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On the steady Oseen problem in the whole space
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ABSTRACT. We deal with Oseen’s equations in the whole space. A class of existence,
uniqueness and regularity results for both the scalar and the vectorial equations are
given. Isotropic weighted Sobolev spaces are used for describing the growth or the
decay of functions at infinity.

1. Introduction

The Oseen equations are a linearized version of the Navier-Stokes
equations describing a viscous and incompressible fluid in which a small body is
moving. The purpose of this paper is to study the Oseen problem in the whole
space R", n > 2:

—vAu+kﬁ+V77::f in R”,
0x1 (1.1)
divu=nh in R".

Here the unknowns are the velocity u of the fluid and the pressure z. The
data are the viscosity v of the fluid, the external force f, the function / and the
positive real k. System (1.1) was proposed by Oseen (see [19]) in order to
remove some physical paradoxes of the Stokes system, which corresponds to
the case k =0. One of the first works devoted to these equations is due
to Finn [10]. Specifically, Finn treated Oseen’s equations in three dimensional
exterior domains when (1 + |x|)f is square integrable and # =0. He proved
the existence of a solution u such that (I+ |x|)"'u is square integrable.
Farwig [9] proved, among other results, the existence of a solution (u,7) of
(1.1) when fe LP(R")" and he W'P(R"). In that case the solution (u,7n)
satisfies we L] (R")", 0;,0;u € L’(R"), dme LP(R"), i=1,2,...,n. In [11]
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Galdi stated that if f e W™?(R")", he W"1.2(R"), m > 0, then the problem
(1.1) has a solution in W, (R") x W"""(R"). In [7] Farwig investigates
the system (1.1), set in a three dimensional exterior domain, using anisotropic
weighted L2 spaces. The use of anisotropic weights seems to be a natural
approach because of the anisotropy introduced by the term 0J,u. However,
such an approach contains some serious technical complications. The reader
can refer to [16], [20], [8], [7], [3] for existence results in anisotropic weighted
spaces. To our knowledge, most of the existing results in the literature concern
the case f e L?(R")" or are around that case. Several questions concerning
the existence, the uniqueness and regularity of the solution remain not treated,
especially when the data f and % are slowly decreasing or have a polynomial
behavior at infinity. Among the results we present in this paper, we shall
prove that if f=(f;,...,f,) and h satisfies the conditions

(14 [x])H=2Dprg e LP(R")  for |u| <m,
(1 + [x|})H=m=DRprp e LP(R")  for |u| <m+1,

for some integer m > 0, then Problem (1.1) admits a solution (u,7), unique up
to a class of polynomials, and satisfying

(1 + [x|})H=m=22pmy, e LP(RY)  for |u| <m +2,
(1 + x|} E=m=VR2prg e LP(RY)  for |u| <m + 1.

In all the paper, we deal with following problem obtained from (1.1) by means
of a simple scaling argument

w2 Va— f iR
0x1 (1.2)

divu=nh in R”.

We are also interested in the scalar equation

fAu+2%:f in R", (1.3)

which is intimately linked to the system (1.2). The relation between this scalar
equation and the general vectorial system (1.2) as well as the relation between
their fundamental solutions are discussed in Section 3 hereafter. Observe for
the moment that Oseen’s system (1.2) can be formally decomposed into two
problems: a Laplace equation for the pressure

oh
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and a scalar equation on each component of the velocity

o)
ou;
A

—Au[+2 :f;, (15)

0xXq

_ on :
where f; = fi ———. Consequently, one must choose a functional framework
! 0x;
1

which allows to solve both the equations (1.4) and (1.5) for several behaviors
at infinity. The use of weighted Sobolev spaces turned out to be convenient
for treating problems in unbounded domains, and consequently seems to be
the natural framework for treating Problem (1.4) (see for instance [2]). The
main difficulty here lies in the choice of the weights since the convective term
;Tu in Equation (1.5) induces an anisotropic behavior of the velocity, while
1

the pressure keeps an isotropic behavior as in the Stokes problem. Another
difficulty is due to divergence condition div u = & which complicates seriously
the problem. In Section 3 we expose how the system (1.2) can be treated by
solving only the scalar equation (1.3) in such a way that the divergence
condition is automatically fulfilled. For all these reasons, we shall treat in a
first time and independently the scalar equation (1.3). We prove that there
exists at least two kinds of solutions; tempered solutions, which are tempered
distributions, and quasi-tempered solutions which are not necessarily tempered
distributions. Only tempered solutions seem to be useful for solving the
vectorial system (1.2).

In a forthcoming paper, we will use our present results in order to solve
Oseen’s equations in an exterior domain.

In the sequel, we set

T = —A—&—ZAa
o0Xq
and
0
T"'=—-A4-2—
6x1

The remaining of this paper is organized as follows

— Section 2 is devoted to a brief presentation of some basic definitions and
properties of weighted Sobolev spaces, used as a functional framework for
solving both the scalar and the vectorial Oseen equations.

— In Section 3, the relation between the scalar equation (1.5) and the vectorial
system (1.2) is discussed. Some properties of their fundamental solutions
are shown.
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— Section 4 deals with the scalar equation (1.5). Existence of solutions
and the well posedness of the problem are treated in several functional
frameworks.

— Section 5 is devoted to the study of the vectorial system (1.2). After giving
a characterization to the solutions of homogeneous probelem, i.e. with
f=0and h=0, we prove a complete class of existence, uniqueness and
regularity results for the nonhomogeneous problem.

2. Notation and functional framework
2.1 Notation

In the sequel, n>2 is an integer and p is a real in the interval
]1,4+00[. The dual number of p denoted p’ is defined by the relation 1/p+
1/p’ =1. We use bold characters for vector functions or distributions. For
x=(x1,...,x,) € R" we write

ol = (e o) 2
Given a real «, we denote by [¢] its integer part. For any k € Z, P; stands
for the space of polynomials of degree lower than or equal to k and P,f' the
subspace of harmonic polynomials of P;. If k is a negative integer, we set
by convention P, = {0}. We recall that Z(R") is the well-known space of
%> (R") functions with a compact support and Z’(R") its dual space, namely
the space of distributions. We denote by %(R") the Schwartz space of
functions ¢ € ¥ (R") with rapid decrease at infinity, by %'(R") its dual, i.e.
the space of tempered distributions, and by %/(R") the space of all the
distributions u € 2'(R") such that e ¥u e &'(R").

The Fourier transform of any complex valued Lebesgue integrable function
u:R — C is defined by

u(c) =

1 —i{x

where £ e R". If ue &' (R") then its Fourier transform # € &'(R") is defined

by {u,¢> = {u, q§> for any function ¢ € #(R"). The Fourier transform is an

invertible mapping from ¥ (R") into &(R") and from %’(R") into &’(R").
Given a Banach space B with its dual space B’ and a closed subspace X of

B, we denote by B’ 1 X the subspace of B’ orthogonal to X, namely

B 1LX={feB YveX, {(f,v)=0}=(B/X).

