutured

manifolds ðPi;a; li;aÞ and ðPi;b; li;bÞ so that

(3.6.i) ðPi;a; li;aÞ is homeomorphic to the product sutured manifold

ðClðS3�i �DÞ � ½�1; 1�; ðqClðS3�i �DÞÞ � ½�1; 1�Þ and ðPi;b; li;bÞ is

homeomorphic to ðMi; giÞ (Figure 3.7).

Case 1: e1ðF2Þ ¼ R�ðg 02Þ. In this case, using the product structures

of eðF2 � ½0; 1�ÞHM 0
2 and ðP2;a; l2;aÞ, we can push ðF ; qFÞ into ðP1; l1Þ by

a g-isotopy of M. Thus F becomes a l1-surface in P1. By (3.6.1) and

Proposition 1.5, there is a bijection EðP1; l1Þ ! EðP1;b; l1;bÞ. By the as-

sumption that S1 is a unique incompressible spanning surface for L1, we have

ISðL1;S1Þ ¼q, and hence EðP1;b; l1;bÞ ¼q by Proposition 2.1. Thus

EðP1; l1Þ ¼q, and F is parallel to a surface in Rðl1Þ. Moreover, since S and

S 0 are connected, so are Rþðl1Þ and R�ðl1Þ. Hence F is parallel to Rþðl1Þ
or R�ðl1Þ. From this together with the assumption that ½F �0 ½S �, we have

½F � ¼ ½S 0�.

Fig. 3.7. ðP1; l1Þ
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Case 2: e1ðF2Þ ¼ Rþðg 02Þ. Let W ¼ qV2 � ½0; 1� be a thin collar of qV2

in V2 with qV2 ¼ qV2 � f0g, and put W1 ¼ V1 UW and W2 ¼ ClðV2 �WÞ.
Then we have S3 ¼W1 UW2 and W1 VW2 ¼ qW1 ¼ qW2 ¼ qV2 � f1g. In this

case, moving F by a g-isotopy of M keeping M1 fixed whose restriction to F2

is e j ðF2; qF2Þ � ½0; 1� r� for a small positive number r, we may assume that

D� ¼ F VW is a parallel copy of D such that D� V qV2 ¼ F VX and

D� V qW1 ð¼ F V qW1Þ is a parallel copy of RþðgÞV qW1, and hence D� V qW1

is a union of two arcs, say K and K 0. Let ðM �; g�Þ denote the sutured

manifold ðM UW2;ClðqW1 �MÞU ðgVW1ÞÞ. Then ðM �; g�Þ is homeomor-

phic to ðM1; g1Þ. Let F � denote the g�-surface in M � which is obtained by

adding two thin rectangles to F VW1 along K and K 0 respectively (see Figure

3.8). Since F is incompressible in M, so is F � in M �. Hence by the as-

sumption that S1 is a unique incompressible spanning surface for L1, F � is

parallel to a surface in Rðg�Þ. From this together with the connectedness of

S1, there is an embedding e� : ðF �; qF �Þ � ½0; 1� ! ðM �; g�Þ so that e�0 ¼ id and

e�1 ðF �Þ ¼ Rþðg�Þ or R�ðg�Þ.

Subcase 2.1: e�1 ðF �Þ ¼ Rþðg�Þ. In this case the embeddings e : F2�
½0; 1� !M 0

2 and e� : F � � ½0; 1� !M � can be taken so that eððF VW2Þ�
½0; 1�ÞHM VW2, e�ððF VW1Þ � ½0; 1�ÞHM VW1 and e j ðF V qW1Þ � ½0; 1� ¼
e� j ðF V qW1Þ � ½0; 1�. By connecting these two embeddings, we get an

embedding e : ðF ; qFÞ � ½0; 1� ! ðM; gÞ so that e0 ¼ id and e1ðFÞ ¼ RþðgÞ.
This contradicts the assumption that ½F � A ISðL;SÞ.

Subcase 2.2: e�1 ðF �Þ ¼ R�ðg�Þ. Recall that F VX is a union of two arcs

where X ¼M V qV2, and let A denote one of them. The arc A cuts o¤ a

Fig. 3.8. ðM �; g�Þ
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rectangle Dþ from X such that Dþ is disjoint from another component of

F VX , Aþ ¼ Dþ VRðgÞ is the opposite edge of A and AþHRþðgÞ. We can

regard Dþ as an disk in M � and AþHRþðg�Þ as a mark on ðM �; g�Þ. By the

definition of ðM �; g�Þ, there is a homeomorphism h : ðM �; g�Þ ! ðM1; g1Þ so

that hðAþÞ ¼ A1. We will construct a product disk D in M � with Aþ as an

edge. Note that A is a properly embedded arc in F �. For the embedding

e� : F � � ½0; 1� !M �, D� ¼ e�ðA� ½0; 1�Þ is a rectangle such that D� VDþ ¼ A,

A� ¼ e�ðA� f1gÞ is the opposite edge of A and D� VRðg�Þ ¼ A�HR�ðg�Þ.
Thus D ¼ D� UDþ is a product disk in M � with Aþ as an edge. This

contradicts the assumption on the marked sutured manifold ðM1; g1;A1Þ.

The proof of Proposition 3.4 is completed. r

Now we will consider the case that one of the marked sutured manifolds

ðMi; gi;AiÞ ði ¼ 1; 2Þ has a product disk with the mark as an edge. Suppose

that ðM1; g1;A1Þ has a product disk D with A1 as an edge, and let B1 denote an

opposite mark of A1 relative to D. Let i : S1 � ½�1; 1� ! S3 be a bicollar map

with N1 ¼ Image iVEðL1Þ. We may assume that V2 ¼ iðD� ½0; 1�Þ. We take

a regular neighborhood NðDÞ of D in M1 so that NðDÞVRðg1Þ is a union of

two rectangles Dþ and E� which have A1 and B1 as cores respectively. We

regard A1 and B1 as marks on ðN1; d1Þ, and Dþ, E� as disks in Rðd1Þ where
ðN1; d1Þ is the product sutured manifold associated with S1. Then Dþ cor-

responds to the plumbing disk D ¼ S1 VS2 by projecting Dþ onto S1. Let E

denote the disk on S1 obtained by projecting E� onto S1. Let D� ½0; 1�HN1

and E � ½�1; 0�HN1 be embeddings with D ¼ D� f0g, Dþ ¼ D� f1g,
E ¼ E � f0g and E� ¼ E � f�1g respectively. Consider the set N 0ðDÞ ¼
NðDÞUD� ½0; 1�UE � ½�1; 0�. Then Int N 0ðDÞ is still an open 3-ball. Since

the 3-ball V2 is contained in N 0ðDÞ, we have S2 V qN 0ðDÞ ¼ D. Hence there is

a 3-ball Q2 HN 0ðDÞ so that Q2 V qN 0ðDÞ ¼ E and T2 ¼ ðS2 �DÞUEHQ2.

