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ABSTRACT. We investigate oscillatory properties of the second order half-linear dif-
ferential equation
(x) (r(@() +e(P(y) =0, D) =", p>1,
viewed as a perturbation of a nonoscillatory equation of the same form
(r(n)@(y")" + () @(y) = 0.

Conditions on the difference c(¢) — é(f) are given which guarantee that equation (x)
becomes oscillatory (remains nonoscillatory).

1. Introduction

In this paper we investigate oscillatory properties of the half-linear second
order differential equation

(1) (r(@(y) +e(@(y) =0,  D(s) = |s|" s,

where p>1, tel:=[T,o), r, ¢ are real-valued continuous functions and
r(f) >0 in I. Oscillation theory of half-linear equations (1) attracted a con-
siderable attention in the recent years, see e.g. [1, 2, 4, 7, 15, 16, 18, 19, 21, 25]
and the reference given therein. In these papers it was shown that many of the
(non)oscillation criteria for the linear Sturm-Liouville second order differential
equation

(2) (r(1y") + )y =0

(which is a special case p =2 of (1)) extend to half-linear equation (1).
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In the majority of these oscillation criteria, equation (1) is viewed as a
perturbation of the one-term differential equation

(r(n)@(y") =0,

and (non)oscillation criteria are formulated in terms of the integrals

J y c(s)ds if J r'=4(f)dt = o, q= r
t p—1
or

Jw(rrlq(f)df)pc(s)ds if erl’q(l)d1<oo,

t N

see e.g. [15, 16].
In this paper we use a more general idea, we investigate equation (1) as a
perturbation of the fwo-term equation of the same form

3) (r(2(y")" +e()@(y) =0

and the obtained criteria are formulated in terms of the integral

J&m—amwmm

(limits in this integral depend on the particular situation), where y is the so-
called principal solution of (3). In the case ¢(7) =0 and [” r!=9(¢)dt = oo,
this principal solution is y(7) = 1, while if [ r!79(¢)dt < oo, this solution is
y(t) = [ r'=9(s)ds, i.., our oscillation criteria reduce to those proved in [15,
16] when é(¢) = 0.

The idea to compare oscillatory properties of equation (1) with another
two-term equation was used for the first time by Elbert [9], where the equation

(4) (@(1") +c(n@(y) =0

is regarded as a perturbation of the half-linear Euler differential equation
! ! yp _ _ p - 1 r

(5 @O o =0 =("),

(6) r (c(t) - Z’) T

This result was complemented in [4], where it was shown that if the integral in
(6) is convergent, then (4) is oscillatory provided

7 tim tog ¢ [ (ets) =22 Yo ar > 2 (=LY
(7) im log ¢ c(s)—s—ps t > e .

— o0 ¢
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In this paper we insert these criteria into a general framework, where the
function ¢ is any function such that equatio? (3) is nonoscillatory. Among

p
others, we prove that the constant 2(1’771) in (7) can be replaced by the

—1\#-! . A .
better one %(%) . Our investigation is based on the recently established

Picone’s identity (cf. [14]) and the “quadratization” of a certain nonlinear term
appearing in this identity, coupled with the classical tools as the variational
principle and the Riccati technique. An important role is also played by the
concept of the principal solution of half-linear equation (1) (cf. [11, 26]).

The paper is organized as follows. In the next section we give some
auxiliary results concerning the oscillation theory of half-linear equations (1)
and Section 3 is devoted to the main results of our paper—new oscillation and
nonoscillation criteria for (1). The last part of Section 3 contains some remarks
about possible extensions of the results of this paper.

2. Auxiliary results

Let us start with the principal concepts of the half-linear oscillation theory.
These concepts are very similar to the linear case p = 2. Two points ¢, ¢, are
said to be comjugate relative to (1) if there exists a nontrivial solution y of this
equation such that y(#;) =0 = y(#,). Equation (1) is said to be disconjugate in
an interval I < R if there exists no pair of points of this interval which are
conjugate relative to (1), in the opposite case (1) is said to be conjugate in I.
It is known, see Elbert [8] and Mirzov [25], that the basic facts of the linear
Sturmian theory extend almost verbatim to (1). Consequently, if [ is an
interval of the form I = [a, c0), then any solution of (1) has either infinitely
many or only a finite number of zeros in /. Hence, similar to the linear case,
equations (1) can be classified as oscillatory or nonoscillatory.

