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On Strongly Invertible Knots

Makoto Sakuma

A knot K in the 3-sphere S? is said to be strongly invertible, if there s an
orientation-preserving involution 4 on S3, such that

(1) KK)=K,

(2) Fix(h) is a circle intersecting K in two points.

There are “many” strongly invertible knots; in fact, about 85 percent of the
prime knots with 10 crossings or less are strongly invertible (see [) 3.
Moreover, Sakai [34] has shown that every knot polynomial is the Alexander
polynomial of a strongly invertible knot. Other aspects of the strongly
invertible knots can be found in [2, 3, 4, 11, 15, 16, 19, 21, 23, 42, 44).

In this paper, we consider the pair (X, h), where K is a knot in an
oriented S and 4 is an involution on $3 satisfying the above conditions (1)
and (2). We use the term “strongly invertible knot”’ to mean such a pair, and
two such pairs (K, h) and (K’, 4’) are said to be equivalent, denoted by
(K, h)=(K*, k"), iff there is an orientation-preserving homeomorphism fon
S such that f(K)=K’ and fohof~' =",

In Section 1, we define the equivariant connected sum of strongly
invertible knots and present the unique prime decomposition theorem
(Theorem I).

In Section 2, we define a polynomial invariant of a pair (K, h), which we
call the n-polynomial, and denote by the symbol # (). The n-polynomial is
characterized by the following properties (Theorem II);

M) @) =nx,m(™Y),

() ngn(£1)=0. .
And it takes the value 0 if K is a trivial knot. The calculation of the »-
polynomial is very easy (see Section 2), and it does not always vanish even if
the Alexander polynomial is trivial (Example 4.2). Moreover, we show that
the n-polynomial is an equivariant coborism invariant, and in fact, it givesa
homomorphism from the group of all equivariant cobordism classes of the
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Strongly Invertible Knots 177

ély ;nvertible knots to the additive group Z{t) (Theorem III).
In the appendix, we give a table of the symmetry groups and the -
.omials of the prime knots with 9 crossings or less. To do this, we use a
1 relationship between strong invertibility and periodicity of a simple
-(Pfoposition 3.1), which is deudced from the results of Thurston [41]. A
between strong invertibility and amphicheirality of a simple knot is
observed, by which a certain criterion for an invertible knot to be
imphicheiral is given in terms of the n-polynomial (Propasition 3.4).
is: Eﬁuivariant prime decomposition
For given two strongly invertible knots (X, ;) (i=1, 2), we define their
variant connected sum (K, h)#(K;, h,) as follows. Let z; be a point of
. () ~ K, and B; be an equivariant regular neighbourhood of z; for each
fth 2, and let f be an orientation-reversing equivariant homeomorphism
(B,, B, n K}) to 8(B,, B, N K;). Then the manifold pair

nde S K~ B By KDY UGS, K —(By By n KD}

smeomorphic to (S, K, #K,), and the involutions A and A, natu-

y-determine an inverting involution A of (S, K, # K,). We want to

s (1 (Ky, hy) #(K3, hy) to be (K # K, h). But there remains the following

' jguities in this “definition”.

) The choice of the point z;e Fix(h) N K= S° for each i=1, 2.

{2) The choice of the equivariant homeomorphism f.

gemove these ambiguities, we attach the following additional infor-

jons to each strongly invertible knot (X, h).

e i) An orientation of Fix(h).

{{i) A “base point” co of Fix(#), which lies in one of the components of
Fix(h)— K.