Thus two 3-balls Q2 and Q1 ¼ S3 � Int Q2 satisfy the following properties:

Q1 UQ2 ¼ S3; Q1 VQ2 ¼ qQ1 ¼ qQ2; S1 HQ1; T2 HQ2 andð3:7Þ

E ¼ S1 VT2 is a 4-gon:

This means that S has another decomposition which consists of a plumbing

of S1 and T2 with the plumbing disk E. We set T ¼ S1 UE T2 for convenience,

and T 0 denotes its dual relative to E; hence ½T � ¼ ½S � A ISðLÞ. We also note

that the link qT2 is equivalent to L2, and that T2 is equivalent to S2 as

spanning surfaces for L2. Thus the conditions (3.1) and (3.2) hold if we

replace S and S2 by T and T2 respectively.

Proposition 3.8. Let L be a non-split link and S its spanning surface.

Suppose that (3.1) and (3.2) hold, and let ðMi; gi;AiÞ ði ¼ 1; 2Þ be the marked
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sutured manifolds associated with the plumbing S ¼ S1 UD S2. Suppose further

that ðM1; g1;A1Þ has a product disk D with A1 as an edge, and let T ¼ S1 UE T2

denote the plumbing corresponding to an opposite mark B1. Let S 0 and T 0

denote duals of S and T respectively. Then S 0 can not be disjoint from T 0 by

any ambient isotopy of EðLÞ. In particular, S 0 is not equivalent to T 0.

Proof. Let ðM; gÞ, ðM1; g1Þ and ðM2; g2Þ be the complementary sutured

manifolds for S, S1 and S2 respectively. Let V1 and V2 be as in the beginning

of the proof of Proposition 3.4, and assume (3.5). We further assume the

notation NðDÞ, Dþ, E� etc. and the condition (3.7). Note that DþHRþðgÞ
and E�HR�ðgÞ by (3.5). We identify NðDÞ with D� ½�1; 1� and suppose

that sðgÞV qNðDÞ ¼ ðsðgÞV qDÞ � ½�1; 1�. Consider the product decomposition

ðM1; g1Þ !
D ð ~MM1; ~gg1Þ. We may identify ~MM1 with ClðM1 �NðDÞÞ and suppose

that sð~gg1ÞV ðD� fG1gÞ ¼ a� fG1g, where aHD is a properly embedded arc

connecting the two points of sðgÞV qD. We also get a sutured manifold

ð ~MM2; ~gg2Þ such that ~MM2 ¼M VN 0ðDÞ and sð~gg2Þ ¼ ðsðgÞVNðDÞÞU ða� f�1; 1gÞ.
Note that ð ~MM2; ~gg2Þ is ambient isotopic to ðM2; g2Þ.

Since S 0 and T 0 are disjoint from S, we regard S 0 and T 0 as g-surfaces

in M. Now suppose that S 0 can be disjoint from T 0 by an isotopy of EðLÞ.
We can take this isotopy to be keeping S fixed by Lemma 1.7; hence as a g-

surface S 0 can be disjoint from T 0 by a g-isotopy of M. By the construction

of S 0 and T 0, we can assume that

qS 0 ¼ qT 0 ¼ sðgÞ;

S 0 V ðD� fG1gÞ ¼ T 0 V ðD� fG1gÞ ¼ a� fG1g;

S 0 VT 0 ¼ sðgÞU ða� f�1; 1gÞ

(Figure 3.9).

Set ~SSi ¼ S 0 V ~MMi and ~TTi ¼ T 0 V ~MMi for i ¼ 1 and 2. Then ~SSi and ~TTi become ~ggi-

surfaces in ~MMi. Moreover we claim that

(3.9) (1) ~SS1 and ~TT1 are parallel to Rþð~gg1Þ and R�ð~gg1Þ in ~MM1 respectively,

and

(2) ~SS2 and ~TT2 are parallel to R�ð~gg2Þ and Rþð~gg2Þ in ~MM2 respectively.

We now consider two cases.

Case 1. ~MM1 is connected. By the assumption that S 0 can be disjoint from

T 0 by a g-isotopy, using Waldhausen [16, Prop. 5.4], we see that ~SSi is parallel

to ~TTi in ~MMi for i ¼ 1 or 2. On the other hand, since ðM1; g1Þ is not a product

sutured manifold by (3.2), neither is ð ~MM1; ~gg1Þ. It follows from this together

with (3.9)(1) that ~SS1 can not be parallel to ~TT1 in ~MM1. Also ð ~MM2; ~gg2Þ is not a
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product sutured manifold by (3.2). Hence (3.9)(2) implies that ~SS2 can not be

parallel to ~TT2 in ~MM2. This is a contradiction.

Case 2. ~MM1 is disconnected. Let ðM�
1 ; g

�
1 Þ and ðMþ

1 ; g
þ
1 Þ be the two

components of ð ~MM1; ~gg1Þ with D� fG1gH qMG
1 . Since ð ~MM1; ~gg1Þ is not a

product sutured manifold, neither is one of ðMG
1 ; gG1 Þ. If both of ðMG

1 ; gG1 Þ
are not product sutured manifolds, then the same argument as in the case 1

implies a contradiction. Hence we suppose that ðM�
1 ; g

�
1 Þ is a product sutured

Fig. 3.9
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manifold. In this case we can move S 0 by a g-isotopy to eliminate the in-

tersection arc a� f�1g; hence we suppose that S 0 VT 0 ¼ sðgÞU ða� f1gÞ.
Consider the product decomposition ðM; gÞ ���!D�f1g ðM�; g�ÞU ðMþ

1 ; g
þ
1 Þ; the

resulting manifold has two components, and set S� ¼ S 0 VM� and T� ¼
T 0 VM�. Then S� and T� become g�-surfaces, and they are parallel to

R�ðg�Þ and Rþðg�Þ in M� respectively. Also by considering the product

decomposition ðM�; g�Þ ����!D�f�1g ð ~MM2; ~gg2ÞU ðM�
1 ; g

�
1 Þ and by the assumption that

ð ~MM2; ~gg2Þ is not a product sutured manifold, we see that ðM�; g�Þ is not a

product sutured manifold. It follows that S� is not parallel to T� in M�.