Concerning the unique solvability of (1), given 4,Be R and 1 € I = (a,b),
I being an interval where the functions r, ¢ are continuous and r(¢) > 0, then
the initial value problem y(#)) = A4, r(t))P(y'(ty)) = B for (1) has the unique
solution which is extensible up to a and b. This statement was proved by
Elbert [8] using the generalized Priifer transformation.

Our first result of the next section, Theorem 1, leans on the relationship
between disconjugacy of (1) and the positivity of the functional

b
Sp(yia,b) = J @' = ey )de, v e Wy (a,b),

a

in particular, (1) is disconjugate in [a,b] if and only if #,(y;a,b) > 0 for every
nontrivial y € WOI"P (a,b), for more details see Li and Yeh [19] and also Mafik
[22].
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The next results, oscillation and nonoscillation criteria given in Theorems
2, 3 are based on the Riccati technique consisting in the fact that if y is a

solution of (1) for which y(7) # 0 in some interval, then the Riccati variable

w= rzg )) solves the generalized Riccati equation

(8) w' 4 e(t) + (p — Dr'=(1)|w]? = 0, q:%,

in this interval. In particular, equation (1) is disconjugate in the interval
[a,b] if and only if there exists a solution w of (8) which is defined in the
whole interval [a,b]. Recall also the concept of the so-called distinguished and
principal solutions of (8) and (1), respectively, introduced in [26] and inde-
pendently in [11]. An alternative approach (but equivalent) to these concepts
can be found in [5]. Suppose that (1) is nonoscillatory. Then there exists at
least one solution of (8) which is extensible up to infinity. Among all solutions
having this property there exists the minimal one, called (by analogue with the
linear case) distinguished solution (another terminology is eventually minimal
solution), which is minimal in the following sense. If W is the eventually
minimal solution of (8) and w is any other solution which exists on some
interval [T, c0), then w(z) > W(f) in this interval. Recall that the eventually
minimal solution W is constructed as follows. Suppose that (1) is disconjugate on
[T,00) and b > T. Let y, be the solution of (1) given by the initial condition
(b)) =0, y;(b) =—1. Then y,(t) >0 for [T,b) and denote wy, = r@(y;/ys)
the corresponding solution of (8). The eventually minimal solution w is then
given by the formula
w(t) = lim wy (1),
b—w0

where the convergence wp, — W is uniform on every compact subinterval of
[T, ).

The principal solution of (1) is defined as the solution of this equation
which is associated with the distinguished solution w of (8), i.e., it is given by
the formula

¥ = exp{j’r‘-mwl<w<s>>ds},

where w is the distinguished solution of (8) and @~! is the inverse function of &.

The link line between the Riccati and variational technique is the so-called
Picone identity which reads in the half-linear case as follows (here we present
this identity in a simplified form since we will not need it in its full generality).

LemMma 1 ([14]). Suppose that w is a solution of (8) which is defined in the
whole interval I = [a,b]. Then for any ye W'P(a,b) the following identity
holds:
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b
7 (yia,b) = w(D)|yI" !+ pj

a

Br(zmp WO B(y)y + }Ir‘*4<r>|w<r>|‘f|y\f’ i

b
— WOy + pj APy (),

a
where

P q
9) P(u,z):ﬂfuzqtﬁzo
p q

for any u,z € R with equality if and only if z = @(u).

We will also need the following refinement of the relationship between
nonoscillation of (1) and solvability of (8).

LEmMMA 2. Suppose that equation (3) is nonoscillatory and h is an even-
tually positive solution of this equation. Further suppose that the integral
|7 (c(s) — é(s))h?(s)ds converges and denote

C(1) = J (c(s) — €(s))h?(s)ds.

t

Then equation (1) is nonoscillatory provided there exists a differentiable function
v which for large t satisfies the Riccati-type inequality

L Q08 oaty — o () | - oo,

h(1)

1) o< "’B

ProOOF. Suppose that v satisfies (10) and exists on some interval [T, c0).
Then by the standard theory of differential inequalities (see e.g. [17]) there exists
a solution ¥:[T,0) — R of the differential equation

o 113+C(t)‘frl_q i (P CONT s
e on MACRLCIC o IREEC

satisfying the inequality #(7) > v(¢) for large 7, i.e., ¥ also exists on the whole
interval [T, c0) (the fact that ¥ cannot blow up to infinity can be proved using the
same argument as in the linear case, see e.g. [31]). Now, if w= ”,J;,C , one can
verify directly that this function satisfies (8) and hence (1) is nonoscillatory. []