¢dll these additional informations a direction of (K, h), and a strongly

variant connected sum of two directed strongly invertible knots (K;, k;) '
} 2) as indicated in Fig. 1.1. This indication clearly resolves the
€ biguity (1). Concerning the ambiguity (2), it specifies the restriction of fto
eni nFix(h,). Let g be another orientation-reversing equivariant ho-
tha omorphism from 3(B,, B, N K,) to &(B,, B, N K;) of which restriction to
es Fix(h,) is equal to that of /. Then g is equivariantly isotopic to either f
T th | 28,) frel. 8B; N K;. [Proof. The equivariant homeomorphism g t
d(B,, B, n K,) induces a homeomorphism ¥ on 8B,/h, which is identity
the subset P={dB, N (Fix(h,) U K;)}/h,. Note that P consists of three
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points. Then, by Theorem 4.5 of (1], ¥ is isotopic to the identity map rel. p.
This isotopy lifts to an equivariant isotopy between gof ! and either the
identity map or 4, | ,5,.] Moreover, as shown in Fig. 1.2, fand (A, |,5,)- s
determine the equivalent strongly invertible knots. Thus the equivarian|
connected sum is well-defined for directed strongly invertible knots.

Definition 1.1. (1) (K, A)is said to be trivial, if K is a trivial knot and
h is the standard inverting involution.

(@ . (X, h)is said to be prime, if it is not trivial, and is not equivalent to
a sum of two nontrivial strongly invertible knots.

(3) For an oriented knot k=(S3, k), D(k) denotes the strongly in-
vertible knot (k#—k, h), where —k denotes the knot (S3, —k) and 4 is the
im}erting involution which interchanges the factors & and —k.

(4) For a finite sequence {(X|, h)|1Si<n} of directed strongly in-
vertible knots, #7_,(KX;, A,) denotes the directed strongly invertible knot (((X;.
h) #(Kz, b)) $(Ks, ) # - ) (K, , ).

The set & of all directed strongly invertible knots together with the




Strongly Invertible Knots 179

n # forms a non-commutative semi-group. It is easily seen that D(k)
y direction) belongs to the center of the semi-group. (Furthermore,
unique decomposition theorem stated below, the center consists only
(k) s.) We have the followings.

mma 1.2. (1) (Marumoto [21] Proposition 2) (K, h) is trivial, ifKis

: 3 (X h) is prime, iff K is prime or (K, h)= D(k) for some prime knot k.

eorem I. (1) Any nontrivial, directed, strongly invertible knot
as an equivariant prime decomposition. Any prime decomposition is
nt to a decomposition (K, )z {#7.,(K,, h)} # {#;=1D(kp} where K,
) and k; (1 <j<s) are prime knots. )

2) Let {#i=1(K;, h)} # {#]=1D(k)}and {#7- (K}, hD} # {#5=1D(k )} be

decompositions of a directed strongly invertible knot. Then the follow-

1) r=r"and (K, h)=(K;, h}) for each i (1LiZr).
s=s' and after a permutation D(k;) =~ D(k 3 Jor each j (15j<5s).
i denotes the equivalence as directed strongly invertible knots.

prove Lemma 1.2 (2) and Theorem I, we need the following: For a
ly invertible knot (X, ), let 8(K, h)= P(Fix(h)) u p(K), where p is the
n 5°—83/h=S3. We call it the 6-curve associated with (X, k). 8(K, )]

transversely at three points bounds a 3-ball B such that
(X, h)) is homeomorphic to the cone over (B, B n (K, k). 6(K, h)

ng equivalences.
K is trivial. 22(K)=S3.
20(K, h) is trivial. (Cf. [24])
K is prime. #Z(K) has no essential 2-sphere.
20(K, h) is irreducible.
(K, h)is prime. = Z(K) does not have Z,@®Z, invariant
essential 2-sphere.
20(K, h) is prime.
K, h) is prime, but X is not prime.
#2(K) contains an essential 2-sphere S, such that
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%(S)=S and A(S) N S=.
20(K, h) is prime, but not irreducible.
=2(K, h)= D(k) for some prime knot k.

In particular, we obtain Lemma 1.2 (2). The firtst half of Theoren |
follows from Lemma 1.2 and the existence of the prime decompositioy
of a knot [37). The above observations say that we have only to show e
uniqueness of the “prime decomposition” of a f-curve to prove the layy
half of Theorem I. But this can be done by a standard cut and paste method
so0, we omit it. We note that the prime decomposition of a 8-curve mentioneg
here may be considered as the prime decomposition of it as an orbifold [4 ¢.
curve is viewed as the branch line of a Z,@Z, branched cover.}, and (he
existence and the uniqueness of the prime decomoposition of 2 “pseudo.
good” orbifold are claimed by Bonahon-Siebenmann [5).

