
Automation of statistical tests on randomness to
obtain clearer conclusion

Hiroshi Haramoto

Abstract Statistical testing of pseudorandom number generators (PRNGs) is in-
dispensable for their evaluation. A common difficulty among statistical tests is how
we consider the resulting probability values (p-values). When we observe a small p-
value such as 10−3, it is unclear whether it is due to a defect of the PRNG, or merely
by chance. At the evaluation stage, we apply some hundred different statistical tests
to a PRNG. Even a good PRNG may produce some suspicious p-values in the re-
sults of a battery of tests. This may make the conclusions of the test battery unclear.
This paper proposes an adaptive modification of statistical tests: once a suspicious
p-value is observed, the adaptive statistical test procedure automatically increases
the sample size, and tests the PRNG again. If the p-value is still suspicious, the pro-
cedure again increases the size, and re-tests. The procedure stops when the p-value
falls either in an acceptable range, or in a clearly rejectable range. We implement
such adaptive modifications of some statistical tests, in particular some of those in
the Crush battery of TestU01. Experiments show that the evaluation of PRNGs be-
comes clearer and easier, and the sensitivity of the test is increased, at the cost of
additional computation time.

1 Introduction

Pseudorandom number generators (PRNGs) are computer programs whose purpose
is to produce sequences of numbers that seem to behave as if they were generated
randomly from a specified probability distribution. Here we consider the case that
the outputs of the PRNG imitate independent random variables from the uniform
distribution over the interval [0,1) or over the integers in an interval {0,1,2, . . . ,N}.

Hiroshi Haramoto
Department of General Education, Kure College of Technology, Hiroshima, Japan, e-mail:
haramoto@hiroshima-u.ac.jp

1



2 Hiroshi Haramoto

Since PRNGs have a deterministic and periodic output, it is clear that they do
not produce independent random variables in the mathematical sense, and that they
cannot pass all possible statistical tests of uniformity and independence. But some
of them have huge period lengths and turn out to behave quite well in statistical tests
that can be applied in reasonable time. On the other hand, some PRNGs, which are
known to be defective, fail very simple tests [7].

Many statistical tests for PRNGs are proposed. Widely used examples are:
DIEHARD by Marsaglia [16], the test suite of the National Institute of Standards
and Technology (NIST) [24], and TestU01 by L’Ecuyer and Simard [11]. When we
use such a test suite for a PRNG, the result is a long list of p-values, each value
corresponding to each test. It is often difficult to judge whether or not the existence
of a few suspicious but not definitive p-values (say, 10−10 < p < 10−4) implies the
defectiveness of the PRNG.

The aim of this paper is to eliminate this uncertainty, by proposing an adaptive
modification of (essentially any) statistical test for PRNGs. The adaptive version of
a statistical test means that we increase the sample size again and again, until we
observe a definitely small p-value, or an acceptable normal p-value. This method is
not novel; it is commonly used by hand, with heuristics. Our proposal is to automate
this process. The rest of this paper is organized as follows. In Section 2, we review
the statistical tests for PRNGs. We give a detailed description of an adaptive statisti-
cal test in Section 3. In Section 4, we show results of some adaptive statistical tests
on some well known PRNGs.

2 Statistical tests

Let (a1, . . . ,an) be a sequence in [0,1) generated by some method, i.e., by a PRNG,
which imitates a uniform independent random sequence. Let Yn be a (test) function
of n variables from [0,1)n to R. A statistical test of (a1, . . . ,an) by Yn is a function

TYn : [0,1)n → [0,1], (a1, . . . ,an) 7→ P(Yn(X1, . . . ,Xn) ≤ Yn(a1, . . . ,an)) (1)

where X1, . . . ,Xn are random variables with identical, independent distribution (i.i.d.)
uniform in [0,1), and P(Yn(X1, . . . ,Xn) ≤ Yn(a1, . . . ,an)) is the probability that
Yn(X1, . . . ,Xn) ≤ Yn(a1, . . . ,an) holds. This probability is called the p-value of the
test. If this value is too close to 0 or too close to 1, the null hypothesis that a1, . . . ,an
are uniform i.i.d is deemed suspicious. (As the editor pointed out, there are tests
where the number n varies according to the values of ai, but here we treat only the
above type of statistical tests.)