For any real « > 0, the Bessel kernel g, is defined as the function whose Fourier
transform is
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G,(&) = 2m) (1 + |E7)

The kernel g, can be expressed in terms of Bessel functions by the formula

—n)/2
92(x) = 1,|x|" P Ky 12 (1]).

with 7, = (27) "/?2-%/>*1"(5/2). Here I" denotes the classical Gamma func-
tion and K; denotes the modified Bessel function of third kind. Since for any
integer m > 0, we know that

(m +k
m+l/2 \/7 Z k' )

we deduce an explicit expression of g, when o« <n and n—a is odd. In
particular if « =2 and n =3 one has

1
47| x|

—Ix

g2(x) =

More generally, the following estimate holds (see [24] or [23])

Co

Vx e R", gu(x
| o )| | |n a(1+|x|) (o+1-n)/2

e M, (2.1)

Hence,

g€ WOP(R") for seR, 1 <p<+co and (n—a)p < n. (2.2)

In the sequel, the expression a < b (resp. a ~ b) means that there exists a
constant ¢ not depending on the functions ¢ and b such that a < cb.

2.2 Weighted Sobolev spaces. Some basic results

In the sequel, (x> denotes the basic weight defined by
= (1 )2, (2.3)

For 1 < p < 400, L?(R") will refer to the space of (equivalence classes of) all
measurable functions that are p™ power integrable on R”. This space is

equipped with the norm
1/p
il = (|t
R/I

Given two integers m > 0 and k € Z, we consider the weighted spaces
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{ue 2’ (R");YueN", |u| <m,D"ue LP(R")}

W
{ue @' R");Yue N" |u| <m, {xY*D"ueLP(R")}

)=
VI RY) =
WP (R") = {ue 2'(R"); Ve N", g < m, (e pry e LP(R")}
HPRY) = {ue 2'(R");Yue N", |u| <m, e (x)*D'ue LP(R")}.

These spaces are equipped with the norms

1/p
lell oy = { D 1D ull] g
lul<m
1/p
k
2l ey = > IKxy D"ul7 g
lul<m
1/p
k—
||u||W];l1.]I(R”) = Z ||<x> mHﬂ\DﬂuHLp R
[ =m
1/p

k
Hu”jfkm.p(Rn) = Z ||<x> ‘CIDﬂUHL[, Rn

[l <m

The spaces W™?(R"), W""(R"), V"’(R") and #,""”(R") are Banach spaces.
The space Z(R") is dense in W’”P(R”) in V"’”(R”) and in W (R") (see, e.g.,
Hanouzet [15]). We denote by W=7 (R"), V™ ?'(R") and w" ?'(R") the
dual spaces of W™?(R"), W”(R") and Vm" (R") respectlvely. They are
spaces of tempered distributions. It is quite clear that the local properties of
the spaces W,."”(R") and V,""”(R") coincide with those of the Sobolev space
w."’(R"). We also have the obvious identities

Vé""p(R”) _ I/Vm,p(Rl’l)7 VkO:P(RV’) — Wko’p(Rn).

The spaces W,"*”(R") will play a particular role here. For a detailed study of
these spaces, one can refer to [2], [15] and [17]. In this paper we need the

semi-norm
1/p

oy = Z ||<x>kD”u||Lp(R”)
|e|=m

and the Green’s formula

0 0
Vue W)P(R"), Yve Wlkf:r]( ", JR”%U dx = — J"ua—; dx, (2.4)
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where 1 <i<n, 1 <p<+4oo and ke Z. We also have the inclusion
P, =« W/"(R"), if /<m—n/p—k. (2.5)

In what follows, the space W,"”(R") will be considered often in the case
n
Dk gL m) (2.6)

Indeed, this condition is sufficient to get some Hardy’s type inequalities.
Namely, if (2.6) is fulfilled, then (see [2])

Vu S len’p(Rn), ll’lf ||u + i”ka.ﬁ(Rn) S ‘uka’""’(R")v
]/
where j =min(m—1,j) and j=—[k+n/p—m|—1 is the highest degree
of polynomials contained in W;"”(R"). If (2.6) does not hold, namely if

%-Hce {1,...,m}, then similar inequalities can be obtained by adding loga-

rithmic factor to the weights in the definition of W,"”(R") (see [2]). In that
case, all the forthcoming results remains valid provided some minor corrections
are given.

We have the following algebraic and topological inclusions (m > 0)

VTR = WITRY) @ WM RY) < e WM R (27)

k—m

For any pe N”", the mapping
ue W (R") — D"ue W M7 (R") (2.8)

is continuous (see [15]).

The spaces W,."”(R") have proved to be adequate for treating several
elliptic problems in unbounded regions of spaces and for several kinds of
behavior at infinity (see [2], [21], [4, 5], [13, 14]). Let us recall some basic but
fundamental results concerning the Laplace operator in the whole space (see

2]):

THEOREM 2.1. Let meZ and £ e N* =N\{0}.
. Ifn/pe¢{l,...,[+ 1}, then the operator

17 b7 ¥ —1,
4: Wn’:’j/ p(R1)/P[A/+1—I1/p] = W, p(RH)v

m—{
is an isomorphism.
2. Ifn/p' ¢{l,...,/+ 1}, then the operator

m+1, -1,
a: Wm:/'p(Rn) = VV;Z:—/ P(Rn) 1 P[Z/'+17’1/p,]

is an isomorphism.
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3. Ifn/p’#1 and n/p # 1, then the operator
A WETEP(RY) L Py = WEHP(RY) L Py

is an isomorphism.

3. Relation between scalar and vectorial Oseen’s equations. Properties of
the fundamental solutions

In this section, our purpose is to discuss briefly the relation between the
scalar equation (1.3) and the vectorial Oseen’s system (1.2). Indeed, the
difference between equation (1.3) and system (1.2) seems to be reinforced by
the presence of the pressure 7= and the divergence equation divu# = h. This
difference also appears in terms of the fundamental solutions. However, there
is a simple method for solving system (1.2) by solving equation (1.3) and the
Laplace equation, in such a way that the divergence condition is automatically
fulfilled. This method reveals that the fundamental solutions are intimately
linked by a simple relation.