2. n-polynomial

For a strongly invertible knot (X, h), let N be an equivariant tubular
neighbourhood of K, and /<N be a preferred longitude of N (cf. [32]), such
that A(l) nl=gJ. Put O=p(Fix(h)) and L=p(!), where p is the projection
S3-53/h=S3. Then L(K,h) =0 UL is a 2-component link in S3 and
1k(0, L)=0 (cf. Fig. 2.1). Let n ,,(¢) be the n-function of the link L(K, k)
defined by Kojima-Yamasaki [18] (cf. [8, 9]); that is, the Laurent polynomial
with integral coefficients defined by the equality

'l(x, h)(t) =Z lo?—'- - lk(i,’ t‘f")ti ’
where £ is a lift of L to the infinite cyclic cover E(O) of E(0)=S*-0, 'is

(a) b)

: " &
B3

& full twists

Fig. 2.1
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of a preferred longitude L’ of L near L, and ¢ is a generator of the
g transformation group of E(0). Clearly n ,,(#) is an invariant of the
tence class of (K, A), and we call it the n-polynomial of (K, h). We
: that this polynomial was originally introduced in the joint paper of S.
awa and the author [7] for a different purpose.

ample 2.1. Let K =9,0 and A be the involution as illustrated in Fig.
Then i w®=[—6, 2, 2, —2, 1. Here, [ay, a;, - - -, a, represents the
omial g+ 2 i-= a7 1Y),

he folloiwng theorem characterizes the 7-polynomial.

heorem IL. (1) nx, (D) satisfies the following conditions:

M e n®=0xnt" ),

ii) ﬂ(x.m(l)=0,

) 'I(x,h)(”l)=0- '

2) Conversely, for any Laurent polynomial n(t) with integral coefficients
fying the above conditions, there exists a strongly invertible knot (K, h)

K that neg,w(O)=n(0).

oroof. (1) The first and the second conditions are found in
position 2 of [18]. [The second condition follows from the equality
{(1)=1k(L’, L)=0.] The third condition follows from the second condi-

od consists of the following six steps.

tep 1. Draw the projection of 6(K, k) so that (i) O= p(Fix(h)) is
sented by a straigt line, and (ii) the two vertices of 6(X, A) are on the top
ie bottom respectively (see Fig. 2.2 (b))

tep 2. From the above projection, construct the *“‘pseudo-fundamen-
gion” of the infinite cyclic cover E':(\é) as indicated in Fig. 2.2 (c).
Step 3. Assign an index and an orientation to each arc in the pseudo-
damental region as follows (see Fig. 2.2 (c)).

i) The top arc has index 0, and is oriented downward.

(ii) Suppose an arc a is already indexed and directed. Let A be the end
ntof «, and B be the point opposite to A. Then the arc § which contains B
tiented so that B is the starting point of 8, and index(f) is defined to be
éx () + 1 or index(a)— 1 according as B is on the right side or on the left
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side.

Step 4. Assign each double point P a signature ep€{+, —} and 4,
integer dp € Z as follows. Let « and f be the over-pass and the under-pass 5,
P respectively. Then dp =index(«) —index(p), and gp=+ or — according 4
B crosses a from left to right or from right to left.

Step 5. Let 7 be the integral polynomial of {x;|ieZ} define by (p,
equality =3 pepx, , Wwhere P ranges over all double points in the pseudo.
fundamental region.

Step 6. Let n'(f) be the Laurent polynomial obtained from j by
putting x,=1/"1—2¢ +11*1, y'(¢) is symmetric, and theorefore it takes the
form of [by, b, ** *; b,. Then, we have

nx.m®=Mo, a, -+, @,

where _
—Zng.lsz =0)
a=14 —Zjzibsr  (=1)
b; (iz2).

Example 2.2. The O-curve and the pseudo-fundamental region of the
strongly invertible knot (X, k) given in Example 2.1 are illustrated in Fig. 2.2,
Thus f=X_3+X_,+Xo+X; +X3, and 7' ()=[0, —1, 2, —2, 1, and there-
fore g w()=[—6,2,2, =2, 1.

