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ABSTRACT. Our aim in this paper is to deal with maximal functions for Lebesgue
spaces with variable exponent approaching 1.

1. Introduction

Let R" denote the n-dimensional Euclidean space. We denote by B(x,r)
the open ball centered at x of radius . For a locally integrable function f on
R”, we consider the maximal function

1

Mf(X) B srglg ‘B(X, V)| JB(x.r) |f(y)|dy

Following Orlicz [4] and Kovacik and Rakosnik [2], we consider a positive
continuous function p(-): R" — [1,0) and a measurable function f satisfying

Jlf(y)lp“’)dy <.

In this paper we are concerned with p(-) satisfying the following log-Holder
condition

14 log(log(1/r)) b

log(1/r) " log(1/7)
for 0 <r<ry<1/e, where a >0 and b is a real number; set p(0) =1 and
p(r) = p(ro) for r >ry. For a bounded open set G in R", consider

p(x) = p(d(x)),
where J(x) denotes the distance of x from the boundary 0G of G.

p(r) =
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Cruz-Uribe, Fiorenza and Neugebauer [1] proved the maximal operator M
is not bounded on L”")(G) if infg p(x) = 1. Recently, Histé [3] has proved
that the maximal operator M is bounded from L?")(G) to L'(G) when a > 1
and G satisfies a certain regular condition. Our aim in this note is to show
that the same conclusion is still valid for a = 1.

2. Maximal functions

Throughout this paper, let C denote various constants independent of the
variables in question.

Let G be a bounded open set in R"”, and consider a positive continuous
function p(-) on G such that

log(log(1/4(x))) b
log(1/d(x))  log(1/d(x))
when 0 <d(x) <ry<1/e, where b is a real number; assume always that
p(x) > 1 when 6(x) > 0.
For simplicity, we denote the Lebesgue measure of E by |E]|.
Let us begin with the following elementary lemmas.

(1) px) =1+

LemMA 2.1.  Let G be a bounded open set in R". For 0 <k <nandr >0,
set G, ={xe G:6(x) <r} and assume that

(2) |G,| < Crk,
or the Minkowski (n— k)-content of 0G is finite. Then

J 5(x) " (log(1 +6(x) ™)) dx < o
G

for every o > 1.

LEmMmA 2.2. Set

_ log(log(1/r)) b
o(r) = log(1/r) log(1/r)

for a real number b. Then there exists ro > 0 such that
(i) ¢'(r) >0 when 0 <r<2r

(i) ¢"(r) <0 when 0 <r<2r

(iil) (s +1) < o(s) + (1) when 0 < s,t <ry.

For a locally integrable function f on G, we consider the maximal
function Mf defined by

1
M (x) = su Bj )\,
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where the supremum is taken over all balls B = B(x,r). Define the L’*)(G)

norm by
p()
dy < 1}

and denote by LP0)(G) the space of all measurable functions f on G with
/15y < 0.

LemMaA 2.3. Suppose the Minkowski (n — 1)-content of 0G is finite. If f
is a measurable function on G with ||f|,., <1, then

/)
p

|vm»=wmw6:m%z>o¢

G

LV@W%U+MumwsC.

Proor. Consider the set
G'={xeG:|f(x)] <d(x) " (log(1/5(x)))""}
for « >2. If xe G’ and d(x) <ry (< 1/e), then
£ Tog(1 + [/ (x)]) < Co(x) " (log(1/5(x))) "

Hence we have by Lemma 2.1

|, el + lrpar < ¢
G,,NG'
If x¢ G’ and d(x) <ry (< 1/e), then
8(x) = (CI/ (x)|(logl £ (x))*)
so that Lemma 2.2 yields

. log log(C|/()] (logl/ ()))")
'ﬂﬂw)zvm“”((kmaﬂmm%fum%

b
+bgaﬂwm%vumﬂ)bﬂ“”0

log(log| f(x)| + log(C(log|/ (x))"))
log| f(x)| + log(C(log|/ (x)))")

log(logl/(x))) ..
1%fM|l%”m0

= Clf (x)[ log|f ()]

Here note that

> C|f(x)] exp< logf(x)|>

zcvmmm(

log(t+s) logt

1 2
£C(—Ogl> gg when 1 <s < Clogt.
t+s t t

t
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Hence it follows that

j ku%a+vumwscjuuwmwsc.
Gy \G’ G

Finally, since p(x) = po > 1 when J(x) = ry, we find

|, 1rltoet +1r@has < ¢ @i+ c < c.
G G

0

Consequently, the required assertion is proved. O

Now we are ready to show our main result, which gives an improvement
of Hasto [3].