Hence by the same argument as in the case 1, we get a contradiction.

Thus S 0 can not be disjoint from T 0 by any ambient isotopy of EðLÞ, and
Proposition 3.8 is proved. r

From Propositions 3.4 and 3.8 we have

Corollary 3.10. Let L be a non-split link and S a spanning surface for

L. Suppose that (3.1) and (3.2) hold. Let ðMi; gi;AiÞ ði ¼ 1; 2Þ be the marked

complementary sutured manifolds associated with the plumbing S ¼ S1 US2.

Then ISðL;SÞ ¼ f½S 0�g (where S 0 is a dual of S), if and only if there is no

product disk in Mi with Ai as an edge for i ¼ 1 and 2.

Now let ðMi; gi;AiÞ (resp. ðNi; di;AiÞ) ði ¼ 1; 2Þ be the marked comple-

mentary sutured manifolds (resp. the marked product sutured manifolds)

associated with the plumbing S ¼ S1 UD S2. Let S 0 ¼ S 01 UD 0 S
0
2 be a dual of

S. We consider the marked sutured manifolds associated with this plumbing.

Let G i be a product disk in Ni with Ai as an edge and A 0i an opposite mark on

ðNi; diÞ relative to G i ði ¼ 1; 2Þ. It is easy to see that

(3.11) (a) the marked product sutured manifolds associated with S 0 ¼
S 01 UD 0 S

0
2 are homeomorphic to ðNi; di;A

0
i Þ ði ¼ 1; 2Þ, and

(b) the marked complementary sutured manifolds associated with

S 0 ¼ S 01 UD 0 S
0
2 are homeomorphic to ðMi; gi;A

0
i Þ ði ¼ 1; 2Þ.

Thus Corollaries 0.3 and 3.10 imply the following

Theorem 3.12. Let L be a non-split link and S its spanning surface.

Suppose that (3.1) and (3.2) hold. Let ðMi; gi;AiÞ and ðMi; gi;A
0
i Þ ði ¼ 1; 2Þ the

marked complementary sutured manifolds associated with S and its dual S 0

respectively. Then ISðLÞ ¼ f½S �; ½S 0�g if and only if the following conditions

ð*1Þ–ð*2Þ hold:

ð*1Þ There is no product disk in M1 with A1 or A 01 as an edge.

ð*2Þ There is no product disk in M2 with A2 or A 02 as an edge.
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Now we return to the case that ðM1; g1;A1Þ has a product disk with A1 as

an edge.

Proposition 3.13. Under the same assumptions as in Proposition 3.8, we

have ISðL;SÞ ¼ f½S 0�; ½T 0�g.

Proof. Let F be an incompressible spanning surface for L such that

½F � A ISðL;SÞ. We use the same notation ðM; gÞ, ðMi; giÞ etc. in the proof

of Proposition 3.4 and assume (3.5). We may assume that F intersects the

disk X ¼M V qV1 transversely in two arcs and that the case (1) in Figure 3.6

holds. The arguments in the proof of Proposition 3.4 remain valid in the

subcase 2.1. Thus we will start with the same situation as in the subcase 2.2:

For the embeddings e : ðF2; qF2Þ � ½0; 1� ! ðM 0
2; g
0
2Þ and e� : ðF �; qF �Þ � ½0; 1�

! ðM �; g�Þ, we assume that e1ðF2Þ ¼ Rþðg 02Þ and e�1 ðF �Þ ¼ R�ðg�Þ.
Note that D� ¼ F VW ¼ F2 VF � is a disk, and consider two 3-balls

Zþ ¼ eðD� � ½0; 1�Þ and Z� ¼ e�ðD� � ½0; 1�Þ. By the constructions of e and

e�, we may assume that Zþ VZ� ¼ D� and ZþHW1. Put Z ¼ Zþ UZ�.

Then Dþ ¼ eðD� � f1gÞHRþðg�Þ and E� ¼ e�ðD� � f1gÞHR�ðg�Þ are rec-

tangles such that ðZ;E�;DþÞ is homeomorphic to D� � ð½�1; 1�;�1; 1Þ. A

core arc Aþ of DþHRþðg�Þ is a mark on ðM �; g�Þ and ðM �; g�;AþÞ is

homeomorphic to ðM1; g1;A1Þ. Hence a core arc A� of E�HR�ðg�Þ is a dual

mark of Aþ, and ðM �; g�;A�Þ is homeomorphic to ðM1; g1;B1Þ by Lemma

3.3. Thus we identify ðM �; g�;AþÞ and ðM �; g�;A�Þ with ðM1; g1;A1Þ and

ðM1; g1;B1Þ respectively, and ðZ;E�;DþÞ with ðNðDÞ;E�;DþÞ (which is

indicated just before Proposition 3.8). By the assumption that e1ðF2Þ ¼
Rþðg 02Þ, F2 is regarded as a parallel copy of Rþðg 02Þ in ðM 0

2; g
0
2Þ (Figure

3.10). Take a parallel copy ~FF2 of R�ðg 02Þ in ðM 0
2; g
0
2Þ which is a g 02-surface.

Then replacing F2 with ~FF2, we get a g-surface ~FF from F ; ~FF ¼ ðF � F2ÞU ~FF2.