(@ (by

= | LAY
932 2

Fig. 2.2

!

_ The reason why the above procedure actually gives the calculation of
the n-polynomial can be seen by comggsing Fig. 2.2 (c) with Fig. 2.3 (b)
which gives a fundamental region of E(O). Note that each crossing in the
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fundamental region corresponds to a set of four crossings in the
mental region as shown in Fig. 2.4. This suggests the correspondence

2 x, and 1771 =200 4114,
illg1 I

1 (b)
'Y th full twists

-3
Fig. 2.3
'ftha d+i dtitl
.2 d+i
het >
' —_— | — > ‘
& | — | — d+1
i Fig. 2.4

{Itis well-known that every 2-bridge knot is strongly invertible, and as is
oved in the next section (Proposition 3.6), a strongly invertible knot (X, A)
dbfaihed from a 2-bridge knot is equivalent to the strongly invertible knot
*y Oy €y, ***, Cy) OF Iy(ay, - - -, a,) which are given in Fig. 2.5 (a) and
spectively. Here, «;, ¢;, and a; are integers, and we may assume that q,
<n) are even. Their n-polynomials aré calculated through the method
ghiin this section. We state them without proof.

Proposition 2.3. (1) The n-polynomial n(t) of I(at;, -+, o €yy "+
as follows. Let c{and 9, be the integers determined by the equalities c;=
0y, 6;=0 or 1, and put &;=T%.(—1)*. Then

N = —Zi- {ciD(Xj=1&) + W (X j- 800} +1(8) .
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( ) _az (_l)u‘la' \ a] SR
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LT = soce.x

b-right hand half twists

Fig. 2.5
Here, D(0)=x_,+x,,
2D . (@21,
W(x)=30 (=0, —1),

—3liDE (@=-2),
. a=t¢-l_2ta+l¢+l ,

and r(t) is the symmetric Laurent polynomial of degree <2 which is uniguely
determined by the equality n(1)=n(—1)=0.

(2) Suppose that a; (1 Si<n) are even integers. Then the yn-polynomial
n(®) of Iyay, - - -, a,) is as follows.

'i(t)=% ngo-&z_ﬁq(z—(t-z'*‘ t%).

In particular, the y-polynomial of 7,(—1, «--, —1, —2b,, ---, —2b,) is
P +b (07 2+ D0 3b (¢ =27 iR o2 _opm1 gy
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e r’(f) is a symmetric polynomial of degree 2. Hence, by choosing
25;<n) suitably, we can realize every polynomial which satisfies the
dmons given by Theorem II (1) (cf. [33]). This-proves the latter half of

Kojima [17] showed that any nontrivial link admits only finitely many
etries, using the results of Thurston [41). Thus each knot admits only
y many inverting involutions. The following observation refines this
for simple knots. (See [36], for other refinements.)

Proposition 3.1. (1) A torus knot admits exactly one inverting
lution.

(2) Let K be an invertible hyperbolic knot. Then K admits exactly two or
mvertmg involutions according to whether K has (cyclic or free) period2 or

emark 3.2. The assumption that K is simple is essential. In fact, for
nositive integer n, we can easily construct a composite knot which has
than n inverting involutions by using Theorem 1. It is also possible to
struct such a prime knot (see [36]).

.«Proof. (1) can be seen by using the fact that an involution on the
plement of a torus knot preserves a Seifert fibration on it (see [38]).

) Let K be an invertible hyperbolic knot, E(K) be its complement,
som* E(K) be the group of all orientation-preserving isometries of
“Then we have the following.

mma 3.3. (Riley [30] p. 124) Isom™* E(K) is isomorphic to the di-
dral group D, of order 2n for some positive integer n.

Proof of Lemma 3.3. By Proposition 5.1 of [40], Isom * E(K) naturally
n (S3, K). Let y: Isom* E(K)—Diff(K) denote the restriction of the
; Then, ¢ is injective by the Smith conjecture [25]. Noting that
__ E(K) is finite and X is invertible, we obtain the desired result.