Formally, let 0 and s = (sy,...,s,) be solution of the Laplace equations

A0 =h in R" As=f—|—V<h—2ﬁ) in R".
5)61

Consider in addition a vector function @ = (@4, ..., ®,) whose components @;,
1 <i < n, are solution of the scalar equations 7®; = s;. Then the pair (u, )
defined by

u=V0+ AP —V(div®d),
n=div s,

is solution of the system (1.2). In other words, the existence of solutions of
(1.2) can be obtained by treating the Laplace equation and the scalar equation
(1.3). On the other hand, concerning the fundamental solution (C;;,e;) of

(1.2) we know that
62
0: = | 054 — ———
Ojj (5./ ox; Oxj)(p

0 0

Here, i,j=1,...,n and ¢ satisfies T¢p = & where & is the fundamental solution
of the Laplace equation. It is well known (see for instance [11]) that the
fundamental solution @ of the scalar equation (1.3) in R” is given by
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O(x) = (2m) "2 |x|' e Ko (1))

In particular, if the dimension is odd, namely if » =2m + 1 for some integer
m > 1, then

11 1 = om4k-1)0 1
O(x) =3 m meXI7|x‘ E )
(x) 2 (27)" |x| e kl(m —k — ! (2‘x|)k
Thus
1 1 XMl
0 = — X—lX‘ ’f = 1 h = — f = .
O(x) 5¢ if n=1, O(x) yr if n=3

In order to clarify the relation between ((j,e;) and ¢ it is convenient to use
the notion of Riesz transform (see for instance [22]). Recall that the Riesz
transforms of a function u e L?(R"), p > 1, are defined by

@(f):—i%ﬁ, ji=1,...,n,

where Iiﬁl and @ denote the Fourier transform of Rju and u respectively.
Among the properties of the operators R;, i =1,...,n, let us recall that they
preserve the class L?(R") and satisfy

0%u

Rio Ry(4u) = — ===
i0X;j

Consequently the relation between (0, ;) and ¢ is summarized in terms of the
Riesz transforms as follows

LemMma 3.1. For each i,j < n,

Since R; maps L”(R?) into itself, one can easily get some properties of ¢
from those of (. Let us enumerate some of them. We state the following
proposition whose proof is given in appendix A.

ProrosiTioON 3.2. We have

(a) If n=3, then O e LP(R?), 2 < p < 3.

(b) If n=23, then O — gy e L’(R*), 2 < p < +o0.
) Ifn=4, 0—greL’(R*), 2< p<4

(d) Ifn=5 0—g,eLP(R%), 2<p<5/2

Assertions (b)—(d) allow us to decompose the convolution @ x f of the fun-
damental solution @ (or ;) with any function f into the sum g, * '+
(0 —g>) x f. The advantage of this decomposition is twofold: firstly, as stated
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in Proposition 3.2, the function (® — g, has a better behavior than . The
second advantage lies in the fact that g, * u belongs to W2”?(R") if u belongs to
L? (see Lizorkin spaces in Section 4.1 hereafter or in [6]).

The proof of the following corollary stems from assertion (b) of Prop-
osition 3.2.

CorOLLARY 33. If n=3, 1<p<3 and 2<q<+o0, then 0,0;¢
LP(R*) + LI(R?), i,j=1,2,3.

In appendix B, a proof of the following corollary is given

COROLLARY 3.4. Let feLP(RY), 1<p<2and n=3. We set

2 Py p<3p P r1<p<2

+oo  if32<p<2 +oo  if p=1

Then, the following assertions are true
(a) OxfeL (R for each r, pi <r < p;. Moreover, if p#3/2 and p # 1,
then O f e L"(R®) with r=p;. In all the cases,
O *fHL"(R3) S ||f||Lp(R3)-
(b) Oxf=h +hy with hhy e L'(R®), pi <r<p;, hye W»P(R®) and

Hh1||Lr<R3) + ||h2HW2~/7(R3) S Hf||Lp(R3)'

(©) If 1< p<3/2, then Ox f =h +hy with hy € LY(R*) and hy e W>?(R?)
with

(p+3)p

3-2p °

The same assertions remain true if O is replaced by Oy, 1 <1i,j<3.

4. The scalar equation
Here we deal with the scalar equation

ou .
—Au+2—=f in R". 4.1
8)61
A first approach for treating this equation is based on a simple but efficient
idea. It consists of rewriting the equation in term of the new unknown
w(x) = e Mu(x). More precisely, let us consider the more general equation

—Au+VopVu=f in R”,
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with 4¢ = 0. Setting w(x) = e 9)/2y(x), w satisfies the usual elliptic equation:
—Aw + a(x)w = F in R”, (4.2)

with a(x) =1|V4|*(x) and Fi(x) = e ?9/f(x). Notice that equation (4.1)
corresponds to the particular case ¢ = 2x;. In this case, equation (4.2) writes

—Aw+w = F in R". (4.3)

The main advantage of this new formulation is that the anisotropic charac-
ter of equation (4.1) has disappeared. However, as we shall see, solutions
obtained by this method could be different from those obtained by dealing
directly with equation (4.1). This difference is mainly due to the fact that the
space of tempered distribution #/(R") is not preserved under multiplication by
e .

These considerations lead one to distinguish two kinds of solutions of
(4.1); tempered solutions, which are tempered distributions, and quasi-tempered
solutions. A solution u of (4.1) will be called quasi-tempered if e *'u € #'(R").
The former solutions are obtained by solving (4.1) directly and may not be
unique. On the contrary, the latter solutions are unique in general. It is
worth nothing that only tempered solutions of the equation (4.1) turn out to be
useful in the treatment of the vectorial Oseen’s system (1.2).

Remark (Relation with the Laplace equation). Let ue %/(R") be a so-
lution of (4.1) and set w = ¢ “u. Consider the finite measure u, defined by
1y = (27)"?60 — (2m)"*g5(x)dx, with &y the Dirac measure at the origin. Let
4, be the Fourier transform of u,. We have (&) = |&*(1+|¢*) " =
1—(1+1]&57". Next, let ve ' (R") be a solution of the Laplace equation
—Av=e¢f =F in R". Then, on the one hand, we have |¢|’s = F. On the
other hand, since —Aw+w = F, we get w(&) = (1+|¢|*)"'F. Thus, (&) =
(&8, and w(x) = (21) "y % v(x) = (2m) "2 [ v(x = p)duy(y). Namely,
w=v—gy*xv and u=e"(v—gy*v) = (2n) "2y, x v.

4.1 Quasi-tempered solutions of scalar Oseen equation

Our aim here is to show existence of quasi-tempered solutions of the scalar
Oseen equation (4.1). The main result of this paragraph is the following

THEOREM 4.1. Let m,k € Z. be two integers and p > 1 a real. Then, the
operator

T:JfkarZ,p(Rn) N Jfkm"p(Rn)

is an isomorphism.
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Proof of Theorem 4.1
Firstly, observe that the mapping

X1

v—w=e¢ v

is an isomorphism between #,""”(R") and V;""”(R"). Moreover, in the sense
of distributions one can easily prove that

To=e"(I —Ad)e "o

This remark allows one to deal only with the operator I — 4. We start with
the following lemma.

