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Abstract. In this paper, we consider an analytic kind of structure on the ideal

boundary of a Riemann surface, which is finer than the topological one, and show that

the set of the natural equivalence classes of mutually quasiconformally related such

structures admits a complex Banach manifold structure.

1. The ideal boundary

For an open Riemann surface R, we can consider various kinds of com-

pactifications of R. In this note we consider the Royden’s one (cf. [1] and [10]).

To define the Royden compactification, first we take the set RðRÞ of bounded
continuous (complex) functions f on R which are di¤erentiable in distribution

sense and whose Dirichlet integrals

Dð f Þ ¼
ð
R

df5�df

are finite. Then

k f k ¼ sup
R

j f j þ
ffiffiffiffiffiffiffiffiffiffiffi
Dð f Þ

p

is a norm on RðRÞ, and RðRÞ is a Banach algebra with respect to this norm.

We call this algebra the Royden algebra associated with R.

Now there is a compact Hausdor¤ space R�, containing R as an open and

dense subset, such that every element in RðRÞ can be extended to a continuous

function on R� (and hence RðRÞ can be considered as a subset of the set CðR�Þ
of all continuous functions on R�) and that RðRÞ separates points of R�, i.e. for

every pair of points p1 and p2 of R� there is a function f in RðRÞ such that

f ðp1Þ0 f ðp2Þ. Then such an R� is uniquely determined up to homeomorphisms
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fixing R point-wise, and we call this R� the Royden compactification of R. Also

the compact subset dR ¼ R� � R is called the Royden boundary of R.

Here there are several ways to construct the Royden compactification

canonically. One way is to consider the set X ¼ XðRÞ of all characters on

RðRÞ. Here a multiplicative linear functional w on RðRÞ with wð1Þ ¼ 1 is

called a character. And equipped with the weak* topology, X is a compact

Hausdor¤ space. Moreover, by considering the point evaluations, we can

regard R as an open and dense subset of X and X gives a representative of the

Royden compactification of R.

In the sequel, we always consider this compact set XðRÞ as the Royden

compactification R� of a given R.

Remark. RðRÞ is dense in CðR�Þ with respect to the uniform topology.

Also we recall the following fact.

Proposition 1 ([1], [10]). Every quasiconformal homeomorphism F of a

Riemann surface R1 onto another R2 can be extended to a homeomorphism ~FF of

R�
1 onto R�

2 .

Now, we can define another smaller compactification by using, instead of

RðRÞ, the set KSðRÞ of continuous functions f , each of which is a constant

on every connected component of the complement of some compact set. The

Kerékártó-Stoı̈low compactification R̂R of R is the compact Hausdor¤ space

uniquely determined (up to homeomorphisms fixing R point-wise) by the con-

ditions that R is open and dense in R̂R, that every element of KSðRÞ can be

extended to a continuous function on R̂R, and that KSðRÞ separates points of R̂R.
Clearly, there is the canonical projection p from R� onto the Kerékártó-

Stoı̈low compactification R̂R of R such that p is the identical map on R. We

call the closed set dRp ¼ p�1ðpÞ a block of dR over p for every point p A R̂R� R.

A block dRp is also open if p is isolated in R̂R� R.

Definition. When p A R̂R� R corresponds to a puncture of R, we call p a

non-essential point of R̂R� R, and the block dRp a non-essential block. Let N

be the subset of R̂R� R consisting of all non-essential points, and set

dRo ¼ dR� 6
p AN

dRp:

Then dRo is compact, and is called the essential part of dR, or the essential

boundary of R.

In this paper, we introduce another structure on the Royden boundary,

which is finer than the topological one, and define in § 3 the Teichmüller space

of such structures on a given ideal boundary.
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Definition. We call a pair ðY ; iRÞ, of a compact topological space Y

and a homeomorphism iR of Y onto the essential boundary dRo of a Rimann

surface R, a primitive pair. We say that primitive pairs ðY1; iR1
Þ and ðY2; iR2

Þ
are conformally equivalent if there are a homeomorphism F of a neighborhood

U of dRo
1 ¼ iR1

ðY1Þ in R�
1 into R�

2 and a one iY1;Y2
of Y1 onto Y2 such that

F � iR1
¼ iR2

� iY1;Y2

on Y1 and F is conformal on U VR1.

