On Strongly Invertible Knots

Makoto Sakuma

A knot K in the 3-sphere S^3 is said to be strongly invertible, if there is an orientation-preserving involution h on S^3 , such that

- (1) h(K) = K,
- (2) Fix(h) is a circle intersecting K in two points.

There are "many" strongly invertible knots; in fact, about 85 percent of the prime knots with 10 crossings or less are strongly invertible (see [13]). Moreover, Sakai [34] has shown that every knot polynomial is the Alexander polynomial of a strongly invertible knot. Other aspects of the strongly invertible knots can be found in [2, 3, 4, 11, 15, 16, 19, 21, 23, 42, 44].

In this paper, we consider the pair (K, h), where K is a knot in an oriented S^3 and h is an involution on S^3 satisfying the above conditions (1) and (2). We use the term "strongly invertible knot" to mean such a pair, and two such pairs (K, h) and (K', h') are said to be equivalent, denoted by $(K, h) \cong (K', h')$, iff there is an orientation-preserving homeomorphism f on S^3 such that f(K) = K' and $f \circ h \circ f^{-1} = h'$.

In Section 1, we define the equivariant connected sum of strongly invertible knots and present the unique prime decomposition theorem (Theorem I).

In Section 2, we define a polynomial invariant of a pair (K, h), which we call the η -polynomial, and denote by the symbol $\eta_{(K,h)}(t)$. The η -polynomial is characterized by the following properties (Theorem II);

- (1) $\eta_{(K,h)}(t) = \eta_{(K,h)}(t^{-1})$,
- (2) $\eta_{(K,h)}(\pm 1) = 0$.

And it takes the value 0 if K is a trivial knot. The calculation of the η -polynomial is very easy (see Section 2), and it does not always vanish even if the Alexander polynomial is trivial (Example 4.2). Moreover, we show that the η -polynomial is an equivariant coborism invariant, and in fact, it gives a homomorphism from the group of all equivariant cobordism classes of the

group invertible knots to the additive group Z(t) (Theorem III).

In the appendix, we give a table of the symmetry groups and the η -polynomials of the prime knots with 9 crossings or less. To do this, we use a certain relationship between strong invertibility and periodicity of a simple knot (Proposition 3.1), which is deudced from the results of Thurston [41]. A relation between strong invertibility and amphicheirality of a simple knot is also observed, by which a certain criterion for an invertible knot to be nonamphicheiral is given in terms of the η -polynomial (Proposition 3.4).

L Equivariant prime decomposition

For given two strongly invertible knots (K_i, h_i) (i = 1, 2), we define their equivariant connected sum $(K_1, h_1) \# (K_2, h_2)$ as follows. Let z_i be a point of $\operatorname{Fix}(h_i) \cap K_i$ and B_i be an equivariant regular neighbourhood of z_i for each i = 1, 2, and let f be an orientation-reversing equivariant homeomorphism from $\partial(B_1, B_1 \cap K_1)$ to $\partial(B_2, B_2 \cap K_2)$. Then the manifold pair

$$\{(S^3, K_1) - (\mathring{B}_1, \mathring{B}_1 \cap K_1)\} \cup_f \{(S^3, K_2) - (\mathring{B}_2, \mathring{B}_2 \cap K_2)\}$$

is homeomorphic to $(S^3, K_1 \# K_2)$, and the involutions h_1 and h_2 naturally determine an inverting involution h of $(S^3, K_1 \# K_2)$. We want to define $(K_1, h_1) \# (K_2, h_2)$ to be $(K_1 \# K_2, h)$. But there remains the following ambiguities in this "definition".

- The choice of the point $z_i \in Fix(h_i) \cap K_i \cong S^0$ for each i = 1, 2.
- (2) The choice of the equivariant homeomorphism f.

 To remove these ambiguities, we attach the following additional informations to each strongly invertible knot (K, h).
 - (i) An orientation of Fix(h).
 - (ii) A "base point" ∞ of Fix(h), which lies in one of the components of Fix(h) K.

We call these additional informations a direction of (K, h), and a strongly invertible knot with a direction is said to be directed. We can now define the equivariant connected sum of two directed strongly invertible knots (K_i, h_i) (i=1, 2) as indicated in Fig. 1.1. This indication clearly resolves the ambiguity (1). Concerning the ambiguity (2), it specifies the restriction of f to $\partial B_1 \cap \operatorname{Fix}(h_1)$. Let g be another orientation-reversing equivariant homeomorphism from $\partial (B_1, B_1 \cap K_1)$ to $\partial (B_2, B_2 \cap K_2)$ of which restriction to $\partial B_1 \cap \operatorname{Fix}(h_1)$ is equal to that of f. Then g is equivariantly isotopic to either f or $(h_2 \mid_{\partial B_2}) \circ f$ rel. $\partial B_1 \cap K_1$. [Proof. The equivariant homeomorphism $g \circ f^{-1}$ or $\partial (B_2, B_2 \cap K_2)$ induces a homeomorphism ψ on $\partial B_2/h_2$ which is identity on the subset $P = {\partial B_2 \cap (\operatorname{Fix}(h_2) \cup K_2)}/h_2$. Note that P consists of three

is an

f the [13]); nder ngly

n an s (1) and i by

f on

ngly rem

h we

e ηen if that es a

points. Then, by Theorem 4.5 of [1], ψ is isotopic to the identity map rel. P. This isotopy lifts to an equivariant isotopy between $g \circ f^{-1}$ and either the identity map or $h_2 \mid_{\partial B_2}$.] Moreover, as shown in Fig. 1.2, f and $(h_2 \mid_{\partial B_2}) \circ f$ determine the equivalent strongly invertible knots. Thus the equivariant connected sum is well-defined for directed strongly invertible knots.

