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Abstract. We investigate oscillatory properties of the second order half-linear dif-

ferential equation

ðrðtÞFðy 0ÞÞ 0 þ cðtÞFðyÞ ¼ 0; FðsÞ :¼ jsjp�2
s; p > 1;ð*Þ

viewed as a perturbation of a nonoscillatory equation of the same form

ðrðtÞFðy 0ÞÞ 0 þ ~ccðtÞFðyÞ ¼ 0:

Conditions on the di¤erence cðtÞ � ~ccðtÞ are given which guarantee that equation ð*Þ
becomes oscillatory (remains nonoscillatory).

1. Introduction

In this paper we investigate oscillatory properties of the half-linear second

order di¤erential equation

ðrðtÞFðy 0ÞÞ0 þ cðtÞFðyÞ ¼ 0; FðsÞ :¼ jsjp�2
s;ð1Þ

where p > 1, t A I :¼ ½T ;yÞ, r, c are real-valued continuous functions and

rðtÞ > 0 in I . Oscillation theory of half-linear equations (1) attracted a con-

siderable attention in the recent years, see e.g. [1, 2, 4, 7, 15, 16, 18, 19, 21, 25]

and the reference given therein. In these papers it was shown that many of the

(non)oscillation criteria for the linear Sturm-Liouville second order di¤erential

equation

ðrðtÞy 0Þ 0 þ cðtÞy ¼ 0ð2Þ

(which is a special case p ¼ 2 of (1)) extend to half-linear equation (1).
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In the majority of these oscillation criteria, equation (1) is viewed as a

perturbation of the one-term di¤erential equation

ðrðtÞFðy 0ÞÞ0 ¼ 0;

and (non)oscillation criteria are formulated in terms of the integralsðy
t

cðsÞds if

ðy
r1�qðtÞdt ¼ y; q ¼ p

p� 1

or ðy
t

ðy
s

r1�qðtÞdt
� �p

cðsÞds if

ðy
r1�qðtÞdt < y;

see e.g. [15, 16].

In this paper we use a more general idea, we investigate equation (1) as a

perturbation of the two-term equation of the same form

ðrðtÞFðy 0ÞÞ0 þ ~ccðtÞFðyÞ ¼ 0ð3Þ

and the obtained criteria are formulated in terms of the integralð
ðcðtÞ � ~ccðtÞÞ~yypðtÞdt

(limits in this integral depend on the particular situation), where ~yy is the so-

called principal solution of (3). In the case ~ccðtÞ1 0 and
Ðy

r1�qðtÞdt ¼ y,

this principal solution is ~yyðtÞ1 1, while if
Ðy

r1�qðtÞdt < y, this solution is

~yyðtÞ ¼
Ðy
t
r1�qðsÞds, i.e., our oscillation criteria reduce to those proved in [15,

16] when ~ccðtÞ1 0.

The idea to compare oscillatory properties of equation (1) with another

two-term equation was used for the first time by Elbert [9], where the equation

ðFðy 0ÞÞ0 þ cðtÞFðyÞ ¼ 0ð4Þ

is regarded as a perturbation of the half-linear Euler di¤erential equation

ðFðy 0ÞÞ0 þ
gp

tp
FðyÞ ¼ 0; gp ¼

p� 1

p

� �p

;ð5Þ

and it is proved that (4) is oscillatory providedðy
cðtÞ �

gp

tp

� �
tp�1 dt ¼ y:ð6Þ

This result was complemented in [4], where it was shown that if the integral in

(6) is convergent, then (4) is oscillatory provided

lim
t!y

log t

ðy
t

cðsÞ �
gp

sp

� �
sp�1 dt > 2

p� 1

p

� �p�1

:ð7Þ
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In this paper we insert these criteria into a general framework, where the

function ~cc is any function such that equation (3) is nonoscillatory. Among

others, we prove that the constant 2
p�1
p

� �p�1

in (7) can be replaced by the

better one 1
2

p�1
p

� �p�1

. Our investigation is based on the recently established

Picone’s identity (cf. [14]) and the ‘‘quadratization’’ of a certain nonlinear term

appearing in this identity, coupled with the classical tools as the variational

principle and the Riccati technique. An important role is also played by the

concept of the principal solution of half-linear equation (1) (cf. [11, 26]).

The paper is organized as follows. In the next section we give some

auxiliary results concerning the oscillation theory of half-linear equations (1)

and Section 3 is devoted to the main results of our paper—new oscillation and

nonoscillation criteria for (1). The last part of Section 3 contains some remarks

about possible extensions of the results of this paper.

2. Auxiliary results

Let us start with the principal concepts of the half-linear oscillation theory.