3. Main results

In this section we present the main results of the paper. We investigate
oscillatory properties of equation (1) viewed as a perturbation of (nonoscillatory)
equation (3). We start with a statement proved using the variational principle
which requires (in contrast to other statements of this section) no additional
restrictions on the functions r, ¢ in (1).
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THEOREM 1. Suppose that h is the principal solution of (nonoscillatory)
equation (3) and

b— o0

(11) Jw(c(l‘) — ()M (t)dt :== lim Jb(c(t) — ()W (t)dt = 0.
Then equation (1) is oscillatory.

PrOOF. According to the relationship between disconjugacy of (1) and
positivity of the functional #, mentioned in Section 2, to prove that (1) is
oscillatory, it suffices to find for any T e R a function y e W'?(T, ), with a
compact support in (7', 00), such that #,(y;T,0) <0. Hence, let T e R be
arbitrary and T < fy < t; < f, < t3 (these points will be specified later). Define
the test function y as follows.

0 T <1< 1,
flt) nw<t<un,
y) =< h(t) H <t<t,
g(t) L <t<t,
0 13 <t < o0,

where f, g are solutions of (3) given by the boundary conditions f(#) =0,
f(t1) =h(t1), g(ta) = h(t2), g(t3) =0. Recall that these solutions exist if #
is sufficiently large. Indeed, disconjugacy of (3) for large ¢ implies that its
solution y given by y(f) =0, y'(to) > 0 satisfies y(z) >0 for > #;, and by
the homogeneity property of the solution space of (3) f(¢) = y(¢)(h(t1)/y(t1)).
The existence of the solution ¢ is proved using the same argument. Denote

ro(f’) PN _ro(9)
o(f) o)
i.e., wr, wy, w are solutions of (8) generated by f, g, i respectively. Note that

nonoscillation of (3) implies that f(z) >0, g(r) >0 on (f,1], [f2,13), Tespec-
tively, if 7y is sufficiently large. Using integration by parts we have

151

I (fito 1) = j GO O — &)1 (1) e - j (c() — &) f (D)|dr

fo

151

=r()@(f () f ()] — J (c(t) = () S (r)dt

fo

Similarly we have
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Ayl 1, = ORI~ | eto) - el (ia

n

and
3

9(g: 12, 13) = —g? (12)wy(12) — j (c(t) — &(1))g” ()t

5]

Consider the integral f:(c—é)gp dt. The function g/h is monotonically
decreasing on (5, 13) with (g/h)(t2) = 1, (g/h)(t3) = 0. Indeed, if (g/h)'(£) =0
for some ¢ € (t,,13), then (g'h — gh')(t) =0 and hence W(f) = wy(z). But this
contradicts the unique solvability of (8), hence (g/h)'(t) <0 for te (tr,13).
Therefore, by the second mean value of integral calculus, there exists a

& € (tr,t3) such that

[t - cwrarva= |

5]

4]

(clt) — ()P (1) (igg) d

5]

= r(c(t) — ¢(1))h? (t)dt.

15}
Now, let T < #) < f; be fixed (and sufficiently large), and denote

n

K= h"(0)[wy(01) = w(n)] = J (c(r) = €(0)) S ().

fo
Then, using the fact that f(#;) = h(t1), h(t) = g(t2), we have
¢
(12)  7,(»T,0) =K — J (c(2) = e()h"(t)dt + h* (12)[W(12) — wy(2)].
4]
Now, if ¢ > 0 is arbitrary, then according to (11) #, can be chosen in such a
way that J"['I (c(s) — é(s))h?(s)ds > K + ¢ whenever ¢ > t,. Finally, since / is the
principal solution of (3), i.e., w is the eventually minimal solution of (8), by
its construction described above Lemma 1 we have (observe that w, actually
depend also on #3)
Hm A7 (8)[w(t2) — wy(t2)] =0,
13— 0 h
hence the last summand in (12) is less than ¢ if 73 is sufficiently large.
Consequently, jp( yito,13) <0 if 1y, 11, t, t3 are chosen in the above specified
way. [

REmMARK 1. As we have already mentioned in the introductory section, the
previous theorem is a generalization of the oscillation criterion of Elbert [9]
which claims that the equation

(13) (@) + c()d(y) =0
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is oscillatory provided

Indeed, if r(z) =1 and ¢(z) = y,77, ie., (3) reduces to the generalized Euler
equation (5) with the so-called critical coefficient y,, then h(t) = (P=D/P is the
principal solution of (5) (see e.g. [10]) and (11) reduces to (14). A detailed
investigation of (13) viewed as a perturbation of Euler equation (5) can be
found in [12].