LemMmA 4.2. Let k>0 be an integer and p > 1 be a real. Then, the
operator

I—A4:WEEPR") — whkr(R?)
is an isomorphism.
Proor. We need the following identity (see [6])
FmPR") = W™P(RY), Vm e N,
where #"P(R") is the Lizorkin space defined by
L"PR") ={ue S (R");u=gy=+v,0e L’(R")}.
In terms of Fourier transform, the unique solution of the equation
(I—Mw=nh,
is given by w=27""((1+ &) 'Z(h)) = 7 '(§,7 (h)). Hence,
he W"P(R") & he £™P(R")
& (gu)"'he F(LP(R"))
& (Gn) ' (g2)' W e Z (L7 (R"))
& (gnaa) e Z(L'(R")
Swe W™ IR"). R

LemMmA 4.3. Let k€ Z and m € Z be two integers and p > 1 a real. Then,
the operator

[—A4: V"R — V" (RY)

is an isomorphism.
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Proor. We know that the operator I — 4 is one to one from .%/(R") into
S'(R"). Hence, for F e V""’(R"), there exists a unique w € &'(R") such that

—Aw+w=F in R".
Suppose first that k£ > 0. Let us prove by induction on k the following
0,p/pn 2, ny .
FeV, ’(R") = (we V. ”(R") and Hw||sz.p(Rn) < ||F||VIP.,,(RH)). (4.4)

This follows immediately from Lemma 4.2 when k = 0. Suppose that (4.4)
holds for 0,...,k and suppose that F e V,/}(R"). Necessarily we V>”(R").
Setting w = (x> *!w, one proves easily that

— M4 = OFTFE 2 2V o) v — (AR w.

The right hand side belongs to L?(R") since we V,f’p (R") and |D*(xY*| <
(xY*71 for any multi-index . It follows that w e Voz"’ (R"), and, consequently,
we sz’fl (R") since

Vil <2;  |D*w| < Z |D" (x> | < Z [y k=M prry).
v|<2,v<a v <2,v<a

This completes the proof of (4.4). Similarly, let us prove by induction on

k > 0 the following

0, 2,
FeV”(R") = (we V3’(R") and HW”VEA;"(R”) < ||f||VioA:p(R,l>). (4.5)

This holds clearly for k =0. Suppose that it holds for 0,...,k and let F e
VOoOr (R"). Setting F={x)*'FeLr(R"), w=(I-4)"'FeV;”(R") and
h=w—<{x>* 1, one gets after a few calculation

—Ah +h = (A0 + VL.,

The right hand side of the last identity belongs to Vf),;” (R"). From induc-
tion hypothesis we deduce that i e V3/(R") < V37 (R"). It follows that
we VAP (R") since (x> e V37 (R"). This completes the proof of (4.5).

At this stage, the assertion of Lemma 4.3 is proved when m =0 and
ke Z. Now, suppose that m > 1, and let w e &'(R") be the unique solution
of —Aw+w=F with Fe V""/(R"). Then, for each multi-index «, |af <m,
D*w satisfies —A(D*w) + D*w = D*F € V,"’(R"). Hence, D*w e V;”(R") for
each a, |«| <m. We conclude that we V" 2P (R") which provides the proof
of Lemma 4.3 for m > 0. The proof for m < —2 is based on a classical duality

argument. It remains to treat the case m=—1. Let Fe V,;l’p (R") for
some k € Z. Then, F e ¥ >’(R"). Hence, there exists w € ¥,"”(R") such that
—Aw+w =F (here we used the result of Lemma 4.3 for m = —2). Since

in addition, 0,F e V,;z‘p(R”), i=1,...,n, we deduce that d;we V,?”’(R") for
i=1,...,n since —A4(d;w)+ o;w=0;F. Thus, we V,j’P(R”). |
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4.2 Tempered solutions of the scalar Oseen equation

Our aim here is to look for solutions of the scalar equation (4.1) which
are tempered distributions. This is a first step toward the resolution of the
vectorial Oseen’s equations (1.2). In the sequel, for each integer m e Z, we
consider the space

~ 0 _
) = fue w2 e w2

6x1
» 1/p
W,:nfl.p(Rn) ’

When m >0 and ke Z, we set %}m’p/(R”) the dual space of W,"”(R").
Clearly, we have the embedding

equipped with the norm

ou
5)(1

||u||Vi/]:n.]I(Rn> = {||u||’;V;1.p(R”> +

W (R = WM (RY) M (RY).

In what follows, Q; denotes the sum Hj + P,_;, where H; is the space of
homogeneous polynomials of degree & and depending only on x,...,x,. We
denote by Q) (resp. Q,) the subspace of all the polynomials p € Q, satisfy-
ing Tp =0 (resp. T*p =0). Notice that the mapping p(xi,x2,...,X,) —
p(—x1,%2,...,x,) is one to one from Q} into Q,. We have the lemma

LemMa 4.4, Let m>0, 1<p<+ow and keZ such that k+n/p¢
{0,...,m}. A function ue W"(R") satisfies Tu = 0 if and only if u € Q} with
{=—lk+n/p—m]—1

Proor. If u is a tempered distribution such that 7u =0, then
(|€]* —i¢))it = 0. Since |¢|* — i& vanishes only at & =0, we deduce that u is
polynomial. If in addition u e W"”(R") then it belongs necessarily to Q,.

In the following theorems, we give some isomorphism results concerning the
operator 7', which in consequence yield existence results for the scalar Oseen
equation. In the first theorem, we look for a solution that belongs to
Wol P(R"). Theorems 4.6, 4.7 and 4.8 concern the regularity of solutions.

THEOREM 4.5. Assume that n/p # 1 and n/p’ # 1. Then, the operator
740 n -1, n
T Wy P (RY) /Py — Wy P (RY) L Ppuyp
is an isomorphism.

THEOREM 4.6. Let m > 2 be an integer, and suppose that n/p # {1,...,m},
then the operator
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T2 WP (RY)/Q . — W (RY)

[m—n/p]

is an isomorphism.

THEOREM 4.7. Let m > 2 be an integer, and suppose that n/p’ # {1,... ,m}
and nfp # {1,2} if m is even and n/p # 1. Let Wy "*P(R") LL P/ be
the space of all the functions u e W mi2.p (R") satisfying the conditions

Vp e P[m—2—n/p’]7 <Ll, p> =0,

ou
Vpe P[m —n/p'] <»\ 7P> =0.
Then, the operator

T: W, " (R") LL P, — W, (R") L P

m—n/p'] m—n/p']

is an isomorphism.

By duality and transposition, Theorem 4.6 yields

THEOREM 4.8. Suppose that m >2, 1 < p <+ and n/p’ #{1,...,m},
then the operator

T: Wy "R — #y "(R) LQ,,

[m—n/p’]

is an isomorphism.