Since e�1 ðF �Þ ¼ R�ðg�Þ, ~FF is a parallel copy of R�ðgÞ, and then we can regard
~FF as T ¼ S1 UE T2 (see Figure 3.10). Hence F is a dual of T relative to E,

and ½F � ¼ ½T 0�. Proposition 3.13 is proved. r

We proceed with our study under the assumptions in Proposition 3.8. As

noted previously the link qT2 is equivalent to L2, and T2 is equivalent to S2 as

spanning surfaces for L2. Hence the complementary sutured manifold for

T2 is homeomorphic to ðM2; g2Þ. Let ðMi; gi;AiÞ ði ¼ 1; 2Þ be the marked

complementary sutured manifolds associated with the plumbing S ¼ S1 UD S2,

and let ðMi; gi;BiÞ ði ¼ 1; 2Þ be those ones associated with the plumbing

T ¼ T1 UE T2 ðT1 ¼ S1;T ¼ SÞ. By the definition of T2 and the plumbing

T ¼ T1 UE T2 (cf. (3.7)), we see that ðM2; g2;B2Þ is homeomorphic to

ðM2; g2;A
0
2Þ. Let S 0 ¼ S 01 UD 0 S

0
2 and T 0 ¼ T 01 UE 0 T

0
2 denote duals of S and T

respectively. Then
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(3.14) (i) the marked complementary sutured manifolds associated with

S 0 ¼ S 01 UD 0 S
0
2 are homeomorphic to ðMi; gi;A

0
i Þ ði ¼ 1; 2Þ, and

(ii) the marked complementary sutured manifolds associated with

T 0 ¼ T 01 UE 0 T
0
2 are homeomorphic to ðM1; g1;B

0
1Þ and ðM2; g2;A2Þ,

where ðMi; gi;A
0
i Þ ði ¼ 1; 2Þ are the marked sutured manifolds given in (3.9)(b),

and ðM1; g1;B
0
1Þ is obtained by the same way from ðM1; g1;B1Þ. Thus Cor-

ollary 3.10 and Proposition 3.13 together with Theorem 0.1 imply the following

Theorem 3.15. Let L be a non-split link and S its spanning surface.

Suppose that (3.1) and (3.2) hold, and let ðMi; gi;AiÞ ði ¼ 1; 2Þ be the marked

Fig. 3.10
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sutured manifolds associated with the plumbing S ¼ S1 UD S2. Suppose further

that ðM1; g1;A1Þ has a product disk D with A1 as an edge, and let T ¼ S1 UE T2

denote the plumbing corresponding to an opposite mark B1. Let S 0 and T 0

denote duals of S and T respectively. Then

ISðLÞ ¼ f½S �; ½S 0�; ½T 0�g
and

ISðLÞ ¼
½S 0� ½S � ½T 0�
��������������� ;

if and only if the following conditions ð**1Þ–ð**2Þ hold:

ð**1Þ There is no product disk in M1 with A 01 or B 01 as an edge.

ð**2Þ There is no product disk in M2 with A2 or A 02 as an edge.

4. Decompositions of a marked sutured manifold

In this section we deal with a method deciding whether a given marked

sutured manifold has a product disk with the mark as an edge.

Let ðM; g;AÞ be a marked sutured manifold, i.e. A is a properly embedded

arc in RðgÞ. Suppose that there is a product disk DHM with DVA ¼q, and

let ðM; gÞ !D ðM 0; g 0Þ be the corresponding product decomposition. Then we

can regard A as a mark on ðM 0; g 0Þ, and hence we have a product decom-

position of a marked sutured manifold:

ðM; g;AÞ !D ðM 0; g 0;AÞ:

We now assume that there is a product disk G HM with A as an edge in

addition. In the case that G VD ¼q, G is also a product disk in M 0 with A

as an edge. If G VD0q, then by using the standard cut and paste argument,

we can get another product disk G 0HM 0 with A as an edge. Also the

converse is easily verified. Thus we have the following

Lemma 4.1. Let ðM; g;AÞ !D ðM 0; g 0;AÞ be a product decomposition of a

marked sutured manifold. Then M has a product disk with A as an edge, if and

only if so does M 0.

Next we consider an octagon WHM (see § 1) satisfying WVA ¼q. We

assume that AHR�ðgÞ. Then we associate the following three kind of

decompositions of ðM; g;AÞ with W as shown in Figure 4.1:

ðMa; ga;AÞ  ���
aðWÞ ðM; g;AÞ ���!cðWÞ ðMc; gc;AÞ

bðWÞ

?
?
?
y

ðMb; gb;AÞ:
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Note that Ma, Mb and Mc are homeomorphic to the manifold obtained

by cutting M along W. In the case of AHRþðgÞ, by replacing the situa-

tions of R�ðgÞ and RþðgÞ, we define the three decompositions in the same

way.

Proposition 4.2. Let ðM; g;AÞ be a marked sutured manifold with

AHR�ðgÞ (resp. AHRþðgÞ), and let WHM be an octagon with WVA ¼q.

Suppose that there is a product disk G HM with A as an edge. Then one of the

following assertions (1)–(3) holds:

(1) There is a product disk Ga HMa with A as an edge.

(2) Some component of RþðgbÞ (resp. R�ðgbÞ) is compressible in Mb.

(3) Some component of RþðgcÞ (resp. R�ðgcÞ) is compressible in Mc.

Fig. 4.1
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Proof. We prove the proposition in the case of AHR�ðgÞ. We take G

transversely relative to W. Then G VW is a union of a finite number of circles

and arcs, each arc is properly embedded in G and W, and qG V qWHRþðgÞ.
By applying the cut and paste operations to G in outer most ordering of circles

of G VW in G , we can replace G by a product disk G 0HM with A as an edge

so that G 0 VW has no circle component.

Now note that there are the following two types I and II of arc aHG 0 VW

(see Figure 4.2):

Type I. qa is contained in one component of qWVRþðgÞ.
Type II. a connects two components of qWVRþðgÞ in W.

We show that type I arcs can be eliminate by replacing G 0. Let aHG 0 VW be

a type I arc. Then a cut o¤ a unique disk D from W so that DVR�ðgÞ ¼q.

We assume that DVG 0 ¼ a. Also a cut o¤ a unique disk D 0 from G 0 so that

D 0 VA ¼q (Figure 4.2). Consider the disk ðG 0 �D 0ÞUD and push out its D

part from W. Then the resulting disk G 00 is also a product disk with A as an

edge, and the arc a (and some other arcs of G 0 VWÞ is eliminated from the

intersection G 00 VW. By repeating this process we get a product disk G �HM

with A as an edge so that each component of G � VW is a type II arc (if

G � VW0qÞ.
In the case that G � VW ¼q, the assertion (1) holds by setting Ga ¼ G �.