These concepts are very similar to the linear case p ¼ 2. Two points t1, t2 are

said to be conjugate relative to (1) if there exists a nontrivial solution y of this

equation such that yðt1Þ ¼ 0 ¼ yðt2Þ. Equation (1) is said to be disconjugate in

an interval I HR if there exists no pair of points of this interval which are

conjugate relative to (1), in the opposite case (1) is said to be conjugate in I .

It is known, see Elbert [8] and Mirzov [25], that the basic facts of the linear

Sturmian theory extend almost verbatim to (1). Consequently, if I is an

interval of the form I ¼ ½a;yÞ, then any solution of (1) has either infinitely

many or only a finite number of zeros in I . Hence, similar to the linear case,

equations (1) can be classified as oscillatory or nonoscillatory.

Concerning the unique solvability of (1), given A;B A R and t0 A I ¼ ða; bÞ,
I being an interval where the functions r, c are continuous and rðtÞ > 0, then

the initial value problem yðt0Þ ¼ A, rðt0ÞFðy 0ðt0ÞÞ ¼ B for (1) has the unique

solution which is extensible up to a and b. This statement was proved by

Elbert [8] using the generalized Prüfer transformation.

Our first result of the next section, Theorem 1, leans on the relationship

between disconjugacy of (1) and the positivity of the functional

Jpðy; a; bÞ ¼
ð b

a

½rðtÞjy 0jp � cðtÞjyjp�dt; y A W
1;p
0 ða; bÞ;

in particular, (1) is disconjugate in ½a; b� if and only if Jpðy; a; bÞ > 0 for every

nontrivial y A W
1;p
0 ða; bÞ, for more details see Li and Yeh [19] and also Mařı́k

[22].
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The next results, oscillation and nonoscillation criteria given in Theorems

2, 3 are based on the Riccati technique consisting in the fact that if y is a

solution of (1) for which yðtÞ0 0 in some interval, then the Riccati variable

w ¼ rFðy 0Þ
FðyÞ solves the generalized Riccati equation

w 0 þ cðtÞ þ ðp� 1Þr1�qðtÞjwjq ¼ 0; q ¼ p

p� 1
;ð8Þ

in this interval. In particular, equation (1) is disconjugate in the interval

½a; b� if and only if there exists a solution w of (8) which is defined in the

whole interval ½a; b�. Recall also the concept of the so-called distinguished and

principal solutions of (8) and (1), respectively, introduced in [26] and inde-

pendently in [11]. An alternative approach (but equivalent) to these concepts

can be found in [5]. Suppose that (1) is nonoscillatory. Then there exists at

least one solution of (8) which is extensible up to infinity. Among all solutions

having this property there exists the minimal one, called (by analogue with the

linear case) distinguished solution (another terminology is eventually minimal

solution), which is minimal in the following sense. If ~ww is the eventually

minimal solution of (8) and w is any other solution which exists on some

interval ½T ;yÞ, then wðtÞ > ~wwðtÞ in this interval. Recall that the eventually

minimal solution ~ww is constructed as follows. Suppose that (1) is disconjugate on

½T ;yÞ and b > T . Let yb be the solution of (1) given by the initial condition

ybðbÞ ¼ 0, y 0
bðbÞ ¼ �1. Then ybðtÞ > 0 for ½T ; bÞ and denote wb ¼ rFðy 0

b=ybÞ
the corresponding solution of (8). The eventually minimal solution ~ww is then

given by the formula

~wwðtÞ ¼ lim
b!y

wbðtÞ;

where the convergence wb ! ~ww is uniform on every compact subinterval of

½T ;yÞ.
The principal solution of (1) is defined as the solution of this equation

which is associated with the distinguished solution w of (8), i.e., it is given by

the formula

yðtÞ ¼ exp

ð t

r1�qðsÞF�1ðwðsÞÞds
� �

;

where w is the distinguished solution of (8) and F�1 is the inverse function of F.

The link line between the Riccati and variational technique is the so-called

Picone identity which reads in the half-linear case as follows (here we present

this identity in a simplified form since we will not need it in its full generality).

Lemma 1 ([14]). Suppose that w is a solution of (8) which is defined in the

whole interval I ¼ ½a; b�. Then for any y A W 1;pða; bÞ the following identity

holds:
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Jpðy; a; bÞ ¼ wðtÞjyjpjba þ p

ð b

a

1

p
rðtÞjy 0jp � wðtÞFðyÞy 0 þ 1

q
r1�qðtÞjwðtÞjqjyjp

� �
dt

¼ wðtÞjyjpjba þ p

ð b

a

r1�qðtÞPðrq�1 y 0;wFðyÞÞdt;

where

Pðu; zÞ ¼ jujp

p
� uzþ jzjq

q
b 0ð9Þ

for any u; z A R with equality if and only if z ¼ FðuÞ.