The following proposition plays a prominent role in the proof of Theorems
4.5-4.6,

PROPOSITION 4.9. Let 1 < p < 400, m > 2 such that n/p ¢ {1,... ,m}, and
set £/ =min(m —1,[m —n/p]). Then,

inf Jlu+ all e < ooy + o
u = m, n S (U m, n
qEQ/ q WO ['(R ) Wo p(R axl W Zp(Rn)
for each ue WJ""(R").
Proof of Proposition 4.9
. ou .
Observe first that the semi-norm [u],, , = [ulymsge) + |5 is a
; 0 0X1 W0n172.]l<Ru)

norm on Wy"’(R")/Q,. Indeed, if (], = 0, then |u|ym gy =0 and u is
polynomial. Since u belongs to W;"”(R"), its degree is necessarily less or
. 0 _ ou .
equal to /. Moreover, since % belongs to W' zp (R"), the degree of % is
1 1
less or equal to £/ —2 =min(m — 3,[m —2 —n/p]). Hence, ueQ,.
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Now, let us prove that this semi-norm is equivalent to the norm of
W""(R")/Q,. We need the following lemma (see [2]).

LemMA 4.10. Let ke€Z and s> 1 be two integers such that n/p +k #
{1,...,s}. Let g=min(s—1,[s—k —n/p]). Then, the semi-norm |U|vaRn)
defines on W"(R") /P, a norm which is equivalent to the quotient norm.

Suppose first that # > 0, then from Lemma 4.10 it follows that

m—_, n ; )
Yoe WP (R"), irel]f; lv+ c||W0m4.,7<R,,) < |U|W0m—/.p(R”)’ (4.6)
m—{—1, n
Yoe W, ,P(R ), ||U||W0m471.p(R,l> < |U|W0mf/71.p(Rn), (4.7
/. .
Yve W/ fn(RH) qél’lg‘,l ||U - q” W//j”(R”) pS |U|W//;1r’n<R”>7 (48)

Now, let P, k being an integer, be the space of all the polynomials of degree
less than or equal to # and depending only on x;,...,x,. Namely, if £k > 0, then

P, =H)+ -+ H,.
If k<0, P, ={0}. We shall use the following Lemma.
LemMmA 4.11. Let m, £ and p be as in Proposition 4.9. Then,

ou
6x1

0 -+ ey < g + 7

/ W 1, (R

for each ue Wy (R").
PrOOF [of lemma 4.11]. For each k >0, we set
Ax = {,Lt: (07/"27~~-7/"n)7‘lu| =fp oy, :k}

The proof of Lemma 4.11 rests on an identification between the space Hy,
k>0, and R by means of the mapping

qeHr — (D"q) ey, € Reard(e)
Next, from Lemma 4.10, we can write
mf [l + q||wmp ®y= inf ~inf ...inf |lu—(p/+pri+ -+ po)llymr e
/GH/ Pr— IGH/ 1 poG 0 0
ou
< inf ... inf D*u— D*(p; + -+ p1)|| yymir ,,—i-‘— .
R X PULIEY et + |

Since the polynomial p; € H| can be identified to the constants (D#py, |u| = 1),
it follows that
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Wom—] (R") }
VVO’"I(R")}

More generally each polynomial function p; € H, can be identified to the
constants (D*py, |u| = k). Then, repeating the argument gives

u
8)61

inf ... inf D*u— D*(p;+ -+ p1 et n+‘
preH, meH{{”gl I (p P )HWo "(R")

u

oxy

< inf ... inf D*u — D*(p; + -+ m=Lp pny
preH, PzGHZ/{Z ” (p/ p2)||W0 ll(R) ’

ne

ou
axl

)

VV‘:n—l,/z(Rn)

qlnlf; [+ gl e ey Sl ey + ‘
which completes the proof of Lemma 4.11.

Now, since the space Q, can be identified to the product P, x x;P,_,, for
each ue W;"’(R") and for each p = p; + p», with (p1, p») € P, x x;P,_», one
can write

[l = Pl oy
= [lu = (p1 + p2)llyiprrwe)

Ou_p . (4.9)

aXI 5)(71 VVOm—Z.p<R,,>

= [lu—(p1 + p2)||W0m"’(R") + ‘

Next, since the degree of p, is lower than /—1, it is clear that p, e
Wy ?(R"). Hence, using Lemma 4.11, we have

u  dpy

(4.10)

A

ox; 0x

inf |[(u—p2) — pi ”Wo'""’(R”) S |M|WO’”"’(R”) +

pLeP/ Womfl.p(Rn>

- . . op .
Now, combining (4.9), (4.10) and using the fact that the mapping p — % is
1

one to one from x;P, , into P, ,, we get
inf ||lu— = mp
ey [ 10||W0 (R")

= inf u—(p1 4 p2) | rm
(p1,p2) €P/xx1Ps» I (p P )”Wo "(R")

s u mppny + lnf
<| |W° (RY) prexiPr s

< (Mo, 3 |

du  Opy
8x1 6x1

du  Opr
6x1 6x1

WOIH—Z.p(Rn) })
-
aXI P WO"PZ‘”(R") ’

EXI pH WOWFIIP(R“) ‘

Wom—l,p (Rn)
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Observe that

ou H _ ’ ou H Ou
ax1 Womfl,p(Rn) 6)(] Win]—z,/z(Rn) aXI WO/n—l,/z(Rn)
a .
< ‘—“ ‘ ou (4.11)
6x1 WO”FZ‘[’(R”) 6x1 WUM7I'])(RH)
Together withe inequality (see Lemma 4.10)
) 0 0
inf |2 _ ’ < ﬁfu )
peP, axl WU”I*Z-I?(Rn) 0X1 WU”I*Z-I?(Rn)
this yields therefore
Y R R s
u = m, ny S |\U mp on B s
qeQy, q W(J p(R ) W() 1(R ) axl VVUW—ZAP<RA>

completing the proof. M

Proof of Theorem 4.5

T is clearly continuous from W(}’p(R”)/P[l,n/p] into W, "7(R") L
Pji_,/pn. It is also injective, thanks to Lemma 4.4. Let us prove that it is
onto. Let f e Wofl"’ (R") L Pji_yp. According to Proposition 4.1 of [2] and
since n/p’ # 1, there exists a vector function w = (wy,...,w,) € L?(R")" such
that divw = f. We set

N

_ - - i
2= 7 (&P +ie)" FN =Y T T
= e T2
We need the following multiplier theorem due to Lizorkin [18] (see also [11],
Lemma 4.2 Ch. VII)

Lemma 4.12. Let j,ke{l,...,n}. The operators

7! 725"@ Fh|, h—F! 725‘ Th|,
IEI7 +2i&, €7 + 2,

are continuous from LP(R") into LP(R"), 1 < p < +c0.
Hence, for each j < n, we have

E:_Zf_l 7;]@( Fwi | e LP(R"),
5xj k=1 |E| +2i61
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and
”VZHLI’(R”) S ”w”Lﬂ(R”) < Hf”I/Vl)’l"’(R”)'

LemMA 4.13 (see [2]). Let he Z'(R") such that Vhe LP(R"), with
l<p<+4ow and p #n. Then, there exists a constant K such that h+ K €
W, (R") and

||h + K” WJ’”(RH) S ||Vh||LF(R”>

From this lemma, it follows that there exists a constant K, such that
z+ K e W, "(R") and

2+ Kll gy S 172 oy < 1oy

We set u=z+ K. Then, ue WOI“’ (R") and satisfies

0
_Au+20_u:—Az+2—Z=f-
0x 0x
In addition,
ou —1,p/pn
25 o= [+ Adue Wy T (RY) L Py,
1

since the range of the Laplacian 4 : W, ”(R") — W, "/(R") is nothing but
Woil’p(Rn) 1 P[lfn/p’]- |

Proof of Theorem 4.6

We start with the lemma

LemmA 4.14.  The operator T : Q,.», — P, is onto.