Now we assume that G � VW0q. Then there is an arc component bH
G � VW which cut o¤ a unique disk D� from G � so that D� VW ¼ b. Since

D� VW ¼ b, we can consider that D� is contained in the manifold obtained

by cutting M along W. Hence qD�HRþðgbÞ or qD�HRþðgcÞ. Suppose that

qD�HRþðgbÞ. Then by the assumption that bH qD� is of type II, qD�

cannot bound a disk in RþðgbÞ. Hence (2) holds. Similarly if qD�HRþðgcÞ,
then (3) holds. Thus Proposition 4.2 is proved. r

Fig. 4.2

Classification of the spanning surfaces 73



Example 4.3. Let ðM; g;AÞ be a marked sutured manifold shown in

Figure 4.3. Then there is no product disk with A as an edge.

5. Some iterated plumbings

In this section we treat two typical cases of iterated plumbings. As

applications of the results in §§ 3 and 4 we determine the simplicial complexes

ISðLÞ in these cases (Theorems 5.4 and 5.10). Let L be a non-split link and S

its spanning surfaces. We first consider the case that

(5.1) S is connected and is an iterated plumbing S1 UD1
H UD2

S2 of three

surfaces S1, H and S2 as shown in Figure 5.1, where H is a Hopf band

of þ or � type.

We further suppose that

(5.2) Si is a unique incompressible spanning surface for Li, and Li is not

fibred for i ¼ 1 and 2.

Fig. 4.3

Fig. 5.1
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In this case L bounds obvious four surfaces given by performing each

plumbing in di¤erent ways. Each surface is obtained by replacing one of

the plumbing disks Di with its dual disk D 0i ði ¼ 1; 2Þ, or replacing both D1

and D2 with D 01 and D 02 respectively. We denote these surfaces by Sðk1; k2Þ,
where ki � 1 or 0 according to the choice of Di or D 0i as the plumbing disk

ði ¼ 1; 2Þ. For example, Sð1; 1Þ ¼ S and Sð0; 1Þ is a dual of S relative to D1.

Also Sð0; 0Þ ¼ S 01 UD 0
1
H 0 UD 0

2
S 02 where S 0i ¼ ðSi �DiÞUD 0i ði ¼ 1; 2Þ and H 0 ¼

ðH � ðD1 UD2ÞÞU ðD 01 UD 02Þ. Since H is a Hopf band, as in the case of 2-

bridge knots [8], we have

Lemma 5.3. Sð0; 0Þ is equivalent to Sð1; 1Þ.

Moreover we prove the following

Theorem 5.4. Let L be a non-split link and S its spanning surface.

Suppose that (5.1) and (5.2) hold. Let ðMi; giÞ be the complementary sutured

manifold for Si ði ¼ 1; 2Þ, and let Ai and A 0i be the markes on ðMi; giÞ cor-

responding to the plumbing Si UDi
H and its dual S 0i UD 0

i
H 0 respectively. Put

sjk ¼ ½Sð j; kÞ�. Then

ISðLÞ ¼
s01 s11 s10���������������

if and only if the following conditions ð*1 0Þ–ð*2 0Þ hold:

ð*1 0Þ There is no product disk in M1 with A1 or A 01 as an edge.

ð*2 0Þ There is no product disk in M2 with A2 or A 02 as an edge.

Proof. We give the proof in the case that H is the Hopf band shown

in Figure 5.1. Putting R ¼ S1 UD1
H, we have S ¼ RUD2

S2. We will prove

the theorem by applying Theorem 3.15 to this plumbing. First we check the

conditions (3.1) and (3.2). By the assumption (5.2) and Corollary 2.6, R is

unique spanning surface for J ¼ qR, and J is not fibred. Hence (3.1) and (3.2)

hold taking R for S1 and J for L1.

Let ðP; l;BÞ be the marked complementary sutured manifold for R

corresponding to the plumbing S ¼ RUD2
S2. Then there is a product disk G

in P with B as an edge; C denotes its opposite edge (see Figure 5.2). Let S ¼
RUE R2 denote the plumbing corresponding to the opposite mark C.

We note that Sð1; 0Þ is a dual of S ¼ RUD2
S2; write Sð1; 0Þ ¼ R 0 UD 0

2
S 02

and B 0 denote the corresponding mark on ðP; lÞ. Let S 00 ¼ R 00 UE 0 R
0
2 denote

a dual of S ¼ RUE R2 and C 0 the corresponding mark on ðP; lÞ. If we verify

the following conditions (5.5)(1)–(2), then we have

ISðLÞ ¼
½Sð1; 0Þ� ½S � ½S 00�
���������������

by Theorem 3.15:
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(5.5) (1) There is no product disk in P with B 0 or C 0 as an edge.

(2) There is no product disk in M2 with A2 or A 02 as an edge.

Note that the condition (5.5)(2) is just the condition ð*2 0Þ. To see (5.5)(1) we

consider the product decomposition ðP; l;B 0Þ !D ðP 0; l 0;B 0Þ as shown in Figure

5.3. Then we have ðP 0; l 0;B 0Þ ¼ ðM1; g1;A1Þ as shown. Hence, by the as-

sumption ð*1 0Þ together with Lemma 4.1, there is no product disk in P with B 0

as an edge. Similarly, by considering the product decomposition ðP; l;C 0Þ !‘

ðP 00; l 00;C 0Þ as shown in Figure 5.4, we see that there is no product disk in P

with C 0 as an edge. Thus (5.5)(1) follows.

Now to complete the proof of the theorem we must show the following

assertion

(5.6) S 00 is equivalent to Sð0; 1Þ.