Definition 1.1. (1) (K, h) is said to be *trivial*, if K is a trivial knot and h is the standard inverting involution.

- (2) (K, h) is said to be *prime*, if it is not trivial, and is not equivalent to a sum of two nontrivial strongly invertible knots.
- (3) For an oriented knot $k = (S^3, k)$, D(k) denotes the strongly invertible knot (k#-k, h), where -k denotes the knot $(S^3, -k)$ and h is the inverting involution which interchanges the factors k and -k.
- (4) For a finite sequence $\{(K_i, h_i) \mid 1 \le i \le n\}$ of directed strongly invertible knots, $\#_{i=1}^n(K_i, h_i)$ denotes the directed strongly invertible knot $(((K_i, h_i) \# (K_2, h_2)) \# (K_3, h_3)) \# \cdots) \# (K_n, h_n)$.

The set $\tilde{\mathscr{S}}$ of all directed strongly invertible knots together with the

operation # forms a non-commutative semi-group. It is easily seen that D(k) (with any direction) belongs to the center of the semi-group. (Furthermore, by the unique decomposition theorem stated below, the center consists only of D(k)'s.) We have the followings.

Lemma 1.2. (1) (Marumoto [21] Proposition 2) (K, h) is trivial, iff K is initial.

(2) (K, h) is prime, iff K is prime or $(K, h) \cong D(k)$ for some prime knot k.

Theorem I. (1) Any nontrivial, directed, strongly invertible knot (K,h) has an equivariant prime decomposition. Any prime decomposition is equivalent to a decomposition $(K,h) \cong \{\#_{i=1}^r (K_i,h_i)\} \# \{\#_{j=1}^s D(k_j)\}$ where K_i $(1 \leq j \leq s)$ are prime knots.

- (2) Let $\{\#_{i=1}^r(K_i, h_i)\}$ $\#\{\#_{j=1}^sD(k_j)\}$ and $\{\#_{i=1}^r(K_i', h_i')\}$ $\#\{\#_{j=1}^sD(k_j')\}$ be prime decompositions of a directed strongly invertible knot. Then the following hold.
 - (a) r=r' and $(K_i, h_i) \cong (K'_i, h'_i)$ for each $i (1 \leq i \leq r)$.
- **(b)** s=s' and after a permutation $D(k_j) \cong D(k'_j)$ for each j $(1 \le j \le s)$. **Here,** \cong denotes the equivalence as directed strongly invertible knots.

Fo prove Lemma 1.2 (2) and Theorem I, we need the following: For a strongly invertible knot (K, h), let $\theta(K, h) = p(\operatorname{Fix}(h)) \cup p(K)$, where p is the projection $S^3 \to S^3/h \cong S^3$. We call it the θ -curve associated with (K, h). $\theta(K, h)$ is said to be prime, if it is "nontrivial", and if every 2-sphere intersecting $\theta(K, h)$ transversely at three points bounds a 3-ball B such that $(B, B \cap \theta(K, h))$ is homeomorphic to the cone over $\partial(B, B \cap \theta(K, h))$. $\theta(K, h)$ is said to be irreducible, if it is prime, and does not contain a local knot. Note that the 2-fold branched cover $\Sigma(K)$ of K is homeomorphic to the $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ branched cover of $\theta(K, h)$. Let τ be the covering transformation of $\Sigma(K)$, and the a lift of h to $\Sigma(K)$. Then, by the results of [21], [22], and [43], we obtain the following equivalences.

(i) K is trivial. $\rightleftarrows \Sigma(K) \cong S^3$.

 $\rightleftarrows \theta(K, h)$ is trivial. (Cf. [24])

(ii) K is prime. $\rightleftarrows \Sigma(K)$ has no essential 2-sphere.

 $\rightleftarrows \theta(K, h)$ is irreducible.

(iii) (K, h) is prime. $\rightleftarrows \Sigma(K)$ does not have $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ invariant essential 2-sphere.

 $\rightleftharpoons \theta(K, h)$ is prime.

((K, h)) is prime, but K is not prime.

 $\rightleftarrows \Sigma(K)$ contains an essential 2-sphere S, such that

el.P

_{B2})•// triant

t and

int to

y 10. s the

y in:

((C)

a W

 $\tau(S) = S$ and $\tilde{h}(S) \cap S = \emptyset$. $\Rightarrow \theta(K, h)$ is prime, but not irreducible. $\Rightarrow (K, h) \cong D(k)$ for some prime knot k.

In particular, we obtain Lemma 1.2 (2). The first half of Theorem 1 follows from Lemma 1.2 and the existence of the prime decomposition of a knot [37]. The above observations say that we have only to show the uniqueness of the "prime decomposition" of a θ -curve to prove the latter half of Theorem I. But this can be done by a standard cut and paste method, so, we omit it. We note that the prime decomposition of a θ -curve mentioned here may be considered as the prime decomposition of it as an orbifold [$A\theta$] curve is viewed as the branch line of a $\mathbb{Z}_2 \oplus \mathbb{Z}_2$ branched cover.], and the existence and the uniqueness of the prime decomposition of a "pseudogood" orbifold are claimed by Bonahon-Siebenmann [5].