We will also need the following refinement of the relationship between

nonoscillation of (1) and solvability of (8).

Lemma 2. Suppose that equation (3) is nonoscillatory and h is an even-

tually positive solution of this equation. Further suppose that the integralÐyðcðsÞ � ~ccðsÞÞhpðsÞds converges and denote

CðtÞ ¼
ðy
t

ðcðsÞ � ~ccðsÞÞhpðsÞds:

Then equation (1) is nonoscillatory provided there exists a di¤erentiable function

v which for large t satisfies the Riccati-type inequality

v 0 a�p
1

q

vþ CðtÞ
hðtÞ

				
				
q

r1�qðtÞ � h 0ðtÞ vþ CðtÞ
hðtÞ

� �� �
� ~ccðtÞhpðtÞ:ð10Þ

Proof. Suppose that v satisfies (10) and exists on some interval ½T ;yÞ.
Then by the standard theory of di¤erential inequalities (see e.g. [17]) there exists

a solution ~vv : ½T ;yÞ ! R of the di¤erential equation

~vv 0 ¼ �p
1

q

~vvþ CðtÞ
hðtÞ

				
				
q

r1�qðtÞ � h 0ðtÞ ~vvþ CðtÞ
hðtÞ

� �� �
� ~ccðtÞhpðtÞ

satisfying the inequality ~vvðtÞb vðtÞ for large t, i.e., ~vv also exists on the whole

interval ½T ;yÞ (the fact that ~vv cannot blow up to infinity can be proved using the

same argument as in the linear case, see e.g. [31]). Now, if w ¼ ~vvþC
hp , one can

verify directly that this function satisfies (8) and hence (1) is nonoscillatory. r

3. Main results

In this section we present the main results of the paper. We investigate

oscillatory properties of equation (1) viewed as a perturbation of (nonoscillatory)

equation (3). We start with a statement proved using the variational principle

which requires (in contrast to other statements of this section) no additional

restrictions on the functions r, c in (1).
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Theorem 1. Suppose that h is the principal solution of (nonoscillatory)

equation (3) and

ðy
ðcðtÞ � ~ccðtÞÞhpðtÞdt :¼ lim

b!y

ð b

ðcðtÞ � ~ccðtÞÞhpðtÞdt ¼ y:ð11Þ

Then equation (1) is oscillatory.

Proof. According to the relationship between disconjugacy of (1) and

positivity of the functional Jp mentioned in Section 2, to prove that (1) is

oscillatory, it su‰ces to find for any T A R a function y A W 1;pðT ;yÞ, with a

compact support in ðT ;yÞ, such that Jpðy;T ;yÞa 0. Hence, let T A R be

arbitrary and T < t0 < t1 < t2 < t3 (these points will be specified later). Define

the test function y as follows.

yðtÞ ¼

0 T a ta t0;

f ðtÞ t0 a ta t1;

hðtÞ t1 a ta t2;

gðtÞ t2 a ta t3;

0 t3 a t < y;

8>>>>><
>>>>>:

where f , g are solutions of (3) given by the boundary conditions f ðt0Þ ¼ 0,

f ðt1Þ ¼ hðt1Þ, gðt2Þ ¼ hðt2Þ, gðt3Þ ¼ 0. Recall that these solutions exist if t0
is su‰ciently large. Indeed, disconjugacy of (3) for large t implies that its

solution y given by yðt0Þ ¼ 0, y 0ðt0Þ > 0 satisfies yðtÞ > 0 for t > t0 and by

the homogeneity property of the solution space of (3) f ðtÞ ¼ yðtÞðhðt1Þ=yðt1ÞÞ.
The existence of the solution g is proved using the same argument. Denote

wf :¼
rFð f 0Þ
Fð f Þ ; ~ww :¼ rFðh 0Þ

FðhÞ ; wg :¼
rFðg 0Þ
FðgÞ ;

i.e., wf , wg, ~ww are solutions of (8) generated by f , g, h respectively. Note that

nonoscillation of (3) implies that f ðtÞ > 0, gðtÞ > 0 on ðt0; t1�, ½t2; t3Þ, respec-

tively, if t0 is su‰ciently large. Using integration by parts we have

Jpð f ; t0; t1Þ ¼
ð t1

t0

frðtÞj f 0ðtÞjp � ~ccðtÞj f ðtÞjpgdt�
ð t1

t0

ðcðtÞ � ~ccðtÞÞj f ðtÞjpdt

¼ rðtÞFð f 0ðtÞÞ f ðtÞjt1t0 �
ð t1

t0

ðcðtÞ � ~ccðtÞÞ f pðtÞdt

¼ f pðt1Þwf ðt1Þ �
ð t1

t0

ðcðtÞ � ~ccðtÞÞ f pðtÞdt:

Similarly we have
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Jpðh; t1; t2Þ ¼ hpðtÞ~wwðtÞjt2t1 �
ð t2

t1

ðcðtÞ � ~ccðtÞÞhpðtÞdt

and

Jpðg; t2; t3Þ ¼ �gpðt2Þwgðt2Þ �
ð t3

t2

ðcðtÞ � ~ccðtÞÞgpðtÞdt:

Consider the integral
Ð t3
t2
ðc� ~ccÞgp dt. The function g=h is monotonically

decreasing on ðt2; t3Þ with ðg=hÞðt2Þ ¼ 1, ðg=hÞðt3Þ ¼ 0. Indeed, if ðg=hÞ0ðtÞ ¼ 0

for some t A ðt2; t3Þ, then ðg 0h� gh 0ÞðtÞ ¼ 0 and hence ~wwðtÞ ¼ wgðtÞ. But this

contradicts the unique solvability of (8), hence ðg=hÞ0ðtÞ < 0 for t A ðt2; t3Þ.
Therefore, by the second mean value of integral calculus, there exists a

x A ðt2; t3Þ such thatð t3

t2

ðcðtÞ � ~ccðtÞÞgpðtÞdt ¼
ð t3

t2

ðcðtÞ � ~ccðtÞÞhpðtÞ gðtÞ
hðtÞ

� �p

dt

¼
ð x

t2

ðcðtÞ � ~ccðtÞÞhpðtÞdt:

Now, let T < t0 < t1 be fixed (and su‰ciently large), and denote

K ¼ hpðt1Þ½wf ðt1Þ � ~wwðt1Þ� �
ð t1

t0

ðcðtÞ � ~ccðtÞÞ f pðtÞdt:

Then, using the fact that f ðt1Þ ¼ hðt1Þ, hðt2Þ ¼ gðt2Þ, we have

Jpðy;T ;yÞ ¼ K �
ð x

t1

ðcðtÞ � ~ccðtÞÞhpðtÞdtþ hpðt2Þ½~wwðt2Þ � wgðt2Þ�:ð12Þ

Now, if e > 0 is arbitrary, then according to (11) t2 can be chosen in such a

way that
Ð t

t1
ðcðsÞ � ~ccðsÞÞhpðsÞds > K þ e whenever t > t2. Finally, since h is the

principal solution of (3), i.e., ~ww is the eventually minimal solution of (8), by

its construction described above Lemma 1 we have (observe that wg actually

depend also on t3)

lim
t3!y

hpðt2Þ½~wwðt2Þ � wgðt2Þ� ¼ 0;

hence the last summand in (12) is less than e if t3 is su‰ciently large.

Consequently, Jpðy; t0; t3Þ < 0 if t0, t1, t2, t3 are chosen in the above specified

way. r

Remark 1. As we have already mentioned in the introductory section, the

previous theorem is a generalization of the oscillation criterion of Elbert [9]

which claims that the equation

ðFðy 0ÞÞ0 þ cðtÞFðyÞ ¼ 0ð13Þ
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is oscillatory provided

ðy
cðtÞ �

gp

tp

� �
tp�1 dt ¼ y; gp ¼

p� 1

p

� �p

:ð14Þ

Indeed, if rðtÞ1 1 and ~ccðtÞ ¼ gpt
�p, i.e., (3) reduces to the generalized Euler

equation (5) with the so-called critical coe‰cient gp, then hðtÞ ¼ tðp�1Þ=p is the

principal solution of (5) (see e.g. [10]) and (11) reduces to (14). A detailed

investigation of (13) viewed as a perturbation of Euler equation (5) can be

found in [12].

Now we turn our attention to the criteria proved using the Riccati

technique. Compared with the previous theorem, these statements apply also

to the case when
Ðyðc� ~ccÞhp is convergent, on the other hand, some additional

technical assumptions are needed.