We call the conformal equivalence class of a primitive pair ðY ; iRÞ an ideal

boundary, which we denote by ½Y ; iR�, or simply by a representative Y if R is

clear or not important. Also we call such a Riemann surface R a supporting

surface of Y .

We say that an ideal boundary Y is of topologically (in)finite type if a

supporting surface R of Y is topologically (in)finite, i.e. the fundamental group

of R is (in)finitely generated.

Since an ideal boundary ½Y ; iR� is determined uniquely by the complex

structure of R near Y , we may say that an ideal boundary ½Y ; iR� represents a

‘‘complex structure’’ on Y .

Proposition 2. Suppose that primitive pairs ðY1; iR1
Þ and ðY2; iR2

Þ are

conformally equivalent. Then we can take the same Riemann surface R, as a

supporting surfaces for both of Yj.

Hence in the sequel, if primitive pairs ðY1; iR1
Þ and ðY2; iR2

Þ are conformally

equivalent, then we always assume that R1 ¼ R2, iR1
¼ iR2

, Y1 ¼ Y2, and iY1;Y2
is

the identical map.

Proof. First, by replacing Y2 and iR2
to Y1 and iR2

� iY1;Y2
, we can assume

that Y1 ¼ Y2 and that iY1;Y2
is the identical map. Let F : U ! R�

2 be as in the

definition of conformal equivalence between ðY1; iR1
Þ and ðY2; iR2

Þ. Here, we

may assume that the relative boundary qU of U VR1 in R1 consists of a finite

number of analytic simple closed curves. Then, there is a Riemann surface

R such that RIR1 and that R� R1 is compact. We can take this R as a

supporting surface of Y1 instead of R1. Next, by identifying U and FðUÞ, we
can also take R as a supporting surface of Y2 instead of R2. r

Next we say that a subsurface S of a Riemann surface R is almost compact

bordered if the closure S of S in the subsurface Rp of R̂R, obtained from R

by filling all points of R̂R corresponding to punctures of R, is compact and the

relative boundary qS of S in R consists of a finite number of analytic simple

closed curves in R. Furthermore, if every component of qS divides Rp into two

connected components each of which either contains S or is non-compact, then

we call the open set
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U ¼ R� � S U qS U 6
p ANVS

dRp

0
@

1
A

a canonical neighborhood of the ideal boundary ½Y ; iR�.

Definition. We say that a map f of an ideal boundary ½Y1; iR1
� to another

½Y2; iR2
� is a boundary map (considered as a map of Y1 to Y2) if there are a

canonical neighborhood U of dRo
1 ¼ iR1

ðY1Þ in R�
1 and a homeomorphism F of

U into R�
2 such that

F � iR1
¼ iR2

� f

on Y1. Such a map F as above is called a supporting map of f .

If a boundary map f of ½Y ; iR� to itself or to another ½Y 0; iR 0 � is a surjective

homeomorphism (as a map of Y to itself or to Y 0), then we call such an f

a boundary self-homeomorphism, or boundary homeomorphism, respectively.

Further, we say that f : Y ! Y 0 is conformal, quasiconformal, and asymp-

totically conformal if so is a supporting map F of f on U VR.

Here, recall that f is asymptotically conformal if and only if we can find a

ð1þ eÞ-quasiconformal supporting map of f for every e > 0. (For the basic

facts about asymptotically conformal maps, see for instance, [5].)

2. Boundary self-homeomorphims

Let BHðYÞ be the group of all boundary self-homeomorphisms of an ideal

boundary ½Y ; iR�. First we recall the following fact.

Proposition 3 ([8], also see [9]). f is an element of BHðYÞ if and only if f

is a quasiconformal boundary self-homeomorphism.

Proof. Since ‘‘if ’’-part is clear, we assume that f A BHðY Þ. Then there

are a Riemann surface R supporting Y and a homeomorphism F of a canonical

neighborhood U of dRo into R� which supports f . Replacing U to a smaller

one if necessary, we can find by Corollary in [8] a quasiconformal homeo-

morphism of U VR into R whose extension to U supports f , which implies the

assertion. r

Also note that a boundary self-homeomorphism of Y need not necessarily

be the boundary map of a quasiconformal self-homeomorphism of R.