2. η-polynomial

For a strongly invertible knot (K, h), let N be an equivariant tubular neighbourhood of K, and $l \subset \partial N$ be a preferred longitude of N (cf. [32]), such that $h(l) \cap l = \emptyset$. Put $O = p(\operatorname{Fix}(h))$ and L = p(l), where p is the projection $S^3 \to S^3/h \cong S^3$. Then $L(K, h) \equiv O \cup L$ is a 2-component link in S^3 and $\operatorname{lk}(O, L) = 0$ (cf. Fig. 2.1). Let $\eta_{(K,h)}(t)$ be the η -function of the link L(K, h) defined by Kojima-Yamasaki [18] (cf. [8, 9]); that is, the Laurent polynomial with integral coefficients defined by the equality

$$\eta_{(K,h)}(t) = \sum_{i=-\infty}^{\infty} \operatorname{lk}(\tilde{L}', t^i \tilde{L}) t^i,$$

where \widetilde{L} is a lift of L to the infinite cyclic cover $\widetilde{E(O)}$ of $E(O) \equiv S^3 - O$, \widetilde{L}' is

Fig. 2.1

ine lift of a preferred longitude L' of L near \bar{L} , and t is a generator of the revering transformation group of E(O). Clearly $\eta_{(K,h)}(t)$ is an invariant of the equivalence class of (K,h), and we call it the η -polynomial of (K,h). We remark that this polynomial was originally introduced in the joint paper of S. Furusawa and the author [7] for a different purpose.

Example 2.1. Let $K=9_{49}$ and h be the involution as illustrated in Fig. 2.1. (a), Then $\eta_{(K,h)}(t) = [-6, 2, 2, -2, 1]$. Here, $[a_0, a_1, \dots, a_n]$ represents the polynomial $a_0 + \sum_{i=1}^{n} a_i (t^{-i} + t^i)$.

The following theorem characterizes the η -polynomial.

Theorem II. (1) $\eta_{(K,h)}(t)$ satisfies the following conditions:

- (i) $\eta_{(K,h)}(t) = \eta_{(K,h)}(t^{-1}),$
- (ii) $\eta_{(K,h)}(1) = 0$,
- (iii) $\eta_{(K,h)}(-1) = 0.$
- (2) Conversely, for any Laurent polynomial $\eta(t)$ with integral coefficients satisfying the above conditions, there exists a strongly invertible knot (K, h) such that $\eta_{(K,h)}(t) = \eta(t)$.

Proof. (1) The first and the second conditions are found in **Proposition** 2 of [18]. [The second condition follows from the equality $\eta_{(R,b)}(1) = lk(L', L) = 0$.] The third condition follows from the second condition and the equality

$$\sum_{l=\text{ odd}} (\text{the coefficient of } t^l) = lk(l, h(l)) = 0$$
.

(2) is proved at the end of this section.

We now give a convenient method for calculating the η -polynomial. The method consists of the following six steps.

- Step 1. Draw the projection of $\theta(K, h)$ so that (i) O = p(Fix(h)) is represented by a straigt line, and (ii) the two vertices of $\theta(K, h)$ are on the top and the bottom respectively (see Fig. 2.2 (b))
- Step 2. From the above projection, construct the "pseudo-fundamental region" of the infinite cyclic cover $\widetilde{E(O)}$ as indicated in Fig. 2.2 (c).
- Step 3. Assign an index and an orientation to each arc in the pseudofundamental region as follows (see Fig. 2.2 (c)).
 - (i) The top arc has index 0, and is oriented downward.
- (ii) Suppose an arc α is already indexed and directed. Let A be the end point of α , and B be the point opposite to A. Then the arc β which contains B is oriented so that B is the starting point of β , and index(β) is defined to be index (α) + 1 or index(α) 1 according as B is on the right side or on the left

ieoremal iposition show the he latter method entioned old [A]B and the

'pseudo

t tubular

12]), such
rojection

S³ and
k *L(K, h)*lynomia

- O, Ē' is

ill twists.

side.

Step 4. Assign each double point P a signature $\varepsilon_P \in \{+, -\}$ and $\varepsilon_P \in \mathbb{Z}$ as follows. Let α and β be the over-pass and the under-pass at P respectively. Then $d_P = \operatorname{index}(\alpha) - \operatorname{index}(\beta)$, and $\varepsilon_P = +$ or - according $\varepsilon_P \in \mathbb{Z}$ as from left to right or from right to left.

Step 5. Let $\tilde{\eta}$ be the integral polynomial of $\{x_i \mid i \in \mathbb{Z}\}$ define by the equality $\tilde{\eta} = \sum_{p} \varepsilon_p x_{d_p}$, where P ranges over all double points in the pseudofundamental region.

Step 6. Let $\eta'(t)$ be the Laurent polynomial obtained from $\tilde{\eta}$ by putting $x_i = t^{i-1} - 2t^i + t^{i+1}$. $\eta'(t)$ is symmetric, and theorefore it takes the form of $[b_0, b_1, \dots, b_n]$. Then, we have

$$\eta_{(K,h)}(t) = [a_0, a_1, \dots, a_n]$$

where

$$a_{i} = \begin{cases} -2\sum_{j \ge 1} b_{2j} & (i=0) \\ -\sum_{j \ge 1} b_{2j+1} & (i=1) \\ b_{i} & (i \ge 2) \end{cases}$$

Example 2.2. The θ -curve and the pseudo-fundamental region of the strongly invertible knot (K, h) given in Example 2.1 are illustrated in Fig. 2.2. Thus $\tilde{\eta} = x_{-3} + x_{-1} + x_0 + x_1 + x_3$, and $\eta'(t) = [0, -1, 2, -2, 1, and therefore <math>\eta_{(K,h)}(t) = [-6, 2, 2, -2, 1]$.