Theorem 2. Let
Ðy

r1�qðtÞdt ¼ y,

ðy
cðtÞdt converges and

ðy
t

cðsÞdsb 0 for large t:ð15Þ

Further suppose that equation (3) is nonoscillatory and possesses a positive

solution h satisfying

( i ) The derivative h 0ðtÞ > 0 for large t,

( ii ) It holds ðy
rðtÞðh 0ðtÞÞpdt ¼ y;

(iii) There exists a finite limit

lim
t!y

rðtÞhðtÞFðh 0ðtÞÞ ¼: L > 0:ð16Þ

Denote by

GðtÞ ¼
ð t ds

rðsÞh2ðsÞðh 0ðsÞÞp�2

and suppose that the integral

ðy
ðcðtÞ � ~ccðtÞÞhpðtÞdt ¼ lim

b!y

ð b

ðcðtÞ � ~ccðtÞÞhpðtÞdtð17Þ

is convergent. If

lim inf
t!y

GðtÞ
ðy
t

ðcðsÞ � ~ccðsÞÞhpðsÞds > 1

2q
ð18Þ

then equation (1) is oscillatory.
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Proof. Suppose, by contradiction, that (1) is nonoscillatory, i.e., there

exists an eventually positive principal solution y of this equation. Denote by

w :¼ rðtÞ Fðy 0Þ
FðyÞ . Then w satisfies the Riccati equation (8) and wðtÞb 0 for large

t. This follows from the half-linear version of the Hartman-Wintner theorem

(cf. [20] or [27]), by this theorem w is also a solution of the integral equation

wðtÞ ¼
ðy
t

cðsÞdsþ ðp� 1Þ
ðy
t

r1�qðsÞjwðsÞjqds

and hence wðtÞb 0 for large t according to (15). Using the Picone identity for

half-linear equations given in Lemma 1 we have

ð t

T

½rðsÞjx 0jp � cðsÞjxjp�ds

¼ wðsÞjxjpjtT þ
ð t

T

frðsÞjx 0jp � px 0wðsÞFðxÞ þ ðp� 1Þr1�qðsÞjwðsÞjqjxjpgds

¼ wðsÞjxjpjtT þ p

ð t

T

r1�qðsÞPðrq�1x 0;wFðxÞÞds

for any di¤erentiable function x, where P is given by (9), and integration by

parts yields

ð t

T

½rðsÞjx 0jp � cðsÞjxjp�ds ¼
ð t

T

½rðsÞjx 0jp � ~ccðsÞjxjp�ds�
ð t

T

ðcðsÞ � ~ccðsÞÞjxjpds

¼ rðsÞxFðx 0ÞjtT �
ð t

T

x½ðrðsÞFðx 0ÞÞ0 þ ~ccðsÞFðxÞ�ds

�
ð t

T

ðcðsÞ � ~ccðsÞÞjxjpds:

Substituting x ¼ h into the last two equalities (h being a solution of (3) satisfying

the assumptions (i)–(iii) of theorem), we get

hpð~ww� wÞjtT ¼
ð t

T

ðcðsÞ � ~ccðsÞÞhp dsþ p

ð t

T

r1�qðsÞPðrq�1h 0;wFðhÞÞds;ð19Þ

where ~ww ¼ rFðh 0Þ
FðhÞ . Since wðtÞb 0 for large t, we have

hpðtÞ~wwðtÞ þ hpðTÞðwðTÞ � ~wwðTÞÞ

b

ð t

T

ðcðsÞ � ~ccðsÞÞhp dsþ p

ð t

T

r1�qðsÞPðrq�1h 0;wFðhÞÞds:

Letting t ! y, since Pðu; vÞb 0 and using (17), this means
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ðy
r1�qðtÞPðrq�1ðtÞh 0ðtÞ;wðtÞFðhðtÞÞdt < y:ð20Þ

Now, since (16), (17), (20) hold, from (19) it follows that there exists the

limit

lim
t!y

hpðtÞðwðtÞ � ~wwðtÞÞ ¼: bð21Þ

and also the limit

lim
t!y

wðtÞ
~wwðtÞ ¼ lim

t!y

hpðtÞwðtÞ
hpðtÞ~wwðtÞ ¼

Lþ b

L
:

We have

ðy
r1�qðtÞPðrq�1ðtÞh 0ðtÞ;wðtÞFðhðtÞÞÞdt ¼

ðy
rðtÞðh 0ðtÞÞpPð1;wðtÞ=~wwðtÞÞdt

¼
ðy

rðtÞðh 0ðtÞÞpQðwðtÞ=~wwðtÞÞdt;

where

QðlÞ :¼ 1

q
jljq � lþ 1

p
:

Since
Ðy

rðtÞðh 0ðtÞÞpdt ¼ y and QðlÞb 0 with equality if and only if l ¼ 1, we

have (in view of (20)) b ¼ 0 in (21). Therefore, letting t ! y in (19) and then

replacing T by t, we have

hpðtÞðwðtÞ � ~wwðtÞÞ ¼ CðtÞ þ p

ðy
t

r1�qðsÞPðrq�1h 0;wFðhÞÞds;

where CðtÞ ¼
Ðy
t
ðcðsÞ � ~ccðsÞÞhpðsÞds.