Theorem 4. There are an ideal boundary Y and an f A BHðYÞ such that,

for every supporting surface R of Y, every quasiconformal self-homeomorphism of

R supports neither f nor f �1.
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Proof. Set

R0 ¼ fz A C j jIm zj < 1g � fn A Z j nb 0g;

and Y ¼ dRo
0. Let f be the boundary self-homeomorphism of Y supported by

the extension ~FF0 to R�
0 � f�1g of the conformal map

F0ðzÞ ¼ zþ 1 : R0 � f�1g ! R0:

We show that these Y and f are desired ones.

For this purpose, suppose that there were a Riemann surface R1 supporting

Y and a quasiconformal self-homeomorphism F of R1 whose extension ~FF to

R�
1 supports f .

Take U so small that U can be considered as a canonical neighborhood of

Y not only in R�
0 but also in R�

1 . Further, take a smaller V HU so that ~FF0ðVÞ
and ~FFðVÞ are contained in U . Next, F0 and F restricted to V VR0 can be

extended to quasiconformal self-homeomorphisms of fjIm zj < 1g, which in turn

can be identified with fjzj < 1g by a Riemann map. Moreover, these maps

can be extended continuously to fjzja 1g and their boundary values coincide,

for they support the same f . Hence we conclude that F ¼ F�1 � F0 can be

extended to fjzja 1g and has the identical boundary values.

Now since F belongs to Rðfjzj < 1gÞ, so is gðzÞ ¼ FðzÞ � z, which identically

vanishes on fjzj ¼ 1g, and hence F gives the identical self-map of Y . Here,

suppose that there were a sequence of punctures pn of V VR0 (considered as a

subsurface of fjzj < 1g) such that jpnj ! 1 as n ! þy, and that gðpnÞ0 0 for

every n. Since also jFðpnÞj ! 1 as n ! þy, we may further assume, by taking a

subsequence if necessary, that

FðpnÞ B fpjgyj¼1

for every n. But then, we could construct a function P A RðRÞ such that

PðpnÞ ¼ 1 but PðFðpnÞÞ ¼ 0 for every n, which would imply that F is not the

identical map of Y .

Indeed, take a mutually disjoint, simply connected neighborhood Un of pn
in fjzj < 1g so that FðpnÞ B Un for every n, and map Un onto fjzj < 1g by a

Riemann map gn so that gnðpnÞ ¼ 0. Consider

hnðzÞ ¼
�logð2jzjÞ

n3

on Wn ¼ fe�n3=2 < jzj < 1=2g, and set Pn ¼ hn � gn on g�1
n ðWnÞ. Extend Pn to

a continuous function by letting it to be a constant 0 or 1 on each connected

component of R� g�1
n ðWnÞ, we have a function Pn in RðRÞ such that DðPnÞ ¼

2p=n3. And
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P ¼
Xy
n¼1

Pn

is a desired function.

Thus there is a canonical neighborhood V 0 of Y such that V 0, ~FF0ðV 0Þ,
~FFðV 0Þ are contained in V , and that F0ðpÞ ¼ F ðpÞ, for every puncture p in V 0.

But then the number of punctures of R1 in V � V 0 is smaller than that of

punctures of R1 V � ~FF ðV 0Þ, which is a contradiction.

Since the case of F�1
0 can be treated similarly, we conclude the assertion.

r

Next, there are boundary self-homeomorphisms with no fixed points. For

instance, rotations give such examples. On the other hand, the following fact

seems to be non-trivial.

Proposition 5. There is an ideal boundary Y such that every element of

BHðYÞ fixes the same point of Y.