The plumbing S ¼ S1 UD1
H UE R2 is shown as in Figure 5.5. By moving

a tiny isotopy we may assume that S 00 VSð0; 1Þ ¼q as shown in Figure 5.6

(a). We can further assume that

Fig. 5.2

Fig. 5.3

Osamu Kakimizu76



Fig. 5.4

Fig. 5.5

Fig. 5.6
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Sð0; 1Þ ¼ ðS1 �D1Þ� U ðD 01Þ� U ðH �D1Þ� U ðR2 � EÞ�;

S 00 ¼ ðS1 �D1Þþ U ðE 0Þþ U ðH � EÞþ U ðR2 � EÞþ

where S1 � ½�1; 1� is a thin product neighborhood of S1 and ðS1 �D1ÞG ¼
ðS1 �D1Þ � fG1g, and so on. Hence if we see that there is a product region

A� ½�1; 1� in EðLÞ � ðS1 UR2Þ � ð�1; 1Þ with A� f�1g ¼ ðD 01Þ� U ðH �D1Þ�
and A� f1g ¼ ðE 0Þþ U ðH � EÞþ where A is an annulus, then S 00 and Sð0; 1Þ
bound a product region in EðLÞ. In fact ðD 01Þ� U ðH �D1Þ� and ðE 0Þþ U
ðH � EÞþ bound a product region which is shown as the exterior of the solid

torus in Figure 5.6 (b). Hence (5.6) follows. Thus Theorem 5.4 is proved.

r

Now we consider another type of iterated plumbings. Let L be a non-

split link and S its spanning surface which satisfies the condition that

(5.7) S is connected, and is an iterated plumbing S ¼ S1 UD1
H1 UD H2 UD2

S2

of four surfaces S1, H1, H2 and S2 as shown in Figure 5.7, where Hi is a

Hopf band of þ or � type ði ¼ 1; 2Þ.

We further assume that

(5.8) Si is a unique incompressible spanning surface for Li, and Li is not

fibred for i ¼ 1; 2.

In this case L bounds eight obvious surfaces which are obtained by

performing each plumbing in di¤erent ways. Let D 01, D
0 and D 02 denote dual

plumbing disks of D1, D and D2 respectively. Each of eight surfaces is

denoted by Sðk1; k; k2Þ where ki (resp. kÞ ¼ 1 or 0 according to the choice of Di

or D 0i (resp. D or D 0) as the plumbing disk. For example, Sð1; 1; 1Þ ¼ S and

Sð1; 0; 1Þ is a dual of S relative to D. By the assumption that H1 and H2 are

Hopf bands, we have

Lemma 5.9. (1) Sð1; 1; 1Þ, Sð1; 0; 0Þ and Sð0; 0; 1Þ are equivalent.

(2) Sð0; 0; 0Þ, Sð1; 1; 0Þ and Sð0; 1; 1Þ are equivalent.

Fig. 5.7
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Moreover we prove the following

Theorem 5.10. Let L be a non-split link and S its spanning surface.

Suppose that (5.7) and (5.8) hold. Let ðMi; giÞ be the complementary sutured

manifold for Si ði ¼ 1; 2Þ, and let Ai and A 0i be the marks on Mi corresponding

to the plumbing Si UDi
Hi and its dual. Put sijk ¼ ½Sði; j; kÞ�. Then

ISðLÞ ¼
s101 s111 s000 s010
����������������������

if and only if the following conditions ð*1 00Þ–ð*2 00Þ hold:

ð*1 00Þ There is no product disk in M1 with A1 or A 01 as an edge.

ð*2 00Þ There is no product disk in M2 with A2 or A 02 as an edge.

Proof. We will show the theorem only in the case that H1 and H2 are

the Hopf bands shown in Figure 5.7; the same argument holds in other cases.

Put Ri ¼ Si UDi
Hi ði ¼ 1; 2Þ. Then S ¼ R1 UD R2 and by (5.8) and Corollary

2.6, we see that

(5.11) Ri is a unique incompressible spanning surface for Ji ¼ qRi, and Ji is

not fibred ði ¼ 1; 2Þ.

Let ðPi; liÞ be the complementary sutured manifold for Ri ði ¼ 1; 2Þ and
Bi the mark on ðPi; liÞ corresponding to the plumbing S ¼ Sð1; 1; 1Þ ¼
R1 UD R2. Also let B 0i be the mark on ðPi; liÞ corresponding to Sð1; 0; 1Þ ¼
R 01 UD 0 R

0
2 which is a dual of S relative to D. Consider the marked sutured

manifold ðP1; l1;B1Þ. As in the case of ðP; l;BÞ in the proof of Theorem 5.4,

ðP1; l1Þ has a product disk with B1 as an edge (cf. Figure 5.2); C denotes its

opposite mark. Let S ¼ R1 UE T2 denote the plumbing corresponding to the

mark C, and let ~SS denote a dual of S relative to the plumbing disk E. By the

same argument as in the proof of (5.5), we claim that, for i ¼ 1 and 2, there is

no product disk in Pi with B 0i as an edge if and only if there is no product disk

in Mi with Ai as an edge. By using this together with Corollary 3.10 and

Propositions 3.8 and 3.13, we can show the following assertions:

(5.12) (a) Sð1; 0; 1Þ, S ¼ Sð1; 1; 1Þ and ~SS are mutually non-equivalent.

(b) ISðL;SÞ ¼ f½Sð1; 0; 1Þ�; ½ ~SS �g.
(c) ISðL;Sð1; 0; 1ÞÞ ¼ f½S �g if and only if there is no product disk in

Mi with Ai as an edge for i ¼ 1 and 2.

(d) ½ ~SS� ¼ ½Sð0; 0; 0Þ�.

Now let Qi denote the dual of Ri ¼ Si UDi
Hi relative to Di ði � 1; 2Þ.

Then Sð0; 1; 0Þ ¼ Q1 UD Q2, Sð0; 0; 0Þ is its dual relative to D, and we set

Sð0; 0; 0Þ ¼ Q 01 UD 0 Q
0
2. Note that Qi is equivalent to Ri as a spanning surface

for Ji, since Hi is a Hopf band. From this together with (5.11) we have
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(5.13) Qi is a unique incompressible spanning surface for Ji ¼ qQi, and Ji is

not fibred ði ¼ 1; 2Þ.

Let ðUi; hiÞ be the complementary sutured manifold for Qi ði ¼ 1; 2Þ and Ii the

mark on ðUi; hiÞ corresponding to the plumbing ð0; 1; 0Þ ¼ Q1 UD Q2. Consider

the mark I 0 on ðU2; h2Þ corresponding to the plumbing Sð0; 0; 0Þ ¼ Q 01 UD 0 Q
0
2

(see Figure 5.8). Then ðU2; h2Þ has a product disk with I 0 as an edge, and K 0

denotes its opposite mark. Let Sð0; 0; 0Þ ¼ T 01 UF Q 02 denote the plumbing

corresponding to the mark K 0, and let ~SSð0; 0; 0Þ denote a dual of Sð0; 0; 0Þ
relative to F . We will show the following assertions:

(5.14) (a) Sð0; 1; 0Þ, Sð0; 0; 0Þ and ~SSð0; 0; 0Þ are mutually non-equivalent.