So we may assume that Isom* E(K)=(f, h|f*=i=1, ifh ™' =f"1),
the orientation of K is preserved by f and reversed by A. An ele-
g of Isom™* E(K) gives an inverting involution, iff g=f"h for some i
—1) (see [3, 16]); and two such elements g=f"4 and g’'=f"h
Iesent the equivalent involutions, iff they are conjugate in Isom* E(K),

=i’ modulo the greatest common divisor of 2 and n. Hence K admits
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-exactly two or one “isometric” inverting involutions according to whethe,

n is even.or odd. So the proposition follows from the results of Thurston [41]
and the fact that » is even iff K has (cyclic or free) period 2.

The following gives a relation between amphicheirality and strong
invertibility of a hyperbolic knot, and provides a criterion for Proving
nonamphicheirality of a hyperbolic knot.

Proposition 3.4. Let K be an invertible hyperbolic knot which j
amphicheiral.

(1) Assume that K does not have period 2, and let h be the unique
inverting involution. Then (K, h)=(K, h)*, where (K, h)* is the strongly
invertible knot obtained from (K, h) by reversing the orientation of S3.
particular, ny . ()=0.

(2) Assume that K has period 2, and let hy and h, be the inequivalen
inverting involutions. Then (K,h)=(K,h))*. In particular, ny, (1=
=k, n)(2)-

Proof. (1) is a direct consequence of Proposition 3.2.
(2) We may assume that

Isom*E(K)={f, h|f"=k=1, hfh ' =f"1)

with n even, and h, =4 and h, =/h. Since X is amphicheiral, Isom E(X) is an
exension of Isom*E(K) by Z,, and it naturally acts on (S3, K). Lel
¥ : Isom E(K)—Diff(K) be the restriction of the action to X. Suppose that
is not injective. Then, by the proof of Lemma 3.3, there is an orientation-
reversing isometry y such that K< Fix (y). By Smith theory [6], Fix(y) =2,
and therefore K is a trivial knot; a contradiction. Thus ¥ is injective. So
we have IsomE(K)=(y, h|y*"=h*=1, hyh~'=y~')=D,,, where 7y is
orientation-reversing and y*=f. Then yh,y '=yhy '=fh=h,. Hence
(K, h)=(K, hy)*.

Example 3.5. Though the knots 10,,, and 10, in the table of [32]
have trivial signatures, we can confirm their nonampbhicheirality as follows

(cf. [29)).

(1) 10,0, does not have period 2 by [12, 20, 26], and it has a unique
inverting involution (see Fig. 3.1 (a)). But, its n-polynomial is [2, —1, 1, —1.

(2) 10,55 has free period 2 by [12], and it has two inverting involutions
(see Fig. 3.1 (b)). But, their #-polynomials are 0 and [—4, 0, 2. (For a relation
between amphicheirality and free periodicity, see [35].)
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Fig. 3.1

¢tp, q) is simple, invertible, and has cyclic period 2. So, if K(p, ¢) is not a
oftis knot (that is, if ¢t 1 mod. p), then K(p, ¢) admits exactly two inverting
utions. We now describe them. Since p is odd, we may assume that g is
and 1<|g¢}<p. Then p/q has the unique continued fraction expansion
1 1 1

atay+---+a,’
e a; (1 £i<n) and n are non-zero even integers (see [39]). We denote it by
he symbOI [al’ a, °*°, an]' v

Proposition 3.6. (1) Assume that g*s1 (mod. p). Then the strongly
tible knots obtained from K(p, q) are

L(ay, a5, - -, a,_4; a3/2,a4(2, - - -, a,/2)

I(—a, —ay_3, "+, =Gy —a,_4/2, —a,_3/2, -++, —ay[2).