Proof. In general, the harmonic boundary d0R of the Royden boundary

is invariant under boundary homeomorphisms ([10] III.7.C Theorem. Also see

[10] III.8.C Theorem), and hence by Proposition 3, d0RVY is invariant under

every f A BHðY Þ. On the other hand, if a supporting surface R belongs to

OHD �OG, a theorem of Royden states that d0RVY consists of a single point

(cf. [10] III.F Theorem), which implies the assertion. r

Finally, conformal equivalence eventually homotopic to the identity

is trivial. Here, we say that a conformal boundary self-homeomorphism

f : Y ! Y is eventually homotopic to the identity if f is supported by a

homeomorphism F of a canonical neighborhood U of Y in R� into R� such

that F on U VR is conformal and homotopic to the identical map of U VR

in R.

Proposition 6. Suppose that ½Y ; iR� is an ideal boundary of topologically

infinite type. Let f1; f2 A BHðY Þ. If f �1
1 � f2 is a conformal boundary self-

homeomorphism eventually homotopic to the identity, then f1 ¼ f2.

Proof. By a theorem of Maitani in [6], F as above should be the identical

map of U , and hence so is f �1
1 � f2. r

3. The Teichmüller space

Similarly as before, for ideal boundaries ½Y ; iR� and ½Y 0; iR 0 �, we say that a

boundary homeomorphism f : Y ! Y 0 is eventually homotopic to an asymp-
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totically conformal boundary homeomorphism g : Y ! Y 0 if there are supporting

maps F : U ! ðR 0Þ� of f and G : U ! ðR 0Þ� of g, where U is a canonical

neighborhood of Y in R�, such that F is quasiconformal on U VR, that G is

asymptotically conformal on U VR, and that F on U VR is homotopic to G on

U VR in R.

In particular, if ½Y ; iR� ¼ ½Y 0; iR 0 � and G is the identical map, then again we

say that f is eventually homotopic to the identity.

Theorem 7. For every ideal boundary Y, there is a non-identical asymp-

totically conformal boundary self-homeomorphism of Y eventually homotopic to

the identity.

Proof. Let U be a canonical neighborhood of Y in R�, where R is a

supporting surface of Y . Take a sequence of points pn on U VR escaping from

any compact set of R, and a mutually disjoint, simply connected open neigh-

borhood Un of pn for every n. Map each Un onto fjzj < 1g by a Riemann

map gn so that gnðpnÞ ¼ 0.

Set

jnðzÞ ¼
zþ ð1=nÞ
1þ ð1=nÞz

on fjzj < 1g, and jn is a ð1=nÞ-quasiconformal self-homeomorphism of fjzj < 1g
and jnðzÞ ¼ z on fjzj ¼ 1g. Hence we can define a ð1=nÞ-quasiconformal

homeomorphism F of U into R� by setting g�1
n � jn � gn on Un for every n, and

to be the identical map outside 6y
n¼1

Un. Then F gives an asymptotically

conformal boundary self-homeomorphism f of Y eventually homotopic to the

identity.

Next similarly as before, set

hnðzÞ ¼
�logðnjzjÞ

n3

on Wn ¼ fð1=nÞe�n3 < jzj < ð1=nÞg. Then we have an element Pn of RðRÞ by

setting Pn ¼ hn � gn on g�1
n ðWnÞ and by letting it to be a constant 0 or 1 on each

component of R� g�1
n ðWnÞ. Since DðPnÞ ¼ 2p=n3, P ¼

Py
n¼1 Pn also belongs

to RðRÞ, and PðpnÞ ¼ 1 and PðFðpnÞÞ ¼ 0 for every n. Thus f is not the

identical map. r

We say that two ideal boundaries Y1 ¼ ½Y1; iR1
� and Y2 ¼ ½Y2; iR2

� are

quasiconformally related if there is a (quasiconformal) boundary homeomorphism

of Y1 onto Y2. Then we can define the Teichmüller space of quasiconformally

related ideal boundaries.

Definition. For a given ideal boundary Y0 ¼ ½Y0; iR0
�, consider a pair
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ðY ; f Þ ¼ ð½Y ; iR�; f Þ of an ideal boundary Y ¼ ½Y ; iR� quasiconformally related

to Y0 and a boundary homeomorphism f : Y0 ! Y , which is called a marking

of Y .

We say that two pairs ðY1; f1Þ and ðY2; f2Þ are Teichmüller equivalent if

there is an asymptotically conformal boundary homeomorphism of Y1 to Y2

eventually homotopic to f2 � f �1
1 .