Concerning the function Pðu; zÞ, we have for u; z > 0

Pðu; zÞ ¼ up

p
� uzþ zq

q
¼ up 1

q

zq

up
� zu1�p þ 1

p

� �
¼ upQðzu1�pÞ;ð22Þ

and

lim
l!1

QðlÞ
ðl� 1Þ2

¼ q� 1

2
:ð23Þ

Hence, for every e > 0 there exists d > 0 such that

Pðu; zÞb q� 1

2
� e

� �
up z

up�1
� 1

� �2

;ð24Þ

whenever jzu1�p � 1j < d. If we denote
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f ðtÞ :¼ hpðtÞðwðtÞ � ~wwðtÞÞ; HðtÞ :¼ 1

rðtÞh2ðtÞðh 0ðtÞÞp�2

then using (22), (24) and the fact that b ¼ 0 in (21), i.e.,
wðtÞ
~wwðtÞ � 1
			 			< d for large

t, we have

f ðtÞbCðtÞ þ pðq� 1Þ
2

� ~ee

� �ðy
t

rðsÞðh 0ðsÞÞp wðsÞ
~wwðsÞ � 1

� �2

dsð25Þ

¼ CðtÞ þ q

2
� ~ee

� �ðy
t

HðsÞ f 2ðsÞds;

for large t, where ~ee ¼ pe. Multiplying (25) by GðtÞ we get

GðtÞ f ðtÞbGðtÞCðtÞ þ q

2
� ~ee

� �
GðtÞ

ðy
t

HðsÞ f 2ðsÞds:ð26Þ

Inequality (26) together with (18) imply that there exists a ~dd > 0 such that

GðtÞ f ðtÞb 1

2q
þ ~ddþ q

2
� ~ee

� �
GðtÞ

ðy
t

HðsÞ
G2ðsÞ ½GðsÞ f ðsÞ�2dsð27Þ

for large t.

Suppose first that lim inf t!y GðtÞ f ðtÞ ¼: c < y. According to (27) c > 0,

and for every e > 0 we have ½GðtÞ f ðtÞ�2 > ð1� eÞ2c2 for large t according to the

definition of the number c. By (27) and the fact that GðtÞ
Ðy
t

HðsÞ
G2ðsÞ ds ¼ 1, we

have

ð1þ eÞcb 1

2q
þ ~ddþ q

2
� ~ee

� �
ð1� eÞ2c2:

Now, letting ~ee; e ! 0 we obtain

cb
1

2q
þ ~ddþ q

2
c2 , q

2
c� 1

q

� �2

þ ~dda 0;

a contradiction.

Finally, if

lim inf
t!y

GðtÞ f ðtÞ ¼ y;ð28Þ

denote by mðtÞ ¼ inf tasfGðsÞ f ðsÞg. Then m is nondecreasing and (27) implies

that

GðtÞ f ðtÞbK þ q

2
� ~ee

� �
m2ðtÞ;

where K ¼ 1
2q þ ~dd. Since m is nondecreasing, we have for s > t

GðsÞ f ðsÞbK þ q

2
� ~ee

� �
m2ðsÞbK þ q

2
� ~ee

� �
m2ðtÞ; ta s;
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and hence

mðtÞbK þ q

2
� ~ee

� �
m2ðtÞ

which contradicts (28). The proof is complete. r

When (3) reduces to Euler-type equation (5) and we take hðtÞ ¼ tðp�1Þ=p,

technical assumptions (i)–(iii) in the previous theorem are satisfied and this

theorem is simplified as follows.

Corollary 1. Suppose that (15) holds. Equation (13) is oscillatory

provided

lim inf
t!y

log t

ðy
t

cðsÞ �
gp

sp

� �
sp�1 ds >

1

2

p� 1

p

� �p�1

:ð29Þ

Remark 2. As we have already mentioned in the introductory section,

the previous corollary improves the main result of [4], where it is proved (using

the variational method) that (13) is oscillatory provided (7) holds. Actually, a

closer examination of the proof of Theorem 3.1 in [4] reveals that (7) can be

replaced by a slightly more general condition

lim inf
t!y

log t

ðy
t

cðsÞ �
gp

sp

� �
sp�1 ds > 2

p� 1

p

� �p�1

:

Now we turn our attention to a nonoscillation criterion which is proved

under no sign restriction on the integral
Ðy
t
cðsÞds and also under no assumption

concerning the divergence of the integral
Ðy

r1�qðtÞdt (compare Theorem 2).