(2) Assume that g* =1 (mod. p) [and g1 (mod. p)]. Then the strongly
jtt'ble knots obtained from K(p, q) are

h(ay, a3, -+ -, Qn-15 az/i: ayf2, -+ -,a,/2) and D(ay, ap, -+, a,,).
Proof. According to Coway’s calculation of the outer-automorphism
of the 2-bridge knot groups (see [10]), Isom* E(K(p, q))=</, k| f*=

hfh™'=f~1), where s =2 or 4 according to whether ¢ | (mod. p) or
tBy a similar argument as that of [14] Lemma 2 (cf. [39]), we can see that
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g*=1 (mod. p), iff a;=—a,_; for each i (1<i<n). Thus the action o
Isom™* E(K(p, 9)) on (S°, K(p, 9)) is as illustrated in Fig. 3.2. Noting thgy 4
and fh give inequivalent inverting involutions, we obtain the desired resulis,

(1) g*#1 (mod.p) (2) ¢*=1 (mod.p)

q/pr=[2,4,6,2) q/p=[2,4, -4, -2]

J=m rotation on y ' J=(n/2 rotation on y) - (x rotation op &)
h=n rotation on «a h=n rotation on «
Jh=mn rotation on g Jh== rotation on
Fig. 3.2

All prime knots with 10 crossings or less are simple (see [30]), and their
invertibility problems are completely solved by Hartley [13] (cf. [2, 4, 16, 30,
31)). And the prime knots with less than 10 crossings which have period 2 are
completely identified by [2, 20, 27] for cyclic period and by [12] for free
period. Recently, the author determined the symmetry group Sym(S?, K)=
7, DIff(S?, K) of every prime knot with less than 10 crossings by using the
results of Thurston [41). In the appendix, we present a table of the symmetry
groups and the n-polynomials of all prime knots with less than 10 crossings.
Although the amphicheirality problem on knots with 10 crossings or less is
already solved by Perko [28, 29], it might be of some slight interest to remark
that the problem for invertible knots with less than 10 crossings can also be
solved by using the #-polynomials except 8,, and 940 (cf. Proposition 3.4).

4. Equivariant cobordism

We say that two strongly invertible knots (Ko ho) and (K., h,) are
equivariantly cobordant if there is a smooth submanifold 4 and a smooth
involution 4 on (S3 x I, 4), which satisfy the following conditions:
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1) Ais homeomorphic to an annulus.

@ AnS*xi=K;xifor eachi(i=0, 1).

@ The restriction of h to (S2 x i, 4 1 §3 x i) is equivalent to h, for each i
o (i=0,1).

we(consider equivariant cobordism of directed strongly invertible
ts, we further require that the directions of (Ko, k) and (K, h,) are
rent”’. Let & be the set of all equivariant cobordism classes of directed
ly invertible knots. Then the equivariant connected sum operation
y induces a sum operation on &, and with respect to which & forms
oup. The identity element of this group is represented by the trivial
ly invertible knot, and the inverse of a class {(KX, h)} is the class
*), where (K, h)* is the directed strongly invertible knot obtained from
) by reversing the orientations of S and Fix(h).

Example 4.1. The strongly invertible knot obtained from the pretzel
ot of type (p, —p, r) as illustrated in Fig. 4.1 is equivariantly slice. Here p

\t\_/

ST

: Spo
Fig. 4.1

eorem IIl. The n-polynomial gives a homomorphism from the group
he additive group Z{t>. That is;

(1) If (Ko, ho) and (K,, h,) are equivariantly cobordant, then

ko, ho)( 1) = Mk, ) (8) -
(2) If (K, ))=(K,, h)) #(K,, h,), then

5@ _ b Nk, () =Nk, my () + Ny nn(D) -

Proof. (1) Let {(S*x I, A), h} be an equivariant coborism between
vHo) and (K, hy). By [6] p. 306, there is an A-invariant tubular neigh-
ourhood N(4) of 4. We can find an annulus 4’ in N(A) parallel to 4, such
hWAYNA’=F and A’ A S? x i is a preferred longitude of K; for each i

)- On the other hand, we can see that the 4-manifold W= S? x Ifh has
et mology of S* x I and Fix(k) is homeomorphic to an annulus, by using
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[6] Chapter 3. Let p be the projection S x I- W. Then p(Fix(4)) and P(A4') ar
disjoint annuli in W and give a cobordism between the links L(Ky, ho) ang
L(K,, h,). Hence, we have Niko,ho)(8) =Mk, ,y() (see Theorem 2 of [18)).