Proor. If /=0 and p=ceP, =R, then p=T(cx;). Suppose that
/>1 and let peP,. Set

X1
q= _J p(Z,XZ, s 7xn)dt'
2 Jo
Then, p— Tq e P,_y. The proof is completed by applying the hypothesis of
induction. W

LemMaA 4.15. Let m > 2 and and set £ = [m —n/p]. Let T* be the adjoint
operator of T : Wy"P(R")/Q, — WOWZ"”(R")/P/_Z. Then, T* is injective.
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ProoF. The adjoint operator 7* is defined from W, """ (R") LP,_,
into #; """ (R") L Q, as follows:

Yue Wy " (RY) L Py, Yve WP (R") {T*u,v) = {u, Tv).

0 . . e
If T*u =0 then —Au—2a—u: 0. Since u is a tempered distribution, and
X1
using the same argument of lemma 4.4, we deduce that u is polynomial.
Further, u =0 since WO_"H'Z”’ (R") contains only the trivial polynomial

function.

LemMA 4.16. Let m > 2 be an integer and set { =[m—n/p|. Suppose
that n/p # {1,...,m}. Then, the operator T : WJ"'(R")/Q, — W' *"(R")/
P, is an isomorphism.

Proor. The linear mapping 7 is clearly bounded. It is also injective;
indeed, let ue W,"”(R") such that TueP; . According to Lemma 4.14,
there exists 6 € Q, such that 70 = Tu. Hence, T(0 —u) =0. Thus, by virtue
of Lemma 4.4, 6 —u belongs to Q, and u e Q,.

Let us prove that the range of 7 is a closed subspace of W," “2p (R")/Ps_s.
Let o be an arbitrary multi-index such that |a| =m —2. Lemma 4.12 yields

0% (D*u) |
— = |77 (&7 D*u)|| o g
0%i0% || ey Y Lr(R")
= ”3«*—‘ <2§i97TD“u>
<7+ 2i&, Lo(R")
5 HD%T“HLI’(R”)
< |Tu|W(;7172,p(Rn)
$ || Tu” Wom—Z,p(Rn)/P(72
o(D*
= N L
0)(1 LP(R”)
= Hg«*-‘ <72 3 ,97D“Tu>
<"+ 2i& Lo(RY)

5 ||DaT“||u(R")

S Tl yr oy,
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Hence,

|ul WP (R") < | Tu| WP (R /Py

Combining with Proposition 4.9 gives

[ull e ey, = 1 Tull 20 oy, -

We conclude that the range of 7 is a closed subspace of W, >”(R")/
P, ;. By means of Banach’s Closed range theorem, and since the adjoint of
T is injective, we deduce that this range is nothing but the whole space
W PR /P, A

Theorem 4.6 stems directly from Lemma 4.14 and 4.16.

Proof of Theorem 4.7
Firstly, let u e W, " ">”(R") LL P}, /. Then, for each p € Py, /1, we

have

0
(Tu, py = —<Au,p>+2<6;‘1,p>

u

6x1 ’
=0.

Hence, Tue Wy"™"(R") L Py,_,/,1. On the other hand, Theorem 2.1 asserts
that the operator

AW R Pl — Wi (R /Pl s

is an isomorphism if m >2 and n/p’ ¢ {1,...,m}. It follows that 4% is an
isomorphism between WOZk’f’7 (R")/Ppok—nsp and LP"(R") for k> 1 and n/p’ ¢
{1,...,2k}. By duality and transposition A* is also an isomorphism between

L?(R") and Wofzk’p (R") L Ppg—psp. Let A7 be its inverse. From Theorem
4.6, we know that 7 is an isomorphism between Woz ”(R")/Qp—nyp) and L?(R")
if n/p¢{1,2}. Moreover, it is quite clear that 4* is a continuous operator
from Wy?(R") into W, *"P(R") L1 Ppoi_2 np). The operator 4% o T o
A% is well defined and continuous from Wofzk’p (R") L Ppg—_pspy into
Wy PR L Ppio s (here T7' is from LP(R") into WP (RY)/
Q). Moreover, To (4" o T o A7) =1, we deduce that T, considered
as an operator from Wofzk”"’ (R") LL Py, into Wofzk’p (R") L Pp_/prs
is onto. It is also injective. It follows that is an isomorphism, thanks to
Banach Theorem. M
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5. The Oseen system in R”

In this section, we consider the nonhomogeneous Oseen problem: Given a
vector field f and a function /, we look for a pair (u,7n) satisfying

0 .
—Au+2—u+V7z:f in R”,
0x1 (5.1)
diva=nh in R".
We start with a characterization of the kernel of the operator (u,u)—
(Tu+Vu,div u).
PROPOSITION 5.1. Let m =1 be an integer, and set { = —[n/p —m] — 1.
Then, (u,7t)e W"'(R") x W' "P(R") is a solution of (5.1) if and only if
(u,7) € Ny, where

0A .
Ny = {(l,,u) e (Q,)" x Pf{l;_"“raTq“LV’“‘ =0,divi= 0}.

Moreover, a pair (4, 1) belongs to Ny if and only if there exists a vector function
D= (Py,...,D,) € (Pri2)" such that div®d e Q, y, (4o T)P;=0,i=1,...,n
and

A= 4P —V(div D)
(5.2)
w= T(div ®).

Proof of Proposition 5.1

Let (u,m)e ' (R") x &' (R") be a solution of (5.1), with f=0 and
h=0. Then taking the divergence of the first equation of (5.1), we obtain

An = 0.
Thus, 7 is a harmonic polynomial function. Now, we have

ou

Al —Adu+2
(tH—a

> = —A(Vr) = 0.

X1
It follows that
E7 (1€ = ie))a(e) = 0.