The reason why the above procedure actually gives the calculation of the η -polynomial can be seen by comparing Fig. 2.2 (c) with Fig. 2.3 (b) which gives a fundamental region of $\widetilde{E(O)}$. Note that each crossing in the

pseudo-fundamental region corresponds to a set of four crossings in the fundamental region as shown in Fig. 2.4. This suggests the correspondence personner x_i and $t^{i-1}-2t^i+t^{i+1}$.

Fig. 2.4

It is well-known that every 2-bridge knot is strongly invertible, and as is proved in the next section (Proposition 3.6), a strongly invertible knot (K, h) obtained from a 2-bridge knot is equivalent to the strongly invertible knot $I_i(\alpha_i, \dots, \alpha_n; c_1, \dots, c_n)$ or $I_2(a_1, \dots, a_n)$ which are given in Fig. 2.5 (a) and (b) respectively. Here, α_i , c_i , and a_i are integers, and we may assume that a_i $(1 \le i \le n)$ are even. Their η -polynomials are calculated through the method given in this section. We state them without proof.

Proposition 2.3. (1) The η -polynomial $\eta(t)$ of $I_1(\alpha_1, \dots, \alpha_n; c_1, \dots, c_n)$ is as follows. Let c_i' and δ_i be the integers determined by the equalities $c_i = (1 + \delta_i, \delta_i) = 0$ or 1, and put $\varepsilon_i = \prod_{j=1}^n (-1)^{\delta_j}$. Then

$$\eta(t) = -\sum_{i=1}^{n} \{c_i' D(\sum_{j=1}^{i} \varepsilon_j \alpha_j) + \delta_i W(\varepsilon_i \sum_{j=1}^{i} \varepsilon_j \alpha_j)\} + r(t).$$

ass at

y the eudo-

s the

f the

1

n ol (b)

Fig. 2.5

Here,
$$D(\alpha) = x_{-\alpha} + x_{\alpha}$$
,

$$W(\alpha) = \begin{cases} \sum_{i=1}^{\alpha} D(i) & (\alpha \ge 1), \\ 0 & (\alpha = 0, -1), \\ -\sum_{i=1}^{|\alpha|-1} D(i) & (\alpha \le -2), \end{cases}$$

$$x_{\alpha}=t^{\alpha-1}-2t^{\alpha}+t^{\alpha+1},$$

and r(t) is the symmetric Laurent polynomial of degree ≤ 2 which is uniquely determined by the equality $\eta(1) = \eta(-1) = 0$.

(2) Suppose that a_i $(1 \le i \le n)$ are even integers. Then the η -polynomial $\eta(t)$ of $I_2(a_1, \dots, a_n)$ is as follows.

$$\eta(t) = \frac{1}{2} \sum_{j \ge 0} \dot{a}_{2j+1} (2 - (t^{-2} + t^2)) .$$

In particular, the η -polynomial of $I_1(-1, \dots, -1, -2b_2, \dots, -2b_n)$ is $r'(t)+b_2(t^{-2}+t^2)+\sum_{i=3}^n b_i(t^{-i}-2t^{-i+1}+t^{-i+2}+t^{i-2}-2t^{i-1}+t^i)$,

where r'(t) is a symmetric polynomial of degree 2. Hence, by choosing b_i $(2 \le i \le n)$ suitably, we can realize every polynomial which satisfies the conditions given by Theorem II (1) (cf. [33]). This proves the latter half of Theorem II.

1 Invertible simple knots

Kojima [17] showed that any nontrivial link admits only finitely many symmetries, using the results of Thurston [41]. Thus each knot admits only finitely many inverting involutions. The following observation refines this result for simple knots. (See [36], for other refinements.)

Proposition 3.1. (1) A torus knot admits exactly one inverting involution.

- (2) Let K be an invertible hyperbolic knot. Then K admits exactly two or one inverting involutions according to whether K has (cyclic or free) period 2 or not.
- Remark 3.2. The assumption that K is simple is essential. In fact, for any positive integer n, we can easily construct a composite knot which has more than n inverting involutions by using Theorem I. It is also possible to construct such a prime knot (see [36]).
- **Proof.** (1) can be seen by using the fact that an involution on the complement of a torus knot preserves a Seifert fibration on it (see [38]).
- (2) Let K be an invertible hyperbolic knot, E(K) be its complement, and $I_{SOM}^+E(K)$ be the group of all orientation-preserving isometries of E(K). Then we have the following.
- **Lemma 3.3.** (Riley [30] p. 124) Isom $^+E(K)$ is isomorphic to the dihedral group D_n of order 2n for some positive integer n.

Proof of Lemma 3.3. By Proposition 5.1 of [40], Isom $^+E(K)$ naturally acts on (S^3, K) . Let $\psi : \text{Isom}^+E(K) \to \text{Diff}(K)$ denote the restriction of the setion. Then, ψ is injective by the Smith conjecture [25]. Noting that $\text{Isom}^+E(K)$ is finite and K is invertible, we obtain the desired result.

So we may assume that $\operatorname{Isom}^+ E(K) = \langle f, h | f^n = h^2 = 1, hfh^{-1} = f^{-1} \rangle$, and the orientation of K is preserved by f and reversed by h. An element g of $\operatorname{Isom}^+ E(K)$ gives an inverting involution, iff $g = f^i h$ for some i $0 \le i \le n-1$ (see [3, 16]); and two such elements $g = f^i h$ and $g' = f^{i'} h$ represent the equivalent involutions, iff they are conjugate in $\operatorname{Isom}^+ E(K)$, that is, $i \equiv i'$ modulo the greatest common divisor of 2 and n. Hence K admits

exactly two or one "isometric" inverting involutions according to whether n is even or odd. So the proposition follows from the results of Thurston [41] and the fact that n is even iff K has (cyclic or free) period 2.