(b) ISðL;Sð0; 0; 0ÞÞ ¼ f½Sð0; 1; 0Þ�; ½ ~SSð0; 0; 0Þ�g.
(c) ISðL;Sð0; 1; 0ÞÞ ¼ f½Sð0; 0; 0Þ�g if and only if there is no product

disk in Mi with A 0i as an edge for i ¼ 1 and 2.

(d) ½ ~SSð0; 0; 0Þ� ¼ ½S �.

The assertions (a) and (b) follow from (5.13) and Proposition 3.8

directly. To show (c) we first note that ISðL;Sð0; 1; 0ÞÞ ¼ f½Sð0; 0; 0Þ�g is

equivalent to the following condition (c.i) for i ¼ 1 and 2 by Corollary 3.10:

(c.i) There is no product disk in ðUi; hiÞ with Ii as an edge.

We consider the product decomposition ðU1; h1; I1Þ !
D ðU 01; h 01; I1Þ as shown

in Figure 5.9. Then we see that ðU 01; h 01; I1Þ ¼ ðM1; g1;A
0
1Þ. Hence (c.1) is

equivalent to the condition that there is no product disk in M1 with A 01 as

an edge by Lemma 4.1. Similar argument holds for i ¼ 2. Thus (5.14)(c)

is proved. To show (d) we note that Q 02 ¼ H 02 UD 0
2
S 02 where H 02 ¼

ðH2 � ðDUD2ÞÞU ðD 0 UD 02Þ and S 02 ¼ ðS2 �D2ÞUD 02. Then Sð0; 0; 0Þ ¼
T 01 UF Q

0
2 ¼ T 01 UF H

0
2 UD 0

2
S 02. This plumbing is shown as in Figure 5.10.

Fig. 5.8
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Hence by the same method as in the proof of (5.6), we can verify that ~SSð0; 0; 0Þ
is equivalent to S.

Now if the complex ISðLÞ is in the form indicated in the statement of

the theorem, then (5.12)(c) and (5.14)(c), the conditions ð*1 00Þ–ð*2 00Þ hold.

Conversely we assume the conditions ð*1 00Þ–ð*2 00Þ. Then, we note that the

four vertices s101, s111, s000 and s010 are mutually distinct. In fact it su‰ces

to verify that s101 0 s010. This follows from the fact that there is an edge

connecting s101 to s111, however there is no edge connecting s010 to s111.

Fig. 5.9

Fig. 5.10
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Furthermore (5.12) and (5.14) imply that ISðLÞ is in the desired form. The

proof of Theorem 5.10 is now completed. r

6. Proof of Theorems A and C

We are now in a position of proving Theorems A and C stated in the

introduction.

Proof of Theorem A (I). Let K be a prime knot of 10 or less crossings.

Then it is easy to find a spanning surface S for K whose genus is equal to one

half of the degree of the Alexander polynomial of K ; hence S is of minimal

genus. Let ðM; gÞ denote the complementary sutured manifold for S. By

Corollary 0.2 and Proposition 2.1, if we show that ðM; gÞ has no essential g-

surface, then S is a unique incompressible spanning surface for K . In [13]

Kobayashi proved that the knots in (B) is the list of prime knots of 10 or less

crossings whose minimal genus spanning surfaces are not unique. In the

process of proving this assertion he essentially showed the following

Proposition 6.1 (Kobayashi). Under the above assumption, if K is out of

the list (B), then ðM; gÞ has no essential g-surface.

Thus the assertion (I) follows from this. We note that Kobayashi [13]

used the notion ‘‘ðM; gÞ is an almost product sutured manifold’’ instead of

‘‘ðM; gÞ has no essential g-surface’’. These two notions are equivalent for the

complementary sutured manifold for a connected surface in S3, and this is the

case in our situation.

We will give two typical examoles which explain a method of proving

Proposition 6.1.

Example 6.2: 815. This knot is the first non-fibred and non-2-bridge

prime knot in the table of Rolfsen [15, Appendix C]. The knot spans a

minimal genus spanning surface S shown in Figure 6.1, and the complementary

sutured manifold ðM; gÞ for S is shown in the figure. Note that M is the

exterior of the handlebody of genus four. We apply product decompositions

to ðM; gÞ associated with two disks D1 and D2, and then apply octagonal

decompositions associated with W as shown. Clearly the resulting two sutured

manifolds ðMa; gaÞ and ðMb; gbÞ have no essential ga- or gb-surface respectively.

Hence ðM; gÞ has also no essential g-surface by Propositions 1.4 and 1.6. r

Example 6.3: 949. This knot is also non-fibred and non-2-bridge. It

spans a minimal genus spanning surface S shown in Figure 6.2. Note that S is

a plumbing of two surfaces S1 and S2, and S2 is a Hopf band. Since L2 ¼ qS2

is a fibred link with fibre S2 (see Lemma 6.4 below), we can use Corollary 2.6.

Since S is of minimal genus, S1 is also a minimal genus spanning surface for
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L1 ¼ qS1 by Proposition 2.3 (i). Hence S is a unique incompressible spanning

surface for 949, if and only if S1 is a unique incompressible spanning surface for

L1 by Corollary 2.6. Consider the complementary sutured manifold ðM1; g1Þ
for S1. By applying decomposition operations to ðM1; g1Þ as in Example 6.2,

we see that ðM1; g1Þ has no essential g1-surface. Thus S is a unique in-

compressible spanning surface for 949. r

Fig. 6.1. 815
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We note the following well known fact which is also useful to the proof of

the assertion (I).

Lemma 6.4. Let Gn be an (n-full twisted) annulus in S3 shown in Figure

6.3 ðn A ZÞ. Then

(1) Gn is a unique incompressible spanning surface for Hn ¼ qGn if n0 0.

(2) Hn is a fibred link with fibre Gn if and only if n ¼G1.

Proof of Theorem C (1), (3). It follows from [1, Appendix C], each knot

in the table (B) is a 2-bridge knot except for the last four knots 1053, 1067, 1068,

Fig. 6.2. 949

Fig. 6.3
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1074. We consider the appropriate continued fraction expansion of the rational

number corresponding to each 2-bridge knot. Then the assertion (II) in

Theorem A for these 2-bridge knots follows from Hatcher and Thurston [8].