Now we turn our attention to the criteria proved using the Riccati
technique. Compared with the previous theorem, these statements apply also
to the case when [*(c — ¢)h? is convergent, on the other hand, some additional
technical assumptions are needed.

THEOREM 2. Let [ r'=9(t)dt = oo,

(15) J c(t)dt converges and J c(s)ds =0  for large t.

t

Further suppose that equation (3) is nonoscillatory and possesses a positive
solution h satisfying

(i) The derivative h'(t) >0 for large t,

(it) It holds

| oy

(i) There exists a finite limit

(16) lim r(£)h(6)D(h' (1)) =: L > 0.

t— o0

Denote by
ds

erwmme”

G(1) =

and suppose that the integral

e b
(17) || (et~ eopmetoyar = tim [ (et~ o oya
is convergent. If
(18) liminf G(1) Ji(c(s) _ ()P (s)ds > i

then equation (1) is oscillatory.
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PrOOF. Suppose, by contradiction, that (1) is nonoscillatory, i.e., there
exists an eventually positive principal solution y of this equation. Denote by
2()")

W= r(t)m. Then w satisfies the Riccati equation (8) and w(z) > 0 for large

t. This follows from the half-linear version of the Hartman-Wintner theorem
(cf. [20] or [27]), by this theorem w is also a solution of the integral equation

o0

| s+ -1 [ ) as

t t

w(t)

and hence w(¢) > 0 for large ¢ according to (15). Using the Picone identity for
half-linear equations given in Lemma 1 we have

[ P17 - ol
T

=Pl + [ T = w200 + (0 = D o)l s

t
= w(s)|x”|} + pJ P9 P(ri7 X! wd(x))ds
T
for any differentiable function x, where P is given by (9), and integration by
parts yields

t

[/ = catrlas = [ )b = e - [ (et = et

1

= @) = || OGO + o)D)

t
- J (c(s) — é(s))|x|"ds.
T

Substituting x = / into the last two equalities (4 being a solution of (3) satisfying
the assumptions (i)—(iii) of theorem), we get

13 t

(19) (s — ), = J (cls) — é(s))h? ds + pJ P00 P i wab () s,
T

r@d(h')

o)

T

where w = Since w(¢) > 0 for large ¢, we have

h()w(t) +h*(T)(w(T) — w(T))
> J[ (c(s) — &(s))h? ds+ p J[ P4(s) P Y wab(h))ds.
T T

Letting ¢t — oo, since P(u,v) > 0 and using (17), this means
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(20) Jm PP (R (1), w(t) B(A(1))dt < oo,

Now, since (16), (17), (20) hold, from (19) it follows that there exists the
limit
(21) lim A7 () (w(t) — w(t)) =:

—o0

and also the limit

ow() L hP(w(n) L+ P
a0 = w0 = L
We have

0

Jw P (R (1), w(t)D(h(1)))dt = J r(t)(h'(2))P P(1, w(t)/w(t))dt

- j (1) ()" Qw(0)/i0)) b,

where

1 1
0(2) ==~ |A% — A+~
q P

Since [* r(£)(h'(1))?dt = oo and Q(Z) > 0 with equality if and only if 1 =1, we
have (in view of (20)) f =0 in (21). Therefore, letting t — oo in (19) and then
replacing T by ¢, we have
B2 () (w(2) — (D)) = C(6) + pJ P95 P web(h)) s,
t
where C(t) = [”(c(s) — &(s))h? (s)ds.
Concerning the function P(u,z), we have for u,z >0

P q 1 z¢ 1
(22) P(u,z) = u; —uz —|—% =u’ (5 LZl—p —zu' —|—;> =u”Q(zu'"7),
and

o) _gq-1

(23) P -1 2

Hence, for every ¢ > 0 there exists 0 > 0 such that

(24) P(u,z) > (q—;l—e>up (%— 1)2,

whenever |zu!™” — 1| < 4. If we denote
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1
OLEOIUG)
w I) 1’