The following gives a relation between amphicheirality and strong invertibility of a hyperbolic knot, and provides a criterion for proving nonamphicheirality of a hyperbolic knot.

Proposition 3.4. Let K be an invertible hyperbolic knot which is amphicheiral.

- (1) Assume that K does not have period 2, and let h be the unique inverting involution. Then $(K,h) \cong (K,h)^*$, where $(K,h)^*$ is the strongly invertible knot obtained from (K,h) by reversing the orientation of S^3 . In particular, $\eta_{(K,h)}(t) = 0$.
- (2) Assume that K has period 2, and let h_1 and h_2 be the inequivalent inverting involutions. Then $(K, h_1) \cong (K, h_2)^*$. In particular, $\eta_{(K, h_1)}(t) = -\eta_{(K, h_2)}(t)$.

Proof. (1) is a direct consequence of Proposition 3.2.

(2) We may assume that

Isom
$${}^{+}E(K) = \langle f, h | f^{n} = h^{2} = 1, hfh^{-1} = f^{-1} \rangle$$

with n even, and $h_1 = h$ and $h_2 = fh$. Since K is amphicheiral, Isom E(K) is an exension of Isom⁺E(K) by \mathbb{Z}_2 , and it naturally acts on (S^3, K) . Let $\tilde{\psi}$: Isom $E(K) \to \text{Diff}(K)$ be the restriction of the action to K. Suppose that $\tilde{\psi}$ is not injective. Then, by the proof of Lemma 3.3, there is an orientation-reversing isometry γ such that $K \subset \text{Fix}(\gamma)$. By Smith theory [6], $\text{Fix}(\gamma) \cong S^2$, and therefore K is a trivial knot; a contradiction. Thus $\tilde{\psi}$ is injective. So we have $\text{Isom } E(K) = \langle \gamma, h | \gamma^{2n} = h^2 = 1, h\gamma h^{-1} = \gamma^{-1} \rangle \cong D_{2n}$, where γ is orientation-reversing and $\gamma^2 = f$. Then $\gamma h_1 \gamma^{-1} = \gamma h \gamma^{-1} = fh = h_2$. Hence $(K, h_1) \cong (K, h_2)^*$.

Example 3.5. Though the knots 10_{104} and 10_{155} in the table of [32] have trivial signatures, we can confirm their nonamphicheirality as follows (cf. [29]).

- (1) 10_{104} does not have period 2 by [12, 20, 26], and it has a unique inverting involution (see Fig. 3.1 (a)). But, its η -polynomial is [2, -1, 1, -1.
- (2) 10_{155} has free period 2 by [12], and it has two inverting involutions (see Fig. 3.1 (b)). But, their η -polynomials are 0 and [-4, 0, 2. (For a relation between amphicheirality and free periodicity, see [35].)

(b)

Fig. 3.1

Let K(p, q) be the 2-bridge knot of type (p, q). It is well-known that K(p, q) is simple, invertible, and has cyclic period 2. So, if K(p, q) is not a torus knot (that is, if $q \not\equiv 1 \mod p$), then K(p, q) admits exactly two inverting involutions. We now describe them. Since p is odd, we may assume that q is even and 1 < |q| < p. Then p/q has the unique continued fraction expansion

$$\frac{p}{q} = a_1 + \frac{1}{a_2} + \frac{1}{a_3} + \cdots + \frac{1}{a_n}$$

where a_i ($1 \le i \le n$) and n are non-zero even integers (see [39]). We denote it by the symbol $[a_1, a_2, \dots, a_n]$.

Proposition 3.6. (1) Assume that $q^2 \not\equiv 1 \pmod{p}$. Then the strongly invertible knots obtained from K(p, q) are

$$I_1(a_1, a_3, \dots, a_{n-1}; a_2/2, a_4/2, \dots, a_n/2)$$

ond

ether 1 [4]1

rong Ving

ique

leni

$$I_1(-a_n, -a_{n-2}, \dots, -a_2; -a_{n-1}/2, -a_{n-3}/2, \dots, -a_1/2)$$
.

(2) Assume that $q^2 \equiv 1 \pmod{p}$ [and $q \not\equiv 1 \pmod{p}$]. Then the strongly invertible knots obtained from K(p, q) are

$$I_1(a_1, a_3, \dots, a_{n-1}; a_2/2, a_4/2, \dots, a_n/2)$$
 and $I_2(a_1, a_2, \dots, a_{n/2})$.

Proof. According to Coway's calculation of the outer-automorphism **Exoup** of the 2-bridge knot groups (see [10]), $Isom^+E(K(p,q)) = \langle f, h | f^s = 1, hfh^{-1} = f^{-1} \rangle$, where s = 2 or 4 according to whether $q^2 \neq 1 \pmod{p}$ or not. By a similar argument as that of [14] Lemma 2 (cf. [39]), we can see that

 $q^2 \equiv 1 \pmod{p}$, iff $a_i = -a_{n-i}$ for each $i \pmod{1 \leq i \leq n}$. Thus the action of Isom $^+E(K(p,q))$ on $(S^3, K(p,q))$ is as illustrated in Fig. 3.2. Noting that h and fh give inequivalent inverting involutions, we obtain the desired results.