The assertions (1) and (3) in Theorem C are proved by applying Theorems 5.4

and 5.10 to the knots respectively. In fact, for K ¼ 918; 1018; 1024; 1031, we see

that K bounds a surface S which is an iterated plumbing of three surfaces S1, H

and S2 in the form of Figure 5.1. Moreover it satisfies the condition (5.2). In

this case K bounds surfaces Sði; jÞ defined in the beginning of § 5. For ex-

ample, Figure 6.4 indicates the case of K ¼ 918. Hence the assertion (1) follws

from Theorem 5.4. Similarly, for K ¼ 910; 1016; 1033, K bounds a surface S

which is an iterated plumbing of four surfaces S1, H1, H2 and S2 in the form of

Figure 5.7. Moreover it satisfies the condition (5.8), and K bounds surfaces

Sði; j; kÞ which are defined just before Lemma 5.9. Figure 6.5 indicates the

case of K ¼ 910. Hence the assertion (3) follows from Lemma 5.9 and

Theorem 5.10. r

Proof of Theorem A (II) for non-2-bridge knots 1053, 1067 and 1968. The

proof will be given by using Theorem 3.12.

1053. This knot spans a minimal genus spanning surface S shown in

Figure 6.6, and S is a plumbing of two surfaces S1 and S2 in Figure 6.7. We

will show that

ISð1053Þ ¼ f½S �; ½S 0�g ðFigure 6:6Þ

where S 0 is a dual of S.

Fig. 6.4

Fig. 6.5
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Firstly we show that S ¼ S1 US2 satisfies the conditions (3.1) and (3.2).

Since S is of minimal genus, so are S1 and S2 by Proposition 2.3 (i). By

Lemma 5.4, S2 is a unique incompressible spanning surfaces for L2 ¼ qS2 and

L2 is not fibred. Note that S1 is equal to the mirror image of the surface S1 in

Example 6.3 (Figure 6.2). Hence S1 is a unique incompressible spanning

surface for L1 ¼ qS1 and L1 is not fibred. Thus S satisfies the conditions (3.1)

and (3.2).

We next verify the conditions ð*1Þ and ð*2Þ in Theorem 3.12. Consider

Fig. 6.6. 1053

Fig. 6.7
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the marked complementary sutured manifolds associated with S ¼ S1 US2

and its dual S 0 ¼ S 01 US 02. As shown in Figure 6.8, both ðM2; g2;A2Þ and

ðM2; g2;A
0
2Þ are homeomorphic to the marked sutured manifold ðM; g;AÞ in

Example 4.3 (note that M2 is the exterior of the solid torus N2 in Figure

6.8). Hence the condition ð*1Þ holds.

On the other hand ðM1; g1;A1Þ and ðM1; g1;A
0
1Þ are shown in Figure

6.9. To see that ðM1; g1Þ has no product disk with A1 as an edge, we apply

decomposition operations defined in § 4 to ðM1; g1;A1Þ as shown in Figure

6.10. Clearly the resulting sutured manifold ðMa; gaÞ has no product disk with

A1 as an edge, and for both ðMb; gbÞ and ðMc; gcÞ, each component of RðgbÞ
and RðgcÞ are incompressible in Mb and Mc respectively. Hence, by Prop-

ositions 4.1 and 4.2, ðM1; g1Þ has no product disk with A1 as an edge. In

the same way we can verify that ðM1; g1Þ has no product disk with A 01 as

an edge. Hence the condition ð*2Þ follows. Thus we have ISð1053Þ ¼
f½S �; ½S 0�g by Theorem 3.12. r

Fig. 6.8

Fig. 6.9
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1067. In the same way as the case of 1053, we have

ISð1067Þ ¼ f½S �; ½S 0�g (Figure 6.11)

where S is a minimal genus spanning surface for 1067 and S 0 is its dual relative

to the plumbing disk D. r

Fig. 6.10
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1068. Similarly we have

ISð1068Þ ¼ f½S �; ½S 0�g (Figure 6.12)

where S is a minimal genus spanning surface for 1068 and S 0 is its dual relative

to the plumbing disk D. r

Proof of Theorem C (2). The proof is given by using Theorem 3.15.

The knot 1074 spans a minimal genus spanning surface S shown in Figure

6.13: S is a plumbing of two surfaces S1 and S2 with the plumbing disk D as

shown. It is easy to see (as in the case of 1053Þ that S ¼ S1 UD S2 satisfies the

conditions (3.1) and (3.2). Let ðM1; g1;A1Þ and ðM2; g2;A2Þ be the marked

complementary sutured manifolds for S ¼ S1 UD S2. In this case ðM1; g1Þ has a
product disk G with A1 as an edge as shown in Figure 6.14. Let B1 denote the

opposite mark on ðM1; g1Þ. Then S can be regarded as a plumbing with the

plumbing disk E corresponding to the mark B1; we denote this plumbing by

Fig. 6.11. 1067

Fig. 6.12. 1068
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T ¼ S1 UE T2 (see Figure 6.15). Note that ½S � ¼ ½T � A ISð1074Þ. Let S 0 and

T 0 denote duals of S and T respectively. Then we show the following as-

sertion by checking the conditions ð**1Þ and ð**2Þ in Theorem 3.15.

ISð1074Þ ¼ f½S �; ½S 0�; ½T 0�g ðFigure 6:15Þ;ð6:5Þ

and

ISð1074Þ ¼
½S 0� ½S � ½T 0�
��������������� :

First we consider the marked sutured manifolds ðM2; g2;A2Þ and

ðM2; g2;A
0
2Þ. These are the same ones shown in Figure 5.6. Thus there is no

Fig. 6.13. 1074—ð1Þ

Fig. 6.14
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product disk in M2 with A2 or A 02 as an edge, and the condition ð**2Þ holds.
On the other hand, by applying the decomposition operations defined in § 4 to

the marked sutured manifolds ðM1; g1;A
0
1Þ and ðM1; g1;B

0
1Þ (as used in the

argument on 1053Þ and using Propositions 4.1 and 4.2, we can verify the

condition ð**1Þ. Thus we get the assertion (6.5). r

The proof of Theorems A and C is now completed. r
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