We call the set of all Teichmüller equivalence classes ½Y ; f � ¼ ½½Y ; iR�; f � of
such pairs ðY ; f Þ the Teichmüller space of Y0, which is denoted by TðY0Þ. A

point of TðY0Þ is called a marked ideal boundary.

Here, note that if Y0 is an ideal boundary of analytically finite type, i.e.

obtained from a closed surface by deleting a finite number of points, then Y0

is empty, and hence TðY0Þ consists of a single point (which can be compared

with results in [2], [4]). It is remarkable that the Teichmüller space of every

ideal boundary admits a natural complex structure.

Theorem 8. Let Y0 be an ideal boundary. Then the Teichmüller space

TðY0Þ of Y0 has a complex Banach manifold structure.

Proof. A theorem of Miyaji in [7] implies that the asymptotic Teichmüller

spaces ATðR0Þ of R0 are mutually biholomorphic for all supporting surfaces R0

of Y0. Indeed, if R1 and R2 are such surfaces, then there is another supporting

surface R3 of Y0 and analytically finite Riemann surfaces S1 and S2 such that

R3 and Sj are obtained from Rj by applying a conformal 2-surgery along a

dividing simple closed curve for each j. And Reducing Theorem in [7] states

that the asymptotic Teichmüller space ATðRjÞ is biholomorphic to the product

ATðSjÞ � ATðR3Þ for each j. Here, since ATðSjÞ are trivial, we have a canonical
biholomorphic map between ATðRjÞ. (For the details of the asymptotic Teich-

müller theory, see [5], [2], and [3].)

Next, fix a supporting surface R0 of Y0. Then we can construct a natural

bijection from TðY0Þ onto ATðR0Þ as follows. Take any element ½Y ; f � of

TðY0Þ. Then there is a quasiconformal homeomorphism F of U VR0 into R

whose extension to U supports f . Here, U is a canonical neighborhood of Y0

in R0 and R is a supporting surface of Y . Such an F can be extended to a

quasiconformal map of R0 onto another supporting surface R 0 of Y (possibly

di¤erent from R), which gives a point in ATðR0Þ. By the definitions, we see

that this map i induces a bijection of TðY0Þ to ATðR0Þ.
Indeed, if pairs ðY1; f1Þ and ðY2; f2Þ belong to the same point of TðY0Þ,

then there is an asymptotically conformal boundary homeomorphism g : Y1 ! Y2

eventually homotopic to f2 � f �1
1 . Hence we can find a canonical neighborhood

U of Y0, asymptotically conformal maps Fj of U VR0 into Rj for each j, where

Rj is a supporting surface of Yj, and an asymptotically conformal map G of
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F1ðU VR0Þ into R2 supporting g and homotopic to F2 � F�1
1 . Here taking a

smaller U and changing supporting surfaces if necessary, we may also assume

that Fj can be extended to a quasiconformal map F̂Fj of R0 onto Rj for each j.

Then F̂F�1
2 � F̂F1 is homotopic to an asymptotically conformal homeomorphism.

Hence i is well-defined.

Conversely, if there are quasiconformal maps F̂Fj of R0 onto Rj for each

j such that F̂F�1
2 � F̂F1 is homotopic to an asymptotically conformal homeo-

morphism. Then by definition, the boundary maps supported by these F̂Fj are

Teichmüller equivalent. Hence i is injective. Finally, since every element of

ATðR0Þ determines an ideal boundary Y quasiconformally related to Y0 and a

boundary homeomorphism of Y0 onto Y , i is also surjective. Thus we have

proved the assertion. r

Remark. We say that two boundary self-homeomorpihsms f1 and f2
in BHðY0Þ are AC-equivalent if f2 � f �1

1 is homotopic to an asymptotically

conformal self-homeomorphism of Y . The equivalence class of f is called an

AC-mapping class, and denoted by ½ f �.
Now every element f of BHðY0Þ naturally induces an automoprhism f � of

TðY0Þ, by setting

f �ð½Y ; g�Þ ¼ ½ðY ; g � f �1Þ�:

Then it is clear from the definition that f �
1 ¼ f �

2 if and only if ½ f1� ¼ ½ f2�.
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