Fig. 3.2

All prime knots with 10 crossings or less are simple (see [30]), and their invertibility problems are completely solved by Hartley [13] (cf. [2, 4, 16, 30, 31]). And the prime knots with less than 10 crossings which have period 2 are completely identified by [2, 20, 27] for cyclic period and by [12] for free period. Recently, the author determined the symmetry group $Sym(S^3, K) = \pi_0 Diff(S^3, K)$ of every prime knot with less than 10 crossings by using the results of Thurston [41]. In the appendix, we present a table of the symmetry groups and the η -polynomials of all prime knots with less than 10 crossings. Although the amphicheirality problem on knots with 10 crossings or less is already solved by Perko [28, 29], it might be of some slight interest to remark that the problem for invertible knots with less than 10 crossings can also be solved by using the η -polynomials except 8_{20} and 9_{40} (cf. Proposition 3.4).

4. Equivariant cobordism

We say that two strongly invertible knots (K_0, h_0) and (K_1, h_1) are equivariantly cobordant if there is a smooth submanifold A and a smooth involution h on $(S^3 \times I, A)$, which satisfy the following conditions:

- A is homeomorphic to an annulus.
- (2) $A \cap S^3 \times i = K_i \times i$ for each i (i = 0, 1).
- The restriction of h to $(S^3 \times i, A \cap S^3 \times i)$ is equivalent to h_i for each i (i=0, 1).

When we consider equivariant cobordism of directed strongly invertible knots, we further require that the directions of (K_0, h_0) and (K_1, h_1) are coherent". Let \mathcal{S} be the set of all equivariant cobordism classes of directed arongly invertible knots. Then the equivariant connected sum operation naturally induces a sum operation on \mathcal{S} , and with respect to which \mathcal{S} forms a group. The identity element of this group is represented by the trivial strongly invertible knot, and the inverse of a class $\{(K, h)\}$ is the class $\{(K, h)^*\}$, where $(K, h)^*$ is the directed strongly invertible knot obtained from (K, h) by reversing the orientations of S^3 and Fix(h).

Example 4.1. The strongly invertible knot obtained from the pretzel front of type (p, -p, r) as illustrated in Fig. 4.1 is equivariantly slice. Here p is an odd integer and r is an even integer.

Fig. 4.1

Theorem III. The η -polynomial gives a homomorphism from the group \mathcal{L} to the additive group $\mathcal{L}\langle t \rangle$. That is;

(1) If (K_0, h_0) and (K_1, h_1) are equivariantly cobordant, then

$$\eta_{(K_0,h_0)}(t) = \eta_{(K_1,h_1)}(t)$$
.

(2) If $(K, h) = (K_1, h_1) \# (K_2, h_2)$, then

ry

$$\eta_{(K,h)}(t) = \eta_{(K_1,h_1)}(t) + \eta_{(K_2,h_2)}(t)$$
.

Proof. (1) Let $\{(S^3 \times I, A), h\}$ be an equivariant coborism between (K_0, h_0) and (K_1, h_1) . By [6] p. 306, there is an h-invariant tubular neighbourhood N(A) of A. We can find an annulus A' in N(A) parallel to A, such that $h(A') \cap A' = \emptyset$ and $A' \cap S^3 \times i$ is a preferred longitude of K_i for each $i \in [0, 1)$. On the other hand, we can see that the 4-manifold $W \equiv S^3 \times I/h$ has the homology of $S^3 \times I$ and Fix(h) is homeomorphic to an annulus, by using

[6] Chapter 3. Let p be the projection $S^3 \times I \to W$. Then p(Fix(h)) and p(A') are disjoint annuli in W and give a cobordism between the links $L(K_0, h_0)$ and $L(K_1, h_1)$. Hence, we have $\eta_{(K_0, h_0)}(t) = \eta_{(K_1, h_1)}(t)$ (see Theorem 2 of [18]).

(2) follows from the fact that the link L(K, h) is obtained from $L(K_1, h_1)$ and $L(K_2, h_2)$ by a very natural fusion.

Example 4.2. The strongly invertible knots illustrated in Fig. 4.2 have trivial Alexander polynomials. But, they have nontrivial η -polynomials, and therefore they are not equivariantly slice.

Fig. 4.2

Example 4.3. There are two strongly invertible knots obtained from 6_1 , and their η -polynomials are nontrivial as is seen in the appendix. Hence, they are not equivariantly slice, even though 6_1 itself is slice.

Thus the natural homomorphism from \mathcal{S} to the classical knot cobordism group has the nontrivial kernel. On the other hand, by the results of Livingston [19], it is not an epimorphism.

Appendix: Table of the symmetry groups and the η -polynomials.

In the following tables, Sym^+ denotes $\pi_0 \operatorname{Diff}^+(S^3, K)$, where $\operatorname{Diff}^+(S^3, K)$ is the space of all diffeomorphisms of (S^3, K) which preserve the orientation of S^3 . The symbol "A" (resp. "N") denotes that the corresponding knot is amphicheiral (resp. non-amphicheiral). $\operatorname{Sym}(S^3, K)$ can be obtained from the above data.

