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Conventions.

Throughout the lecture, we utilize the letter A, B, C, S and X to de-
note a commutative noetherian ring with unit, an essentially small
abelian category, a category, a finite set and the affine sheme
associated with A respectively.

For any non-negative integer m, let us denote the totally ordered
set of integers k such that 0 < k& < m with the usual order by [m)].



1 Main theorems and motivation



Main theorems.

Abstract Buchsbaum-Eisenbud theorem for multi-
complexes.

Weak geometric presentation theorem

For any strictly regular closed immersion' Y — X, we have a de-
rived equivalence
vy Tot v
Xwm = XTop-

(In progression work) Caborn-Fossum, Dutta chow groups
problem

If A is regular local, then Ch,(X) = 0 for any d < dim X.



The statement |1 |is an assertion about objects and morphisms in
B involves a natural number n.

oen —1

a b
e —H> 0 — 0

If ba is a monomorphism, then a is a monomorphism.

on —2

—

I11 v

— 0 <— @
— 0<— @

NEN
min

If the big square I+-W+II+1V is a Cartesian square and if all mor-
phisms in the diagram above are monomorphisms, then the square
| is Cartesian.



e The CDF problem is a variant of the following classical theorem.

Theorem.
If A is a unique factorization domain, then Pic X = 0.

e The CDF problem is known for various A by utilizing

structure theorems over a base
or

weight argument of Adams operations.



|deally, the CDF problem should be proven from the following con-
jectural statement which | call

an absolute geometric presentation
theorem.

If A is regular local, then the canonical map

D p
Xy — XTop

is a derived universally homeomorphism for any 0 < p < dim X.

Compare with the weak geometric presentation theorem with an
absolute geometric presentation theorem.



2 Spirit of elemetary divisor theory



Sorting out modules
by Systems of matrices

with equivalence relations.
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Syzygy.

Systems of matrices = complexes of finitely generated free mod-
ules.

Equivalence relation = quasi-isomorphism.

Bourbaki-lwasawa-Serre theory.

Equivalence relation = pseudo-isomorphism.

Here a homomorphism of A-modules f : M — N is a pseudo-
isomorphism if Codimker f > 2 and Codim Coker f > 2.

Today’s lecture.

Modules= TT-pure weight modules.
Systems of matrices = Koszul cubes.

Equivalence relation = totalized quasi-isomorphism. (A!-homotopy
equivalence, generic isomorphism).
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What makes a comlex exact?

Buchsbaum-Eisenbud theorem.

For a complex of free A-modules of finite rank.

¢

F0sFEBE . SR8 RS0,

setr; =Y (—1)"'rank F}. Then the following are equivalent:
j=t

(1) F, is a resolution of Hy(F,).

(2) grade I,,(¢;) > i forany 1 < i < s where I,.(¢;) is the r;-th
Fitting ideal of ¢;.
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3 What makes a multi-complex exact?
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Definitions.

An S-cube in C is a contravariant functor

P(S)P(S 15" = C.

Forany U € P(S)and k € U,
o zy(:=x(U)) vertex of x at U.

o dj (= db) = z(U ~ {k} — U) k-boundary map at U.

[
S={1}  S={12} S =1{1,2,3}
a}
2 zs d%LQ} [T
2 /
xS xS — x{l} ©i1,3) ETER af1,2)
d}sl d di, l )
. 12,3y
X 4t1,3} Tio x
R am B
{2}
%5y
”3} iy
_
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Example 1

For a family of morphisms ¢ := {z; gy T}ses in B, we put

T ifU=0
Fibyr; = < a4 if U = {s}
Ty XI.CL’tQ Xx"'xxx@, |fU:{t1,,tr}
Definition.

An S-cube z in B is fibered if the canonical map

dS
T — Fib{l‘{s} E>} xq)}ses

is an isomorphism.

Example 2
For a family of elements §¢ = {fs}scs in A, we put

Typ(fs)v == A and dj; = f;
forany U €e P(S)and s € U.

(Notice that Tot Typ(fg) is the Koszul complex associated with

fs)
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Faces and homology of cubes

Definitions.
k€ S, z: S-cube
B* F*.P(S~{k}) = P(9)
FF.U—sU
B* . Uw— UU{k}

e 2 B*: backside k-face of z.

e 2 F'*: frontside k-face of .

o Hi(z) := Coker(zB* — xF*): k-direction 0-th homology of .