£00) = WOt = w(0),  H(1) =

then using (22), (24) and the fact that § =0 in (21), i.e.,
t, we have

25) f()=Cl)+ (p(qz_ bh_ a) r r(s)(h'(s))” (ﬁ - 1)2ds

t w(s)

—c() + (g - s> r H(s) f2(s)ds

t

< 0 for large

for large ¢, where & = pe. Multiplying (25) by G(¢) we get

(26) G(1)f (1) = GH)C(t) + (;’ - s> G(1) Jm H(s)f2(s)ds

t

Inequality (26) together with (18) imply that there exists a d > 0 such that

(27) GOS0 2 ~+5+ (g - e> G(1) f gz((?) [G(s)f (5)]ds

2q
for large ¢.
Suppose first that liminf,_.., G(¢)f(f) =: ¢ < c0. According to (27) ¢ > 0,
and for every & > 0 we have [G(7) f(1)]* > (1 — &)%¢? for large 7 according to the
definition of the number c. By (27) and the fact that G(¢) [~ A1) g — 1, we

h rG(s)
ave
1 22
1 > — =— 1-— .
(14+8)c 2q+5+<2 8)( £)c

Now, letting & & — 0 we obtain

a contradiction.
Finally, if
(28) liminf G(¢)f(¢) = o0,

denote by m(t) = inf,<{G(s)f(s)}. Then m is nondecreasing and (27) implies
that

G010 > K+ (§-5)m(0),

where K = %]—1—5. Since m is nondecreasing, we have for s > ¢

G(s)f(s) = K + (g— é)mz(s) >K+ (g— é)mz(l), 1<,
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and hence
m@2K+@—me

which contradicts (28). The proof is complete. O

When (3) reduces to Euler-type equation (5) and we take A(f) = t(?=1/r,
technical assumptions (i)—(iii) in the previous theorem are satisfied and this
theorem is simplified as follows.

COROLLARY 1. Suppose that (15) holds. Equation (13) is oscillatory
provided
0 =1
imi _Tpl 1 p—1
(29) ll?lglf log tjt [c(s) sﬁ]s ds > 2( » .
REMARK 2. As we have already mentioned in the introductory section,
the previous corollary improves the main result of [4], where it is proved (using
the variational method) that (13) is oscillatory provided (7) holds. Actually, a

closer examination of the proof of Theorem 3.1 in [4] reveals that (7) can be
replaced by a slightly more general condition

0 y p_ll’*l
lmeyJ%w—ﬂﬁlﬁ>4jr>.

1— o0 ¢

Now we turn our attention to a nonoscillation criterion which is proved
under no sign restriction on the integral [, c(s)ds and also under no assumption
concerning the divergence of the integral [* r!=4(f)dt (compare Theorem 2).

THEOREM 3. Suppose that equation (3) is nonoscillatory and possesses a
solution h satisfying (1), (iil) of Theorem 2. Moreover, suppose that integral (17)
is convergent and

JOO dt
r(OR (D) (0 (1))

If G(t) is the same as in Theorem 2 and

(30)

(31) 1%$pagr@@amm@¢<%
and
(32) 1@gfagr@@—amw@m>—;

then (1) is nonoscillatory.
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ProOOF. Denote again

C(t) = J (c(s) — ¢(s))hP(s)ds.
t

To prove that (1) is nonoscillatory, according to Lemma 2 it suffices to find a

differentiable function v which verifies the differential inequality (10) for large ¢.

This inequality can be written in the form

1 q AY4
V' < —p [5 f ; < Pl — h’(#) —l—@} + (k") —¢(0)h?
q
— —prie B e (” : C) + ;r‘f(h')”] (WY — e
= —pri-ip (rq_lh’, 0 —; C) +r(h')? — ch?,

where the function P is introduced in Lemma 1. We will show that the
function

1

0(0) = rO@PH () + 5,50

satisfies this inequality for large z. To this end, let z = #, u=r9"'h". First

consider the term r!=¢P(r¢~1h',"2€). We have

z o(t) + C(1) 1 4+29C(1)G(2)

) h(r(@(h'(1)) — 2qG(O)r(h(P(h' (1))