Hence the support of & is included in {0} and consequently # is a polynomial
function. If in addition u e W)”(R")" and 7 e W " (R"), then necessarily
ue (Q,)" and neP/{l. This completes the proof of the first assertion of
Proposition 5.1. Now, according to the Lemma 4.14 there exists a function
re€ Q. such that Tr == The vector function u+ Vr belongs to (P,)".
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Hence, there exists a vectorial function ¢ e (P,.»)" such that Ap =u+Vr
(since 4P;4> = P;). Furthermore, by applying the divergence operator to this
identity one deduces that the function s =div ¢ —r is harmonic, and conse-
quently belongs to P7,. Since div(P{,,) =P (see [12] or [1]), there exists
a function 0 € (P/,,)" such that div@ = —s. Set ®=¢+0¢€ (Ps2)". Then,
div®d =r, AD=Ap. 1t follows that u = AP —V(div @) and =n = T(div ).
Since Tu; + 0w =0, we deduce that A(T®;)=0, i=1,...,n which com-
pletes the proof of (5.2). The converse is straightforward. Indeed, let @ =
(@y,...,®,) e (Ps2)" such that div®deQ, . and (Ao T)P; =0, i=1,...,n,
and consider the pair (4,u) given by (5.2). Obviously ueP/, since
TQ,., =P,. Moreover, 4P € (Q,)" since 4P e (P,)" and

o(AD)

2
5X1

=TAD + 1*® = A’ e (P, ,)".

Thus, the pair (4,4) belongs to A4;. N

Let us notice that .4, ={(0,0)} if /<0, /5 =Rx {0} and 47 =Qf xR.
Our first existence result is for fe W, "P(R") and ge L?(R"). Note that a
different proof of the next theorem, in the particular case n = 3, is given in [3].

THEOREM 5.2. Assume n/p # 1 and n/p' # 1.
Let feW,""(R") L Py_,p and he WP (R") satisfying

oh
Vg e P[Z—n/p’]7 <0Xl ) q> =0 (53)

Then the Oseen system (5.1) has a unique solution (u,n) € (Wol’p(R”) x LP(R"))/
Ni=njp)-  Moreover, the following estimate holds
il et Al + el S (e + o). (54)

A€ P (1 u/p)

Proof of Theorem 5.2

. . 0
1) Consider first (u,7) € W,”(R") x L”(R"). Then _A"'i'za; tVne

1
W, "”(R"). Thus, due to the density of Z(R") in W,”(R"), for any ie

W7 (R"), we have

0 04
<—Au+2"+\7n,,1> = <u,—A,1—2>
ax1 W(;]'['(R”)XW(;"",(RH) ax1 ng'])(R’1>XW$'I7,(R”)

— <, iV A Loy (r7)-
Ou

-1,
0x +VrneW, T(RY) L Prinpr-

Thus, necessarily —Au + 2
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2) The uniqueness is a straightforward consequence of Proposition 5.1.

3) Let us prove existence. Given feW_l’p(R ) LP;_yp and he
WP(R") satisfying (5.3), it is easy to see that divf — The W, *’(R") L
Pj_,/p1. From Theorem 2.1 (applied with m =/ = —1), we know that the
Laplace operator defined by

A LP(RII) _ WO—2.P(RI1) L P[27n/p’]

is an isomorphism. Thus there exists a unique function 7z € L?(R") such that

Arn=div f — Th
satisfying the estimate
oh
7|y oy S|V 4+ Ah —2—
el < [divr < -—
< (||f\|w‘;1.p(Rn> + Hh||W(?.p(Rn)). (5.5)

Hence, f—VrneW, LP(R").  Furthermore, since the elements of P,y are
at most constants, for any A€ P[l,n/p,], we can write

Vr, Ay SR W) (R = (7, div 2D L pgeyrrwry = 0-
We deduce that f — VneW (R") L Py_,pq. By virtue of Theorem 4.5,

there exists a vector field u € W 7(R") such that

ou
—Au+2—=f—
u+ o f—Vn,

with the estimate

inf -+ Al S (1w + V2l ) (56)

APy

From (5.5) and (5.6), we obtain (5.4). It remains to prove that divu =/h. Let
us observe that divu —h (e L?(R")) satisfies

T(diva—h)=0.

Combining with Lemma 4.4, we deduce that div # — & is a polynomial function
of L?(R"), which implies that div u =k, completing the proof. M

For our next existence result, we need to prove a preliminary result on poly-
nomial functions that belong to Q. To that end, we first begin with the
following lemma.

LemMa 5.3. Let p be a function in P, not depending on the variable x;
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Jor some i, 2 <i<n. Then there exists a function q € Q,,,, not depending on
x; such that

0q

=—-4q+?2 .
p q-+ o1

ProOF. The proof is analogous to that of Lemma 4.14. H

PrOPOSITION 5.4. Let />0 be an integer. Then we have
; = diV(QJfrﬂ)-

ProoF. Let us begin with /=0, and p=ceR. Let A= (4,...,4,) €

. 1 .
Py, such that A; = 0 and for any integer i > 2, 4; = lcx,-. Then we easily
see that 1€ Q] and B
divi=c.
. 5 .
Suppose now / > 1 and p e Q). Then, for any integer i > 2, % (x;=0)isa
i

polynomial of P,_; not depending on x;. Hence, by virtue of Lemma 5.3,
there exists a polynomial function /4; € Q,,; not depending on x;, such that

o ap

—Ah; +2 =
+ ox;  Ox;

(X,’ = 0)

Next, define the vector field 4 = (4y,...,4,) as:

I (™
=0 and ii:n IJ P(X1y ey Xic1y by Xip 1y - o, Xy )dt + By for i > 2.
— Lo

One can verifies that 1€ Q) , and satisfies

div 4 = p,
which completes the proof of the proposition. H
We are now in a position to prove our next result.

THEOREM 5.5. Let m > 2 be an integer and suppose that n/p # {1,... ,m}
and nfp' #1 if m=2. Let feW] >’(R") and he W) "’(R"). Then the
Oseen system (5.1) has a unique solution (u,7)e (W{"'(R") x W' ""(R"))/
N n=njp. Moreover, the following estimate holds

(1) érl}ankn/p](”" + 4| WP (R") + |7+ p| WO”**W(Rn))

< (oo + Wil (5.7)
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Proof of Theorem 5.5

1) If (u,7) € W' (R") x W] (R") satisfies (5.1) with £ = 0 and / = 0,
then (u,7) € AN7,_y/p, thanks to Proposition 5.1.

2) The beginning of the proof of existence is similar to that of the
preceding theorem. Given fewg’fz‘p(R”) and he Womfl"”(R”), we have
divf—The Wy “PP(R"). Considering first the case m >3, and using The-
orem 2.1 1), we deduce the existence of a function 7 e Wy" "”(R") such that

An = div f — Th.