KS ={1,2}
r§ —— .%‘{1} Hg(x){l}
R
Loy ———— L H(Q)(x)@
J
Hy(2) 2y — Hi(2)o
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Admissibility

Definition.
We say that an S-cube z in B is admissible if
(1) its boundary morphism(s) is (are) monomorphism(s) and

(2) if for every k in S, Hi(x) is admissible.

e We can prove that any admissible cube is fibered.

e We can prove that an S-cube z in B is admissible iff

(1) all faces of the S-cube x are admissible and

(2) Hg(Tot x) = 0 for any k£ > 0.
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Example 1.

For a commutative diagram of monomorphisms in B

e — ©

||

e — o

the diagram above is admissible iff it is Cartesian.

Example 2.

For any family of elements f¢ = { fs}ses In A, Typ(fg) is admissible
iff 5 is a regular sequence in any order.

Admissibility

= a higher analogue of the notion about
Cartesian squares

= a categorical variant of the notion about
regular sequences.

18



Double cubes

Definitions.

A double S-cube in C is a contravariant functor

z:[2°" = C.
For any i € [1]°, we put

ei: [1]° = [2]°, j—i+j and
Out : [1]° = [2]°, j — 2j.

Example.

L(22) — L(21) — 7 L(2,0)

I

T2 77 Ty — L0

|m | o

L0,2) — 7 L(0,1) — 7 (0,0

I= zeq1), 1= zeq ), ll= ze0,), IV= 2¢(0) @and

I4+-I+-M-+1IV = 2 Out.
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ABE theorem

Theorem.

Let x be a double S-cube in B. We assume that the following
conditions hold.

e The S-cube x Out is admissible.

e All boundary morphisms of the double S-cube x are monomor-
phisms.

o If #£S > 3, all faces of the S-cube xzer are admissible for any
proper subset 7" of S.

Then the S-cube zeg is also an admissible S-cube.

20



Adjugates of cubes

From now on, let B be the category of A-modules.

Definitions.

An adjugate of an S-cube x in B is a pair (a,0*) consisting of
a family of elements a = {a;}scs in A and a family of morphisms
0" = {df : xr iy = Tr}reps)er in B which satisfies the following
two conditions.

e We have the equalities di-d% = (a;)
any T e P(S)andteT.

, and dydy = (a),, for

T {t

e For any 7' € P(S) and any distinct elements « and b € T, we
have the equality d}.di" = dj* ,,d}._,,- Namely, the following dia-
gram is commutative.

dt
LT~{a} r LT

d’l}\{a} l Jdl’}

LT {a,b} o {:} LTA{b} -

(2) An adjugate of an S-cube (a,0*) is regular if a forms zp-
regular sequence in any order for any 7" € P(S).

Example.

X n x n matrix whose coefficients are in A, z := [A™" 2 A%

Then a pair (adj X, det X) is an adjugate of z.
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BE theorem for cubes

Corollary.

If an S-cube x in B admits a regular adjugate, then x is admissi-
ble.

Proof.

For S = {1,2}, we apply the ABE theorem to the double cube
below.

d, dy
rg —— 33{2} — Ig

d3 a2y l a2

dl*

{1}

Ty Ty
{1} .

d%* J,d%Q} d%

s ﬁ T2} ﬁ xrg.
dg dg"
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4 Weak absolute geometric presentation theorem
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Koszul cubes

In this section, let f¢ = {f;}scs be a family of elements in A which
forms a regular sequence in any order and x an S-cube in B.

Definition.

r is Koszul (associated with f¢) if for any 7" € P(S) and any
kel,

(1) =7 is a finitely generated projective A-module and
(2) d% is injective and

(3) There exists a non-negative integer m; such that
" Coker d¥. = 0.

We denote the category of Koszul cubes associated with {4 by
Kosif.

e We can prove that any Koszul cube is admissible by BE theorem
for cubes.

A morphism between koszul cubes (associated with f¢) a : x — y
is a totalized quasi-isomorphism if Hy Tot a is an isomorphism.

Example.

Typ(fg) is a Koszul cube.
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Solid devices

Definition.

A solid device E = (£, w) is a pair of a category £ and a class of
morphisms w in £ which satisfies the following axioms.

e & is an exact category.
e (£, w) and (E°P, w°P) are categories with cofibrations and weak equivalences.

o (Extensional axiom). For any commutative diagrams admissible exact sequences in £,

if a and ¢ are in w, then b is also in w. Let us write £ for the full subcategory of £ consisting of those object « such that the canonical morphism 0 — x is in w. Then £ naturally
becomes an exact category.