Since (16), (30) hold and G(z)C(¢) is bounded by (31), (32), we have z/®(u) — 1
as t— oo. Hence, using (22) and the same argument as in the proof of
Theorem 2, for any ¢ > 0, we have (with Q satisfying (23))

prlq{l q_h,rq1<v+C>+rq(h’)p}
q h p
o d—ana(n\p v+ C
pririli) Q(hr@(h’))

g—1 np  (142¢GC)?
Sp( 2 —i—e)r(h) 4422 R (W) P2 G2

(g 1 (142¢GC)?
B r2(h)P2 4G22

v+ C
h

for large ¢.
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Now, since (31), (32) hold, there exists 6 > 0 such that

—346
2q

< G(HC(1) < %@ |1 +29G(t)C(1)] <2—0

for large ¢, hence ¢ > 0 can be chosen in such a way that

q (142¢G(1)C(1)* 1
(5+p8> 44> <2

for large r. Consequently (using the fact that & solves (3)), we have

_ 1o+ C|? _ v+ C\ ri(h')? .
—prl—a| = i b AN i ne _ P
pr [q 7 ¥ h( 7 )—i— » +r(h") —é(t)h
(4 1 (14+24GC)*  op
= (2“’ 8) G Agr e
1 1

1 /
AN / /
> ——2q 7G2rh2(h’)p_2 + [rh@(h )] = {rhcﬁ(h ) —|——2q } =v.

The proof is complete. ]

Applying the previous theorem to (13) viewed as a perturbation of (5) gives
the following nonoscillation criterion.

COROLLARY 2. Eguation (13) is nonoscillatory provided

. ” 7\ L(p—1\"
1 1 _ P -l il
(33) 1r;:s;1p ogZL (c(s) Sp)s ds < 2( » )
and
o0 -1
imi ()~ )V as> — 2 (P=LY
(34) llmg;f log ZL (c(s) Sp)s ds > 2( » .

REMARK 3. (i) One of the results of the classical linear oscillation theory
for equation (2) is that under the assumption [ r~!(7)dt = co, equation (2) is

oscillatory provided
t o0 1
li¥n inf (J rl(s)ds> (J c(s)ds) >

If [*r !(¢)dt < oo then (2) is known to be oscillatory provided

(35) lim inf (LOC rl(s)ds> (Ji c(s)ds> > %.
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In particular, if the equation
(36) y'+e(t)y=0
is viewed as a perturbation of the Euler equation

"

1
37 — =0
(37) Yt gay =0

i.e., (36) is written in the form

1 1
(38) '+ Py (6(1) - 4_t2> y =0,

the transformation y = A(f)u with h(¢) = \/tlogt (which is a nonprincipal
solution of (37)) transforms equation (38) into the equation

(tlog® n) + (c(t) - ﬁ)tlog2 tu=0
and applying (35) to this equation (36) is oscillatory provided

t
(39) liminf %glj (c(s) - %ﬁ)s log? s ds > %
Elbert [10] proved that generalized Euler equation (5) has a nonprincipal
solution (i.e., linearly independent of the principal solution y, = #(#~1/?) which
is asymptotically equivalent to y = /(?~V/7(log £)*”. This fact and (39) offer
the conjecture that (13) is oscillatory (perhaps under some technical restriction
on the function ¢) provided

t -1
(40) ligiogf loLgtJ (c(s) - E—‘;) sP" 1 og? s ds > % <%> .
This conjecture is a subject of the present investigation. Note that a weaker
form of this conjecture is proved in the recent paper [28] (using the variational
principle), where it is shown that (13) is oscillatory provided the lower limit in
(40) is greater than (the four-times greater constant) 2((p — 1)/p))” .

(i) The investigation of qualitative properties of solutions of the partial
differential equation with p-Laplacian (which describes several physical phe-
nomena, see e.g. [1, 3, 7))

(41) div(|Vul”*Vu) + e(x)|ul’ u =0

is one of the motivations for the research in the oscillation theory of (1). In
the linear case p = 2, Hille-type oscillation criteria are established in the paper
of Schminke [29]. These criteria are based on modification of the Riccati
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technique consisting in the fact that if # is a nonzero solution of (41) then

v . . .
w = 7! satisfies the (Riccati type) equation

divw+¢(x) + (p — D)|w(x)||? = 0.

The ideas of [29] can be combined with the method used in the proof of
statements of the previous section in order to extend oscillation criteria of [29]
to p-Laplace equation (41). Partial results along this line are achieved in the
papers of Mariik [23, 24].
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