If the p-value is extremely small (e.g., less than 10−10), then it is (more or less)
clear that the PRNG fails the test. If the p-value is suspicious but does not clearly
indicate rejection (p = 10−4, for example), it is difficult to judge. When we apply
several tests to a PRNG, p-values smaller than 0.01 or larger than 0.99 are often



Automation of statistical tests 3

observed (since such values appear with probability 0.02). Therefore, users of test
packages for PRNGs are often troubled by the interpretation of suspicious p-values.

In order to avoid such difficulties, a two-level test is often used, see [1] [4] [5]
[15]. In a two-level test, we fix a test function Yn. At the first level, we apply the test
TYn to the PRNG to be tested, consecutively k times. Then we obtain k of p-values,
p1, . . . , pk. At the second level, we test these k values under the null hypothesis of
the uniform i.i.d. in the [0,1] interval, by some statistical test such as Kolmogorov-
Smirnov test. The resulting p-value is the result of the two-level test. A merit of the
two-level test is that it tends to give a clearer result, by accumulating the possibly
existing deviation k times. Even if the first-level tests report moderate p-values, the
two-level test may give a definitive p-value such as 10−8. However, the possibility
of getting a suspicious but not definitive p-value still remains.

Moreover, one may suffer from accumulated approximation error in computing
p-values. We often compute p-values by using approximation formula: for exam-
ple, the p-value of χ2-test is computed by using an approximation. Therefore, some
computing error exists in every p-value. Thus, if the p-values of the first level tests
has 1% error in the same direction, and if the second level test uses a large num-
ber of these p-values (say, k = 10000 times), then the second level may detect the
systematic computing error, which may lead to a false rejection [5] [13].

3 Adaptive statistical test

An adaptive statistical test requires a test function of variable sample size. That is,
one type of test function Yn of n variables, where n may vary. This is usually the
case: most test statistics for testing PRNGs allow any sample size.

An adaptive statistical test for a PRNG based on Yn is as follows. Fix a moder-
ately large n. We generate n samples a0, . . . ,an−1 using the PRNG, and compute the
corresponding p-value p1 := TYn(a0, . . . ,an−1). If p1 lies in the pre-fixed admissible
interval, say, in [0.1,0.9], then the test ends and does not reject the null hypothesis.
Otherwise, we double the sample size, and generate 2n new samples an, . . . ,a3n−1
using the PRNG, and compute the p-value p2 := TY2n(an, . . . ,a3n−1). If p2 lies in the
admissible interval, then we accept. Otherwise, we double the sample size again,
namely, we generate the next 4n samples using the PRNG, and compute the p-value
p3 for these 4n samples using Y4n. We iterate this process, until reaching one of the
following three cases:

Rejection: the p-value reaches to a prefixed value for the definitive rejection (e.g.
p = 10−8),
Acceptance: the p-value falls in the admissible interval,
Give up: the number of iterations reached to a prefixed number (say, 6) to stop
the test (considering some limitation of memory and/or computation time).

Merits of the adaptive test are:



4 Hiroshi Haramoto

1. In most cases, the user obtains clear conclusions. The test takes care of suspicious
p-values, until we conclude that they were obtained only by chance, or that they
expose a systematic deviation. A final suspicious p-value is obtained only in the
“give up” case, which occurs rarely.

2. The approximation errors in computing p-values are not accumulated, contrary
to the the two-level tests described in the previous section. In the adaptive test,
the larger sample size usually results in the smaller approximation error.

Note that such adaptive tests are appropriate for testing PRNGs, but not for gen-
eral statistical tests such as census of population, where the sample size is often
fixed or limited.

As claimed in the introduction, it is not novel to increase the sample size to
resolve the suspicious p-values, and a number of studies exist, which treat delicate
issues arising in adaptive tests. There are statistical tests where one need to change
the parameters and/or the approximation formula of the distribution, according to
the increase of the sample size n. In [9] and [12], the number of the cells in a classical
serial test is kept proportional to n. In [10], n3/(4k) is kept constant. In both cases,
these changes are necessary to keep an asymptotic approximation formula. In [12,
p. 658], the asymptotic formula is changed according to the sample size n.