(2) follows from the fact that the link L(X, h) is obtained from L(k,, h)
and L(KX,, h,) by a very natural fusion.

Example 4.2. The strongly invertible knots illustrated in Fig. 4.2 haye
trivial Alexander polynomials. But, they have nontrivial n-polynomials, anq
therefore they are not equivariantly slice.

(Y

P

(@_-\ (/:

ya

5 2( -
A0 x

| |
n(r)=[6,0,—4,0,1 n(H=[—-6,2,4,-3,-1,1

Fig. 4.2

Example 4.3. There are two strongly invertible knots obtained from
6,, and their n-polynomials are nontrivial as is seen in the appendix. Hence,
they are not equivariantly slice, even though 6, itself is slice.

Thus the natural homomorphism from & to the classical knot cobor-
dism group has the nontrivial kernel. On the other hand, by the results of
Livingston [19], it is not an epimorphism.

Appendix:- Table of the symmetry groups and the n-polynomials.

In the following tables, Sym* denotes =, Diff *(S%, K), where
Diff *(83, K) is the space of all diffeomorphisms of (S3, K) which preserve
the orientation of S3. The symbol “A” (resp. ““N”) denotes that the
corresponding knot is amphicheiral (resp. non-amphicheiral). Sym(S?3, K)
can be obtained from the above data.

L. 2-bridge knots. The symbol [a,, - - -, a,] in the third column repre-
sents. the continued fraction expansion of ¢/p, where (p, g) is the type of the
corresponding knot. The first polynomial in the last column is the #-
polynomial of Ii(ay, * -+, a,_y; ay/2, -+, a,/2). If g*%#1 (mod. p) [resp
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) g
) agg Y
). :3.6).
10 By “Type Continued fraction
6y -2
5.2 (2,2]
4 ang . (5,4) [2, —2’27 _2]
72 @2
< 9,2 4.2)
(]1,8) [2x "2’2929]
{l3, 8) [2’ —2: —2’ 2]
(7. 6) [23 "'2, 2! _23 2) -2]
(11,2 6, —2] -
(13, -4 [-4,2,-2,2)
(15, -4)  [~44)
"(19,8) [2,2,2, -2]
21,8) 2,2, -2, -2]
‘o
266 (13,2) i6,2)
C17,14) [2,-2,2,-2,2,2]
e 7.4 [@44]
i0 (19,-4) [-4,-2,-2,2]
) 23.-10) [-2,-4,2,-2)
eﬁ (23,14 [2,-2,-2,2,-2,2)

© (25, -14)
(25,18)
(27.8)

i . (9.1)
3 9,9
; (31, -18)

[-2,4,2,-2)

2, -2,2,2,-2,2)
[4,-2,2,2)
[2,2,2,2]
[4,-2,-2,2]
[—2,4,~2,-2]

Sym* Amphi.

D,
D,

2 z » Z » 2 Z Z 2Z » 2Z Z zZ Z 2Z Z Z ZZ » Z Z ZZ »>»Z
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-1 and ﬁé +1 (mod. p)], the second polynomial is the n-polynomial of
—an-l/Z’ Y _01/2) [resp‘ IZ(ala .

**, aup)] (see Propo-

n-polynomial

[210’ -1
2,-1,-1,1
(—2,1.1,—1
[2,0, -1
[2,—1,0,],-1

{-2,1,0,0,1, -1
[4: - la "'2’ l
2,0, 1
[4,-2,-1,2, -1
[0,1,—-1,-1,1
[0,-1,1,1, -1
[4101 -2