® (Solid axiom). For any morphism f : @ — y in w, the complex Cone f = [z i» y] is connected to a bounded complexes on £ by a zig-zag of quasi-isomorphisms.
o (Fibrational axiom). The canonical inclusion functors €% — &£ and (€, i) — (&, w) induce the sequence having a homotopy type of fibration sequence

iSeEY — iSeE - wSeE

where i means the class of all isomorphisms and S means the Segal-Waldhausen S-construction.

e We will functorially associate a solid device E with
(1) the non-connective K -spectrum K(E) and

(2) the bounded derived categories D,(E) which is a triangulated
category.

A morphism between solid devices f : E — F is a derived equiv-
alence if it induces an equivalence of triangulated categories
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Example 1.

Y — X:closed subset. We put
X%‘/Op = (Perf?)/(u qls)7

Xipop = (Perfly, qis)

where Perf’. is the category of perfect complexes whose cohomo-
logical support are in Y and Perff := | J Perfy. X}, and
CodimY>p

Xp

Top @€ solid devices.

Example 2.

Y — X:regular closed immersion of codimension r.

A perfect Ox-module F on X is a TT-weight  (supported on Y')
if Supp F C Y and Tor-dim F < r.

Let us denote the exact category of TT-weight » modules sup-
ported on Y by Wt .

We put
XY= (Wtk, isom).

Y . . .
X is a solid device.

Example 3.

Y = V(fg). We put

XY= (Kosif,tq)
where tq is the class of totalized quasi-isomorphisms in Kosfg.
XY\ is a solid device.
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WGP theorem

Theorem.

ForY =V (fg), the canonical map
XBU/M jﬁ)t X%’/op

is derived equivalence.

Proof.

Tot

X
HO% /I
Xip
In the derived commutative diagram above, the map | is a derived
equivalence by Hiranouchi-M.

To prove that Hy Tot is a derived equivalence, one of the key in-
gredient is giving an algorithm about inductive resolution process
of pure weight modules by Koszul cubes. ]
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5 A'-homotopy invariances, generic isomorphisms

28



Regularity and A!'-homotopy invariance

In this section, let A be a regular local ring.

Lemma.

Let f¢ = {fs}ses be a regular sequence in A and we putY =
V(f¢). Then the canonical map A — A[t] induces an isomorphism
of K-groups

Ko (X p1) = (X [ty p)-

e In particular, for any z(t) € X[t]¥ , [2(0)] = [2(1)] in Ko(X) ).
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Generic isomorphisms

Let 0 < p < dim A be an integer. We propose the following asser-
tions.

(o) For any regular sequence f,--- , f, in A, the canonical inclu-

sion functor

V(f 7"'7fp) V(f 7""fp— )
XTopl C_>‘)<Top1 1

induces the zero map on their Grothendieck groups.

(Bp) For any regular sequence fq such that #S = p, the

Grothendieck group KO(XLS w) Is generated by Koszul cubes of
rank one.

Lemma.

(1) The assertion (3,) implies (o).
(2) The assertions (o) (0 < p < dim A) imply the CDF problem.

(3) Let g be an element in A and §f¢ := {fs}ses a regular se-
quence of A such that 4 is still a regular sequence in A, and
we put X, := Spec A, andY = V(fg). Assume (axg41), then the
canonical localization map A — A, induces an isomorphism of
Grotheindieck groups

Ko(Xoy aq) = Ko(Xgo 10)-

e We will prove (3,) by descending induction of p.

30



How to prove (53,)?

Notations.

e For an element A in A, and for 1 < # j < n, e};(\) or simply
e;j(A) will denote the n x n matrix such that the diagonal entries

are one, the (i, 7) entry is A and the other entries are zero.

e For elements ay,--- ,a, in A, we write diag(ay,--- ,a,) for the
diagonal matrix whose (i, ) entry is a;.

Let z € XY ,,. Letus put n := rankz. By fixing the bases of
all vertexes of x, we write A° = (aj;) for the matrix description of
dy : x5y — xp for each s € S. We put d° := ged{aj;; 1 < j < n}
and bj; = aj;/d°. Then for any s in S, there exists a subset T, C

{2,--+,n —1,n} such that ¢}, = b5, + » "}, is prime to f,. Now

JETs
we put g:=[[ ¢y, ¢y s=al + ) a} (2 <j <n)and
seS €Ty
) by b o B
. Cs aS aS PSP as

oy = g 11 ) [ Fo0 | 5 [Tt

Jj=2 11 s s S jeT,
anl an? o ann

Notice that B(0)* = A® and the first column of B(1)* is of the form
d’ciy

. We use Fib{ A[t]*" B Alt] "} ses.
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