Theorem 3. Suppose that equation (3) is nonoscillatory and possesses a

solution h satisfying (i), (iii) of Theorem 2. Moreover, suppose that integral (17)

is convergent and

ðy dt

rðtÞh2ðtÞðh 0ðtÞÞp�2
¼ y:ð30Þ

If GðtÞ is the same as in Theorem 2 and

lim sup
t!y

GðtÞ
ðy
t

ðcðsÞ � ~ccðsÞÞhpðsÞds < 1

2q
ð31Þ

and

lim inf
t!y

GðtÞ
ðy
t

ðcðsÞ � ~ccðsÞÞhpðsÞds > � 3

2q
ð32Þ

then (1) is nonoscillatory.
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Proof. Denote again

CðtÞ ¼
ðy
t

ðcðsÞ � ~ccðsÞÞhpðsÞds:

To prove that (1) is nonoscillatory, according to Lemma 2 it su‰ces to find a

di¤erentiable function v which verifies the di¤erential inequality (10) for large t.

This inequality can be written in the form

v 0 a�p
1

q

vþ C

h

				
				
q

r1�q � h 0 vþ C

h

� �
þ rðh 0Þp

p

� �
þ rðh 0Þp � ~ccðtÞhp

¼ �pr1�q 1

q

vþ C

h

				
				
q

� rq�1h 0 vþ C

h

� �
þ 1

p
rqðh 0Þp

� �
þ rðh 0Þp � ~cchp

¼ �pr1�qP rq�1h 0;
vþ C

h

� �
þ rðh 0Þp � ~cchp;

where the function P is introduced in Lemma 1. We will show that the

function

vðtÞ ¼ rðtÞhðtÞFðh 0ðtÞÞ þ 1

2qGðtÞ

satisfies this inequality for large t. To this end, let z ¼ vþC
h

, u ¼ rq�1h 0. First

consider the term r1�qP rq�1h 0; vþC
h


 �
. We have

z

FðuÞ ¼
vðtÞ þ CðtÞ

hðtÞrðtÞFðh 0ðtÞÞ ¼ 1þ 1þ 2qCðtÞGðtÞ
2qGðtÞrðtÞhðtÞFðh 0ðtÞÞ :

Since (16), (30) hold and GðtÞCðtÞ is bounded by (31), (32), we have z=FðuÞ ! 1

as t ! y. Hence, using (22) and the same argument as in the proof of

Theorem 2, for any e > 0, we have (with Q satisfying (23))

pr1�q 1

q

vþ C

h

				
				
q

� h 0rq�1 vþ C

h

� �
þ rqðh 0Þp

p

� �

¼ pr1�qrqðh 0ÞpQ vþ C

hrFðh 0Þ

� �

a p
q� 1

2
þ e

� �
rðh 0Þp ð1þ 2qGCÞ2

4q2r2h2ðh 0Þ2p�2
G2

¼ q

2
þ pe

� �
1

rh2ðh 0Þp�2

ð1þ 2qGCÞ2

4G2q2

for large t.
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Now, since (31), (32) hold, there exists d > 0 such that

�3þ d

2q
< GðtÞCðtÞ < 1� d

2q
, j1þ 2qGðtÞCðtÞj < 2� d

for large t, hence e > 0 can be chosen in such a way that

q

2
þ pe

� �
ð1þ 2qGðtÞCðtÞÞ2

4q2
<

1

2q

for large t. Consequently (using the fact that h solves (3)), we have

�pr1�q 1

q

vþ C

h

				
				
q

� rq�1h 0 vþ C

h

� �
þ rqðh 0Þp

p

� �
þ rðh 0Þp � ~ccðtÞhp

b� q

2
þ pe

� �
1

G2rh2ðh 0Þp�2

ð1þ 2qGCÞ2

4q2
þ rðh 0Þp � ~ccðtÞhp

> � 1

2q

1

G2rh2ðh 0Þp�2
þ ½rhFðh 0Þ� 0 ¼ rhFðh 0Þ þ 1

2qG

� �0
¼ v 0:

The proof is complete. r

Applying the previous theorem to (13) viewed as a perturbation of (5) gives

the following nonoscillation criterion.