Below in §4.1 and §4.2, we treat some toy examples, where we may change the
sample size n with keeping other parameters constant. In §4.3, we show a more
serious implementation based on TestU01 [11], where appropriate choices of the
parameters and approximation formulas are processed in the TestU01 library.

Another difficulty is the choice of the first sample size for the adaptive test. Every
PRNG is rejected if the sample size is large enough, but the size depends on the
interaction of the type of the PRNG and the test, and there are some thumb-nail
rules [10], but we do not discuss here. In §4.1, we treat the case where a risky sample
size is known in advance. In §4.3, we depends on a set of sample sizes proposed by
TestU01; see below.

4 The results of tests

4.1 Weight distribution test on FSRs

The weight distribution test is a test on the distribution of 1’s in a pseudorandom
bit sequence x1,x2, . . .. We cut the sequence into subsequences of fixed length (here
we choose the length 94), and count the number of 1’s in each subsequence (i.e.,
the Hamming weight of each subsequence). The number should conform to the
binomial distribution B(94,1/2). Let n be the sample size, namely, the number of
subsequences of length 94 generated to be tested. We categorize the 95 observable
values into several categories by merging, and apply the χ2-test for the goodness-of-
fit of the observed values to the binomial distribution. Note that this test is a variant



Automation of statistical tests 5

of the Hamming test treated in the next section, and related tests are included in
TestU01 [11, Section 5.2.1].

The tested generator is a trinomial based feedback shift register (FSR) generator,
defined by the recurrence

x j+89 := x j+38 + x j

over the two-element field F2 (i.e., every operation is done modulo 2).
This generator is not an excellent generator; it is a toy-model example to explain

how our adaptive test works. Matsumoto-Nishimura [22] computes risky sample size
of such kind of generators, which means that if the sample size is larger than this
size, then a simple weight distribution test will probabilistically reject a generated
sequence with significance level 0.01. Thus, we can know an appropriate sample
size for the test in advance. The risky sample size of the above generator is reported
to be 1.16× 105, so we choose the initial sample size n = 50000 in our adaptive
test. Table 1 lists the results of the adaptive test described above (i.e., the acceptable
interval is [0.1,0.9] and the rejection corresponds to the p-value outside [10−8,1−
10−8]). We apply the same adaptive test to the same generator with three randomly
chosen initial values.

Table 1 Weight distribution test on the generator x j+89 = x j+38 + x j

sample size 50000 100000 200000 400000 result
1st 4.3×10−4 7.4×10−3 1.1×10−3 1.4×10−14 reject

2nd 3.6×10−2 8.6×10−3 1.6×10−5 1.9×10−9 reject
3rd 2.0×10−1 accept

For example, in the first experiment, the p-value with sample size 50000 is 4.3×
10−4. It is suspicious, but not in the clear-rejection area (< 10−8). Accordingly, the
sample size is doubled, and the same test is applied to the new 100,000 samples,
obtaining the p-value 7.4× 10−3. After four iterations, the p-value reaches 1.4×
10−14, and the bias of the weight distribution of the PRNG becomes clear. The
result of the second experiment is similar. The first p-value of the third experiment
lies in the acceptance interval, and hence there is no rejection, this time (could be
regarded as a false-acceptance).

Table 2 shows the result of the same test on a similar generator based on a 5-term
relation x j+89 = x j+57 +x j+23 +x j+15 +x j over F2. The risky sample size is known
to be 6.99×107, so we choose the initial sample size to be 7×107 [22].

Table 2 Weight distribution test on the generator x j+89 = x j+57 + x j+23 + x j+15 + x j

sample size 7×107 1.4×108 2.8×108 5.6×108 result

1st 1.8×10−2 4.2×10−5 1.3×10−9 reject
2nd 7.4×10−4 1.1×10−5 2.4×10−10 reject
3rd 3.4×10−2 2.2×10−5 1.8×10−5 4.4×10−33 reject



6 Hiroshi Haramoto

4.2 Hamming weight test on LCG

Here we treat a classical linear congruential generator (LCG), defined by the recur-
rence

x j+1 = 110351245x j +12345 (mod 231).