I. 2-bridge knots. The symbol $[a_1, \dots, a_n]$ in the third column represents the continued fraction expansion of q/p, where (p, q) is the type of the corresponding knot. The first polynomial in the last column is the η -polynomial of $I_1(a_1, \dots, a_{n-1}; a_2/2, \dots, a_n/2)$. If $q^2 \not\equiv 1 \pmod{p}$ [resp

```
and q \neq \pm 1 \pmod{p}, the second polynomial is the \eta-polynomial of
1') are
                                     -a_2; -a_{n-1}/2, \cdots, -a_1/2) [resp. I_2(a_1, \cdots, a_{n/2})] (see Propo-
) and
                       sition 3.6).
                                             Continued fraction
                                                                               Sym<sup>+</sup> Amphi.
                                                                                                    \eta-polynomial
                               Type
                       Knol
                                             [2, -2]
                                                                                                    [2, 0, -1]
                                                                                 D,
                                                                                           N
                               (3, 2)
                                                                                                    [2, -1, -1, 1]
[-2, 1, 1, -1]
                                            [2, 2]
                                                                                 D_2
                               (5, 2)
, and
                                            [2, -2, 2, -2]
                                                                                                    [2, 0, -1]
                                                                                 D,
                                                                                           N
                               (5, 4)
                                                                                                    [2, -1, 0, 1, -1
[4, -1, -2, 1
                                            [4, -2]
                                                                                 D,
                                                                                           N
                               (7, 2)
                                            [4, 2]
                                                                                 D_2
                                                                                                    \{-2, 1, 0, 0, 1, -1\}
                               (9, 2)
                                                                                                    [4, -1, -2, 1]
                                            [2, -2, 2, 2,]
                                                                                 \mathbf{D_2}
                                                                                           N
                                                                                                    [2,0,-1]
                               (11, 8)
                                                                                                    [4, -2, -1, 2, -1]
                                            [2, -2, -2, 2]
                                                                                                     \begin{bmatrix} 0, 1, -1, -1, 1 \\ 0, -1, 1, 1, -1 \end{bmatrix} 
                               (13, 8)
                                                                                 D_2
                                            [2, -2, 2, -2, 2, -2]
                                                                                 D,
                                                                                           N
                                                                                                    [4, 0, -2]
                               (7,6)
                                            [6, -2]
                                                                                           N
                                                                                                    [2, -1, 0, 0, 0, 1, -1]
                               (11, 2)
                                                                                 D,
                                                                                                    [6, -1, -3, 1]
                                            [-4, 2, -2, 2]
                               (13, -4)
                                                                                 D_2
                                                                                                    [-4, 2, 1, -2, 1]
                                                                                           Ν
                                                                                                    [-2, 0, 1]
                                            [-4, 4]
                               (15, -4)
                                                                                 D_4
                                                                                           N
                                                                                                    [4, -2, 0, 1, -2, 1]
                                                                                                    [-4, 0, 2]
                                            [2, -2, 4, -2]
                              (17, 12)
                                                                                 D_2
                                                                                                    [4, 0, -2]
                                                                                           N
                                                                                                    [6, -2, -2, 2, -1]
                                            [2, 2, 2, -2]
                               (19, 8)
                                                                                 D,
                                                                                           N
                                                                                                     [-2, 1, 1, -1]
                                                                                                    [6, -3, -1, 2, -2, 1]
                                            [2, 2, -2, -2]
                               (21, 8)
                                                                                 D_4
                                                                                           N
                                                                                                    [0,0,1,-1,-1,1]
                                                                                                    [2, 0, -1]
:om
                                                                                                    \begin{bmatrix} -4, 2, 0, 0, 0, -1, 2, -1 \\ -6, 2, 3, -2 \end{bmatrix}
                               (13, 2)
                                            [6, 2]
                                                                                 D_2
                                                                                           N
                              (17, 14)
                                            [2, -2, 2, -2, 2, 2]
                                                                                                    [0, 1, 0, -1
[14, -5, -6, 5, -1
                                                                                 D_2
                                                                                           N
                                                                                                    [-4, 2, 0, -1, 2, -1]
                               (17,4)
                                            [4, 4]
                                                                                 D_2
                                                                                           Α
                                                                                                    [4, -2, 0, 1, -2, 1]
                               (19, -4)
                                            [-4, -2, -2, 2]
                                                                                 D_2
                                                                                           N
                                                                                                    [0,0,1,-1,-1,1]
                                                                                                    [-6, 2, 1, -1, 2, -1]
                        ٤,
                               (23, -10) [-2, -4, 2, -2]
                                                                                 D_2
                                                                                           N
                                                                                                    [6, -2, -3, 2]
                                                                                                    [-2, -1, 1, 1]
                              (23, 14)
                                            [2, -2, -2, 2, -2, 2]
                                                                                           N
                                                                                                    [-2, 2, 0, -2, 1]
                                                                                 D,
                               (25, -14) [-2, 4, 2, -2]
                        ١,
                                                                                                    [2,0,-1]
[0,1,-1,0,0,-1,1]
                                                                                 D_2
                                                                                           N
                       3.
                               (25, 18)
                                            [2, -2, 2, 2, -2, 2]
                                                                                 D_2
                                                                                           Α
                       ٠,
                               (27, 8)
                                            [4, -2, 2, 2]
                                                                                                    [0, -1, 1, 1, -1]
[2, -1, -1, 1]
                                                                                 D,
                                                                                           N
                               (29, 12)
                                                                                                    [-2, 1, 1, -1]
                                            [2, 2, 2, 2]
                                                                                 D_2
                                                                                           Α
                                                                                                    [2, -1, -1, 1]
                               (29, 8)
                                            [4, -2, -2, 2]
                                                                                                    [0,0,0,1,-1,-1,1]
                                                                                 D,
                                                                                           N
                                                                                                    [2, -2, 1, 1, -2, 1]
                               (31, -18) [-2, 4, -2, -2]
                                                                                                    [-2,0,2,-1,-1,1]
                                                                                 D<sub>2</sub>
                                                                                           N
                                                                                                    [-4, 2, 1, -1, 0, -1, 1]
```