[21 - 1.0,0,0, ll "l
[6,-1,-3,1
~4,2,1,-2,1
-2,0,1
4,-2,0,1,-2,1

4,0, —2

6, ~2, —2,2, —1
—2,1,1, -1

6, -3, —1,2, 2,1
0,0,1, —1,—1,1
2,0, —1
E-«zqqm—uz-l
0,1,0, —1
13,-5, 6,5, —1
—4,2,0,—1,2, —1
4,-2,0,1,-2,1
0,0,1, —1,—1,1
-6,2,1,—-1,2, —1
6,2, —3,2
-2, -1,1.1
[-2,2,0,-2,1

[0

(2,0, -1
[0! l; —1,0,0, _I,l

{0

0

[0,-1,1,1,-1
2,-1,-11
(-2,1,1, -1
22121,
[030:05 19 _"lg _l)l
2-21.1,-2,1
[-2,0,2, —-1,—-1,1
[-4.2.1, 1,0, 1,1
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Knot Type
9, (9
9, (15,2
9, (19, -6)
9, (21,4
9, (23, -4)
9  (27,22)
9,  (29,20)
9 (31,14)
9, (31,29

9, (33,-10)
9,, (33,-26)
9, (35,8
9, (37,-26)
9,, (37,-8)
9,5 (39,-22)
9, (39, -14)
9,, (41,12
9, (41,—18)
9, (41,30)
9, (43,12
9,, (45,26)
9,, (47,—34)
9, (49,18)
9,, (55, —34)

II. 3-bridge knots.

M. Sakuma

Continued fraction Sym* Amphi.

[2,-2,2,-2,2,-2,2,-2] D,

8, —2] D,
[-4,2,-2,2,-2,2] D,
6, 2,2, —2] D,
[—6,4] D,
2, =22, 2,4, -2 D,
2, =26, -2] D,
2,4,2, -2] D,
2 ~2,2,-4,2, ~2] D,
[~4,2, —2,4] D,
(=2,2,-2,2,2,2) D,
[4,2,2, -2) D,
[=2,2, —4,4] D,
(~4,—2,2,2] . p,
[~2,4,2,2] D,
(=2, -2,2,-2,2,2] D,
[4,-2,4, —2] D,
(=2, —4,2,2] D,
[2,-2,2,2,2, -2] D,
(—4,2,2,2] D,
2, —4,4, -2] D,
(=2,2, -2, -2,2,2] D,
2.2,-2,2,2, —2] D,
(-2,2,2, -2, =2.2] b,

ZZZZZZZZZZZZZZZZZZZZZZZZ

n-polynomiat

4,0, -2

2, _1,0,0’0l0$0ily "l
8, _2’ T

—6,3. l) _312
—8,2,3’ “'2i1
—-4,2,0,0,1,-2,1
2,0, ~1

—4,2,03010t —llzl -1

' _6)3;01 -'2v3; -1

[4’_Iv_lrl,-l
2,-33 -1
4,-1,-1,1,-1
6,-1,-3,1
[—2,0,2,0, -
[4'—1:_1)0’0'0;-l.|
[4109—2
[4101-‘2
[(—6,2,2,—2,1
[—4s0,2
[-4,1,2, -1
fo,-1,0,1
[0’0! 1’191'
2,-2,1,1,-
[_47132:_
6’33 y T
0’0’ ,_l:
[

l

[ l: t] -2,1
[ I) el
[2v ’-‘3 0)2’—
[-4,-1,2,1
0,—l,0,l
[2,-2,0,2,-1

[0

[22'_1’():11_'

(8, -3,—-2,2,-2,1
[4,_11-2,1
[0,0,-1,1,0,0,1, —1
[4a0’-2

[6 2!-1’0| I-Zv'—
[-4,2,0,-1,1,0,1
[—2,1,-1,1

[6, -2, —-2,1,0,1, —
(2,0, —
[—4,1,2, -1
[-2,1,—-1,1,1, 2]
[ 27"', 2’ ’]'
2,1, -2,-1,
[-2,0,1,

0

, -

1
-2,1
-1,1
1, -1

The first row represents Sym* -and amphi-

cheirality. In case K has two inequivalent inverting involutions, the first
(the second) polynomial is the n-polynomial of the inverting involution
labeled 1 (resp. 2).
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%0 ) Dy N 9 D5 N
ng 2 - @b o101
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