The outputs (x j) of this LCG are considered as 31-bit integers. In the Hamming
test, these 31-bit integers are concatenated to be a single bit stream. The bit stream
is divided to consecutive subsequences of 60 bits, and the number of 1’s in each
subsequence is counted. Then, the χ2-test on the null hypothesis of the binomial
distribution B(60,1/2) is applied, in the same way as the previous section. Unlike
the previous generator, there seems no theory to detect the risky sample size. We
choose the initial sample size n to be 1,000,000. Table 3 shows the results of three
experiments, for randomly chosen initial values.

Table 3 Hamming weight test on the generator x j+1 = 1103515245x j +12345 (mod 231)

sample size 106 2×106 4×106 8×106 result
1st 0.0×100 reject

2nd 2.5×10−2 1.6×10−8 8.1×10−7 0.0×100 reject
3rd 7.0×10−2 3.0×10−3 7.2×10−10 reject

4.3 Crush in TestU01 and the Adaptive Crush

TestU01 by L’Ecuyer and Simard [11] is a strong comprehensive suite of statistical
tests for uniform random numbers. TestU01 has flexible parameters, and hence is
best suitable to implement the adaptive version of statistical tests, unlike DIEHARD
and NIST where the sample size is fixed.

There are three related batteries of tests in TestU01, using different sample sizes.
These are the Small Crush, Crush, and Big Crush batteries. Big Crush is the most
serious test battery, containing several statistical tests whose computation time and
the memory consumption is near the limit of our computer, so partly it does not fit
the adaptive version where the sample size is doubled iteratively. So, we choose the
Crush battery as the basis for a battery of adaptive versions.

Among the 144 tests in Crush, 48 are not suitable to create adaptive versions.
More precisely, (1) some of 48 are unable to create adaptive versions due to the lack
of our computing resources, and (2) the others among 48 are two-level-test versions
of other tests in Crush. We implement adaptive versions of the rest 96 tests, and call
them the Adaptive Crush battery.

We apply the Adaptive Crush to the following three generators: an LCG [2] based
on the recurrence



Automation of statistical tests 7

x j+1 = 950706376x j (mod 231 −1), (2)

a subtract with borrow (SWB) [18] based on the recurrence

xi = (xi−22 − xi−48 − ci−1) (mod 232 −5), (3)

ci = ⌊(xi−22 − xi−48 − ci−1)/(232 −5)⌋, (4)

and TT800 ([20]).
Table 4, 5, and 6 list the tests for which

• the original Crush (namely the first step of the adaptive version) gives a p-value
in the interval [10−8,1−10−8],

• but the p-value given by the Adaptive Crush lies outside [10−8,1− 10−8] (The
fourth column shows the number of iteration of doubling sample size until the
p-value reached outside [10−8,1−10−8]).

Table 4 Result on x j+1 = 950706376x j (mod 231 −1)

test name initial sample size 1st p-value # of iteration final p-value

Gap 5×106 0.0125 2 < 10−300

MaxOft 107 0.9863 2 > 1−10−15

GCD 108 0.9805 3 > 1−10−15

PeriodsInStrings 3×108 1−6.6×10−8 2 > 1−10−15

PeriodsInStrings 3×108 0.9999 2 1−7.3×10−9

Table 5 Result on a subtract with borrow
test name initial sample size 1st p-value # of iteration final p-value

SimpPoker 107 0.0505 3 6.1×10−13

SimpPoker 107 4.9×10−4 3 3.8×10−14

CouponCollector 107 0.0217 4 1.5×10−11

CouponCollector 107 0.0328 4 6.0×10−15

Table 6 Result on TT800
test name initial sample size 1st p-value # of iteration final p-value

Gap 5×106 1.6×10−4 4 8.9×10−10

RandomWalk1 J 106 6.1×10−5 3 5.2×10−14

HammingIndep 107 8.5×10−3 2 9.5×10−12



8 Hiroshi Haramoto

4.4 Comparison of the sensitivity

In order to compare the sensitivity between the original Crush and the adaptive
Crush, we apply the same 96 tests as in §4.3 to several PRNGs. Table 7 gives the
number of tests which report a p-value outside [10−8,1−10−8] by the original Crush
and the adaptive Crush, respectively.