THEOREM 2.4. Suppose the Minkowski (n — 1)-content of 0G is finite. Then
IMfNly < Clifllyy  Sor all feLPD(G).

This is a consequence of Lemma 2.3 and the well-known fact of maximal
functions (see Stein [5]).

REMARK 2.5. Theorem 2.4 is sharp in the following sense: for instance, if

log(log(1/d(x))) _ log(log(log(1/d(x))))
log(1/4(x)) log(1/4(x))

when 0 <d(x) <7y <1/e and inf,5)>r) p(x) > 1, then we can find fe
L) (B) for which

p(x)=1+

|, 17Cor 1081+ 1 )ax = o,

where B = B(0,1) and J(x) =1 — |x| for xeB.
For this purpose, letting log) 7 =log ¢ and log,,) = log(log(m) t) for
m=1,2,..., we consider the function
S (%) = 8(x)" (log(1/5(x))) > (log( (1/6(x))) ™"
for x e B with d(x) < rp; set f(x) =0 when J(x) > ry. Then
)
|, 1081 + s = € " g (1/0) " (togiz (1) e = o0

Further, we have for 1 =d(x) <rp
S < exp((log(1/1))((log ) (1/1)) /log(1/1) — (loggs)(1/1)) /log(1/1)))

= (10:‘:’(1)(1/1))(10?5(2)(1/1))_1a
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so that
o
J F(x)"Yax < CJ 1~ (logy (1/1)) " (log (1/1) 2dt < 0.
B 0
3. Variable exponent approaching 1 at a point

Suppose p(-) satisfies infyy|v>yy p(x) > 1 and

1 logllog(1/x)) b
n log(1/|x]) log(1/]x|)

for 0 < |x| < ry < 1/e, where b is a real number. Of course, p(0) = 1 as before.

p(x) =

Tueorem 3.1 If [|f|,.) <1, then

J, 1reoltog(t + e < ¢
and hence
IMf Nl < ClSfllyy — Sor all fe L’V (B).
PrOOF. As in the proof of Lemma 2.3, we consider the set
B'={xeB:|f(x)] < |x["(log(1+ |x™")) ™"}

for « > 2. Then we have

JB, |/ (x)| Tog(1 + | f(x)[)dx < CL x| " (log(1 + |x|"1) " dx

1
< CJ log(1+ 1)) dr < 0
0

with the aid of Lemma 2.1. If x e B\B’, then we see that

x| = (C|f(x)|""(log| £ (x))*") ",
which yields
S = CIf (x)] og| f (%)

Hence we obtain
| o+ r@pax < | i<,
B\B’' B\B'

as required. O

ReMARK 3.2. As stated in Héstd [3] we have a general result:
Consider a compact subset F of a bounded open set G, and denote by
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o(x) = dist(x, F) the distance of x from F. For 0 <m < n and 0 <r < ry with
ro small enough let G, = {xe G:6(x) <r} and assume
(3) |G| < Cr"™™.
Further p(-) is a continuous function on G such that
I log(log(1/4(x))) b
n—m log(1/6(x))  log(1/6(x))
when 0 < d(x) <rg < 1/e for some real number b and infy,;.)-r) p(x) > 1.

Then we claim that if f is a locally integrable function on G satisfying
/1) <1, then

@) plx) =1+

Lvum%a+vumwsc,

so that M : L"")(G) — L'(G) is bounded.
To prove this, as in proofs of Theorems 2.4 and 3.1, it suffices to consider
the set
G'={xeG:|f(x)] <d(x)""(log(1/5(x))""}
for o> 2.
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