Corollary 2. Equation (13) is nonoscillatory provided

lim sup
t!y

log t

ðy
t

cðsÞ �
gp

sp

� �
sp�1 ds <

1

2

p� 1

p

� �p�1

ð33Þ

and

lim inf
t!y

log t

ðy
t

cðsÞ �
gp

sp

� �
sp�1 ds > � 3

2

p� 1

p

� �p�1

:ð34Þ

Remark 3. (i) One of the results of the classical linear oscillation theory

for equation (2) is that under the assumption
Ðy

r�1ðtÞdt ¼ y, equation (2) is

oscillatory provided

lim inf
t!y

ð t

r�1ðsÞds
� � ðy

t

cðsÞds
� �

>
1

4
:

If
Ðy

r�1ðtÞdt < y then (2) is known to be oscillatory provided

lim inf
t!y

ðy
t

r�1ðsÞds
� � ð t

cðsÞds
� �

>
1

4
:ð35Þ
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In particular, if the equation

y 00 þ cðtÞy ¼ 0ð36Þ

is viewed as a perturbation of the Euler equation

y 00 þ 1

4t2
y ¼ 0;ð37Þ

i.e., (36) is written in the form

y 00 þ 1

4t2
yþ cðtÞ � 1

4t2

� �
y ¼ 0;ð38Þ

the transformation y ¼ hðtÞu with hðtÞ ¼
ffiffi
t

p
log t (which is a nonprincipal

solution of (37)) transforms equation (38) into the equation

ðt log2 tu 0Þ 0 þ cðtÞ � 1

4t2

� �
t log2 tu ¼ 0

and applying (35) to this equation (36) is oscillatory provided

lim inf
t!y

1

log t

ð t

cðsÞ � 1

4s2

� �
s log2 s ds >

1

4
:ð39Þ

Elbert [10] proved that generalized Euler equation (5) has a nonprincipal

solution (i.e., linearly independent of the principal solution y0 ¼ tð p�1Þ=p) which

is asymptotically equivalent to y ¼ tð p�1Þ=pðlog tÞ2=p. This fact and (39) o¤er

the conjecture that (13) is oscillatory (perhaps under some technical restriction

on the function c) provided

lim inf
t!y

1

log t

ð t

cðsÞ �
gp

sp

� �
sp�1 log2 s ds >

1

2

p� 1

p

� �p�1

:ð40Þ

This conjecture is a subject of the present investigation. Note that a weaker

form of this conjecture is proved in the recent paper [28] (using the variational

principle), where it is shown that (13) is oscillatory provided the lower limit in

(40) is greater than (the four-times greater constant) 2ððp� 1Þ=pÞÞp�1:

(ii) The investigation of qualitative properties of solutions of the partial

di¤erential equation with p-Laplacian (which describes several physical phe-

nomena, see e.g. [1, 3, 7])

divðk‘ukp�2‘uÞ þ cðxÞjujp�2
u ¼ 0ð41Þ

is one of the motivations for the research in the oscillation theory of (1). In

the linear case p ¼ 2, Hille-type oscillation criteria are established in the paper

of Schminke [29]. These criteria are based on modification of the Riccati
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technique consisting in the fact that if u is a nonzero solution of (41) then

w ¼ ‘u
u

satisfies the (Riccati type) equation

div wþ cðxÞ þ ðp� 1ÞkwðxÞkq ¼ 0:

The ideas of [29] can be combined with the method used in the proof of

statements of the previous section in order to extend oscillation criteria of [29]

to p-Laplace equation (41). Partial results along this line are achieved in the

papers of Mařı́k [23, 24].
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[14] J. Jaroš, T. Kusano, A Picone type identity for half-linear di¤erential equations, Acta

Math. Univ. Comenianae 68 (1999), 137–151.

[15] T. Kusano, Y. Naito, Oscillation and nonoscillation criteria for second order quasilinear

di¤erential equations, Acta. Math. Hungar. 76 (1997), 81–99.

[16] T. Kusano, Y. Naito, A. Ogata, Strong oscillation and nonoscillation of quasilinear dif-

ferential equations of second order, Di¤erential Equations Dynam. Systems 2 (1994), 1–10.

[17] L. Lakshmikantham, L. Leela, Di¤erential and Integral Inequalities, Acad. Press., New

York, 1973.

218 Ondřej Došlý and Alexander Lomtatidze



[18] H. J. Li, Oscillation criteria for half-linear second order di¤erential equations, Hiroshima

Math. J. 25 (1995), 571–583.

[19] H. J. Li, C. C. Yeh, Sturmian comparison theorem for half-linear second order di¤erential

equations, Proc. Roy. Soc. Edinburgh 125A (1995), 1193–1204.

[20] H. J. Li, C. C. Yeh, Oscillation of half-linear second order di¤erential equations,

Hiroshima Math. J. 25 (1995), 584–596.

[21] A. Lomtatidze, Oscillation and nonoscillation of Emden-Fowler type equation of second

order, Arch. Math. 32 (1996), 181–193.
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