LCG(m,a,c) means the generator which obeys the recurrence x j+1 := (ax j + c)
(mod m). LFib(m,r,k,op) uses the recurrence x j := x j−r op x j−k (mod m), where
op is an operation which can be + (addition), − (subtraction), ∗ (multiplication),
⊕ (bitwise exclusive-or). The ran3 generator of Press and Teukolsky [23] is essen-
tially an LFib(109,55,24,−). Unix-randoms are PRNGs that are LFib(232,7,3,+),
LFib(232,15,1,+), LFib(232,31,3,+), with the least significant bit of each random
number dropped. Knuth-ran array2 [4] is LFib(230,100,37,−)[100,1009], where
[100,1009] indicates that from each 1009 successive terms x j from the recurrence,
the first 100 outputs are retained and the others are discarded.

The notation GFSR(k,r) means the GFSR generator, with recurrence of the
form x j := x j−r ⊕ x j−k. T800 and TT800 are twisted GFSR generators proposed
by Matsumoto-Kurita [19] [20]. MT19937 is the Mersenne Twister of Matsumoto-
Nishimura [21]. LFSR113 and LFSR258 are the combined Tausworthe generators
of L’Ecuyer [6] designed for 32-bit and 64-bit computers, respectively. Marsaglia
[17] recommends the 3-shift PRNGs Marsa-xor32 and Marsa-xor64.

SWB(m,r,k) means a subtract with borrow generator, employing the recur-
rence x j := (x j−r − x j−k − c j−1) (mod m), where c j := ⌊(x j−r − x j−k − c j−1)⌋.
SWB(224,10,24)[24, l] is called RANLUX with luxury level ℓ [14] [3]. In its origi-
nal form, it returns 24-bit output values. For our tests, we use a version with 48-bit
of precision obtained by concatenating every pair of the outputs to have a 48-bit
integer. All these generators are copied from the library of TestU01 [11], except for
the above-mentioned modification for SWB.

5 Conclusion

We introduced the notion of an adaptive statistical test. This method clarifies the
conclusion from the test: Suspicious p-values are resolved by doubling the sample
size iteratively. Experiments showed that this method works well in almost all cases.
The sensitivity of the test increased, at the cost of additional computational time. In
the experiments shown in Table 7, the Adaptive Crush consumed 3–5 times longer
time than the original Crush for most cases (of course, it heavily depends on the
number of iterations.)

Among the PRNGs tested in this way, we could not find a generator that passes
all the Crush tests but fails one of the adaptive Crush tests. This means that the
sample size of the original Crush is very well chosen.



Automation of statistical tests 9

Table 7 The number of rejections in the tests

original crush adaptive crush
LCG(231,65539,0) 86 92
LCG(232,69069,1) 72 74
LCG(232,1099087573,0) 75 81
LCG(246,513,0) 15 19
LCG(248,252144903917,11) 8 8
LCG(248,519,0) 8 12
LCG(231 −1,16807,0) 10 19
LCG(231 −1,215 −210,0) 29 33
LCG(231 −1,397204094,0) 6 14
LFib(231,55,24,+) 9 10
LFib(231,55,24,−) 11 11
LFib(248,607,273,+) 3 3
ran3 10 10
Unix-random-32 86 86
Unix-random-64 38 52
Unix-random-128 13 14
Knuth-ran array2 2 2
GFSR(250, 103) 8 10
GFSR(521, 32) 6 6
T800 29 33
TT800 13 17
MT19937 2 2
LFSR113 6 6
LFSR258 6 6
Marsa-Xor32 78 88
Marsa-Xor64 8 8
SWB(224,10,24) 26 28
SWB(224,10,24)[24,48] 3 4
SWB(224,10,24)[24,97] 0 0
SWB(224,10,24)[24,389] 0 0
SWB(232 −5,22,43) 8 11
SWB(231,8,48) 10 10

Acknowledgements I would like to thank Professor Makoto Matsumoto who helped and encour-
aged me constantly, Professor Pierre L’Ecuyer who gave useful comments, Professor Hirokazu
Yanagihara who pointed out the importance of the power of tests, and the anonymous referee
for deep and valuable comments. This research has been supported in part by JSPS Grant-In-Aid
#19204002, #18654021, #21654017 and JSPS Core-to-Core Program No.18005.

References

1. G. S. Fishman. Monte Carlo. Springer Series in Operations Research. Springer-Verlag, New
York, 1996. Concepts, algorithms, and applications.