If m =2, then, we easily see that divf — The Wo_l”’(R") L Py, Again
from Theorem 2.1, there exists a unique function 7 € WO1 P(R") satisfying the
previous equality. Thus summarizing, we conclude that for m > 2, there exists
a function 7 € Womfl‘p(R”) satisfying the previous Laplace equation. Next, we
see that f —Vze W) >”(R"). Thanks to Theorem 4.6, there exists a vector
field u e W)""(R") satisfying

a2y
axl

It follows that divu—/he W, "7 (R") verifies
T(div u— h) = 0.

Therefore, divu —h=gqge Q[;an Il Proposition 5.4 implies that there exists

a polynomial 1eQy, , 1 < W’ (R") such that

divi=gq.

Thus, (u—A,7)e W/"’(R") x W/ "(R") is a solution of the system
(5.1, m

THEOREM 5.6. Suppose that m>2, n/p' #{l,...,m} and n/p # {1,
2(m/2] +2—m}. Let feWy""(R") LPy, ., and he W,""’(R") LL
Piuii_nsp).  Then the Oseen system (5.1) has a unique solution (u,m) in
(W " 2P (R™) LL Py ) x Wy " VP (R). Moreover, the following estimate
holds

Hu”WO—uHZ‘p(Rn) + H77.'||W0—m+l,p(Rn) s (Hf”WO*V"-F(Rn) + Hh”WO—mH.p(Rn)). (58)

Proof of Theorem 5.6

The proof is similar to the previous ones. Let f e Wy"”(R") L P,_,/,1
and  he Wy, " P(R") LL Ppy1 ). Then,  divf — The Wy" "P(R") L
Pyi1-n/p1. Now, since the operator
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. —m+1,p —m—1,p
4: W, (R") — W, (R") L P[m+1—n/p’]
is an isomorphism, there exists a unique function = e W, ”""”(R") such that
An = div f — Th.

Now since Az e Wy " "P(R") L Py,y1 n/p, we deduce that Ve W, "”(R") L
Pj,_n/p7 which implies that f —Vze W "”(R") L Py, ;). Hence, using
Theorem 4.7, there exists a unique vector field u e W, mELP(RMY) L1 | ——
such that

ou

—Au+2—=f-Vr.
6x1

Finally, since the space W,"""7(R") does not contain non trivial polynomial
functions, we easily deduce that diva=4. B

Appendix A. Proof of Proposition 3.2

Suppose that n >3
(a) We have

J 10(x)|dx = J \0(x)|Pdx + J \0(x)|dx
R > 2%,

x| <2x

If |x| = 2x;, then (2.1) gives

14 |x) "7

1 (n—3)/2
() < " (1+ 1)

—|xl/2
n-2 € )

e M < e
X

Thus,

1 (n=3)/2

|0(x)|Pdx < %ﬂwz dx < +o0,
I p(n=2)
[x]>2x; |X‘

if p(n—2)<n. Now, let « be a real, 0 <o < 1. Using (2.1) in each
region {x; (1 + o )x; < |x] < (1 +ab)x;} gives

+0o0

O(x)|Pdx = J
Jx|§2x1| ( )| ; (ok )y < x| < (1+ak)x

+00 ptoo [ pl(1+ak) 1]y 1 (n=3)/2 ,—pa+ix,
<e> [ (] pi 2 dpy | e P,
k=070 [(14akt1) 1) b ’

|O(x)|”dx.
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+00 +o0 1+X ("*3)/26*170!’6”1’1
<a()) o kjo S o

n—2)p—n+1
x% )p—n+

k=0

) -3)/2 _
fo{ n—1)p/2—n+1](k+1) o (1 +l)(n 2t dt
-0 0 fin=2)p=n+1 ’

21 1/2

3
where p; = (x3 + -+ x2) Hence,

J |0(x)|dx < +o0
|x|<2x;

if 2 < p<n/(n—2). This condition is possible only if n =3, and this
proves part (a).

(b) If |x| = 2x;, then (2.1) gives again

(L+ |7

(n=3)/2
exlf\xlll _ e*X1| < c(l + |X|) e—\x\/Z7
%"

0(x) — ga(x)| < ¢ NG
Similarly, in each region {x; (1 + o**1)x; <|x| < (14 «*)x;}, we have

1 (32
|(9(x) - g2(x)| < C1(oc)%em—|x\|l _ e_x1|

X

1 (n—5)/2 .
< ) LR
*1

where we used the inequality (1 + x1)|1 —e ™| < cx;. The constants ¢;
and ¢, do not depend on k. Similarly we prove that

J ) |O(x) — g2|’dx < +c0,

if 2< p<n/(n-3), which is only possible if 3<n<5. If n=3, we
have clearly @(x) — g, € L(R?).

Appendix B. Proof of Corollary 3.4
Part (a) follows from Proposition 3.2 and Young’s inequality
14 *f||Lr(R3) S ||(9||L”(R3)Hf||L1’(R3)’
with

I 1
=l4+-—=— (hence 2 < 6 < 3).
Fep

=
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When r= p;, 1 < p <3/2, one can use the inequality |0 * f| < L(|f]), where
L(f) is the Riesz potential of f defined by (cf. [22])

N =[ LV

_ SV (5.9)
R |[x — y

Part (b) comes also from Proposition 3.2 and Young’s inequality.
Part (c) follows from the following lemma combined with Marcinkiewicz
interpolation theorem (see for instance [22], Appendix B).

LEMMA 5.7. Suppose that 1 < p <3/2 and n=3. If feL?(R®) then

: [PPSR
mvmwm—M*ﬂ>@s(@—f%l,
where m denotes the Lebesgue measure and

_pp+3)

(3-2p)°
Proor. Following Stein (see [22], Chap. V.1.2 Theorem 1), we set
Ki(x) = 0(x) — ga(x) if |x] < g, Ki(x)=0 if |x|>u
Ky (x) = 0(x) — ga(x) if |x] > g, K(x)=0 if |x] <pu
Without loss of generality, suppose that || f||,,g+ = 1. Then,

xi=[x =l
X

and we deduce that K € LI(R3), Moreover,

||K1HL1(R3) < cJ dx = 1%

X[ <u

On the other hand,

1Kz +f]

@) < K2l @y 1/ ooy

We have also |K>(x)| < %‘ Thus,

J 3|K2(x)|p,dx§cJ dx = 1i>7"".
R

= | x]”
We choose u = 4"/C7) Hence,

K> * [l R} = HK2||Lp’(R3)Hf||u(R3) <4
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and
m({x;|Ky * f| > 2}) =
Moreover,
1K1l sy < A7),
We get
K
IR Ty _ sanis-on _ 490620
7 '

Thus,

m({x;[(O(x) = g2) * f| > 4}) < m({x; Ky * [ > 2}) + m({x; [ Ky * /] > 2}).
AP Ky I

2/\

L?(R?)

2/\

AR s ey I

< 230 P/G=p)=p _ 3=(p+3)p/(3-2) B
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