2. G. S. Fishman and L. R. Moore, III. An exhaustive analysis of multiplicative congruential
random number generators with modulus 231 − 1. SIAM J. Sci. Statist. Comput., 7(3):1058,



10 Hiroshi Haramoto

1986.
3. F. James. RANLUX: a Fortran implementation of the high-quality pseudorandom number

generator of Lüscher. Computer Physics Communications, 97:357–357(1), September 1996.
4. D. E. Knuth. The art of computer programming, volume 2 (3rd ed.): seminumerical algo-

rithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.
5. P. L’Ecuyer. Testing random number generators. In WSC ’92: Proceedings of the 24th confer-

ence on Winter simulation, pages 305–313, New York, NY, USA, 1992. ACM.
6. P. L’Ecuyer. Tables of maximally equidistributed combined LFSR generators. Math. Comput.,

68(225):261–269, 1999.
7. P. L’Ecuyer. Software for uniform random number generation: distinguishing the good and the

bad. In WSC ’01: Proceedings of the 33nd conference on Winter simulation, pages 95–105,
Washington, DC, USA, 2001. IEEE Computer Society.

8. P. L’Ecuyer, J. F. Cordeau, and R. Simard. Close-point spatial tests and their application to
random number generators. Operations Research, 48(2):308–317, 2000.

9. P. L’Ecuyer and P. Hellekalek. Random number generators: selection criteria and testing.
In Random and Quasi-Random Point Sets, volume 138 of Lecture Notes in Statistics, pages
223–266. Springer, 1998.

10. P. L’Ecuyer and R. Simard. On the interaction of birthday spacings tests with certain families
of random number generators. Mathematics and Computers in Simulation, 55:131–137, 2001.

11. P. L’Ecuyer and R. Simard. TestU01: a C library for empirical testing of random number
generators. ACM Trans. Math. Software, 33(4):Art. 22, 40, 2007.

12. P. L’Ecuyer, R. Simard, and S. Wegenkittl. Sparse serial tests of uniformity for random number
generators. SIAM Journal on Scientific Computing, 24(2):652–668, 2002.

13. P. C. Leopardi. Testing the tests: using pseudorandom number generators to improve empirical
tests. Talk in MCQMC 2008, July 2008.

14. M. Lüscher. A portable high-quality random number generator for lattice field theory simula-
tions. Comput. Phys. Comm., 79(1):100–110, 1994.

15. G. Marsaglia. A Current View of Random Number Generators. In Computer Science and
Statistics, Sixteenth Symposium on the Interface, pages 3–10. Elsevier Science Publishers,
1985.

16. G. Marsaglia. DIEHARD: A battery of tests of randomness. 1996. See http://stat.
fsu.edu/∼geo/diehard.html.

17. G. Marsaglia. Xorshift RNGs. Journal of Statistical Software, 8(14):1–6, 2003.
18. G. Marsaglia, B. Narasimhan, and A. Zaman. A random number generator for PCs. Comput.

Phys. Comm., 60(3):345–349, 1990.
19. M. Matsumoto and Y. Kurita. Twisted GFSR generators. ACM Trans. Model. Comput. Simul.,

2(3):179–194, 1992.
20. M. Matsumoto and Y. Kurita. Twisted GFSR generators II. ACM Trans. Model. Comput.

Simul., 4(3):254–266, 1994.
21. M. Matsumoto and T. Nishimura. Mersenne twister: a 623-dimensionally equidistributed uni-

form pseudo-random number generator. ACM Trans. Model. Comput. Simul., 8(1):3–30, 1998.
22. M. Matsumoto and T. Nishimura. A nonempirical test on the weight of pseudorandom number

generators. In Monte Carlo and quasi-Monte Carlo methods, 2000 (Hong Kong), pages 381–
395. Springer, Berlin, 2002.

23. W. H. Press and S. A. Teukolsky. Numerical recipes in C (2nd ed.): the art of scientific
computing. Cambridge University Press, New York, NY, USA, 1992.

24. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel,
D. Banks, A. Heckert, J. Dray, and S. Vo. A Statistical Test Suite for Random and Pseudoran-
dom number Generators for Cryptographic Applications. NIST Special Publication 800-22,
National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA, 2001. See
http://csrc.nist.gov/rng/.