Knot	Туре	Continued fraction	Sym+	Amphi.	η-polynomiał
9 ₁ 9 ₂	(9, 8) (15, 2)	[2, -2, 2, -2, 2, -2, 2, -2] [8, -2]	D_1 D_2	N N	[4, 0, -2] [2, -1, 0, 0, 0, 0, 0, 1, -1]
93	(19, -6)	[-4, 2, -2, 2, -2, 2]	D_2	N	[8, -2, -4, 2 [-6, 3, 1, -3, 2 [-8, 2, 3, -2, 1]
94	(21, 4)	[6, -2, 2, -2]	D_2	N	[-4, 2, 0, 0, 1, -2, 1 [2, 0, -1]
95	(23, -4)	[-6,4]	D_2	N	[-4, 2, 0, 0, 0, -1, 2, -1] [-6, 3, 0, -2, 3, -1]
9 ₆	(27, 22)	$\{2, -2, 2, -2, 4, -2\}$	D ₂	N	[4, -1, -1, 1, -1] [2, -3, 3, -1]
9,	(29, 20)	[2, -2, 6, -2]	$\mathbf{D_2}$	N	[4, -1, -1, 1, -1] [6, -1, -3, 1]
98	(31, 14)	[2,4,2,-2]	D_2	N	[-2,0,2,0,-1] [4,-1,-1,0,0,0,-1,1]
9,	(31, 24)	[2, -2, 2, -4, 2, -2]	D_2	N	[4, 0, -2 [4, 0, -2
910	(33, -10)	[-4, 2, -2, 4]	D_4	N	[-6, 2, 2, -2, 1 [-4, 0, 2
911	(33, -26)	[-2, 2, -2, 2, 2, 2]	D_2	N	[-4, 1, 2, -1] [0, -1, 0, 1]
912	(35, 8)	[4, 2, 2, -2]	D_2	N	[0,0,-1,1,1,-1] [2,-2,1,1,-2,1]
913	(37, -26)	[-2, 2, -4, 4]	D_2	N	[-4, 1, 2, -1 [-6, 3, 0, -1, 2, -2, 1
914	(37, -8)	[-4, -2, 2, 2]	D_2	N	[0,0,0,-1,1,1,-1] [2,1,-3,0,2,-1]
915	(39, -22)	[-2,4,2,2]	D_2	N	[-4, -1, 2, 1] [0, -1, 0, 1]
9,,7	(39, -14)	[-2, -2, 2, -2, 2, 2]	D_4	N	[2, -2, 0, 2, -1]
918	(41, 12)	[4, -2, 4, -2]	D_2	N	[2, -1, 0, 1, -1] [8, -3, -2, 2, -2, 1]
919	(41, -18)	[-2, -4, 2, 2]	D_2	N	[4, -1, -2, 1] [0, 0, -1, 1, 0, 0, 1, -1]
920	(41, 30)	[2, -2, 2, 2, 2, -2]	D_2	N	[4, 0, -2] [6, -2, -1, 0, -1, 2, -1]
921	(43, -12)	[-4, 2, 2, 2]	D_2	N	[-4, 2, 0, -1, 1, 0, 1, -1] [-2, 1, -1, 1]
923	(45, 26)	[2, -4, 4, -2]	D_4	N	[6, -2, -2, 1, 0, 1, -1] [2, 0, -1]
9 ₂₆	(47, -34)	[-2, 2, -2, -2, 2, 2]	D ₂	N	[-4, 1, 2, -1] [-2, 1, -1, 1, 1, -2, 1]
927	(49, 18)	[2, 2, -2, 2, 2, -2]	D_2	N	[-2, 1, 1, -2, 1, 1, -1] [2, 1, -2, -1, 1]
931	(55, -34)	[-2,2,2,-2,-2,2]	D ₄	N	[-2, 0, 1, 1, -1, -1, 1]

II. 3-bridge knots. The first row represents Sym⁺ and amphicheirality. In case K has two inequivalent inverting involutions, the first (the second) polynomial is the η -polynomial of the inverting involution labeled 1 (resp. 2).

References

- [1] J. S. Birman, Braid, links, and mapping class groups, Ann. Math. Studies, 82, Princeton Univ. Press, 1974.
- [2] C. M. Boileau, Groupe des symetries des noeuds de bretzel et de Montesinos, preprint.
- [3] —, Noeuds rigidement inversibles, preprint.
- [4] F. Bonahon and L. Siebenmann, Algebraic knots, to appear in London Math. Soc.. Lecture Note Series.
- [5] and —, Seifert 3-orbifolds and their role as natural crystalline parts of arbitrary compact irreducible 3-orbifolds, to appear in London Math. Soc., Lecture Note Series.
- [6] G. Bredon, Introduction to compact transformation groups, Pure and Applied Math. Vol. 46, Academic Press, 1972.
- [7] S. Furusawa and M. Sakuma, Dehn surgery on symmetric knots, Math. Sem. Notes. Kobe Univ., 11 (1983), 179-198.

- D. Goldsmith, A linking invariant of classical link concordance, Lecture Notes in Math., 685, Springer-Verlag, 1978, pp. 135-170.
- H. González-Acuña, Dehn's construction on knots, Bol. Soc. Math. Mexicana, 15 (1970),
- C.McA. Gordon, R. A. Litherland and K. Murasugi, Signature of covering links, Canad. j. Math., 33 (1981), 381-394.
- Hartley, Knots and involutions, Math. Z., 171 (1980), 175-185.
 - _, Knots with free periods, Canad. J. Math., 33 (1981), 91-102.
 - Identifying invertible knots, Topology, 22 (1983), 137-145.
 - and A. Kawauchi, Polynomials of amphicheiral knots, Math. Ann., 243 (1979), 63-70.
- A: Hillman, Symmetries of knots and links, and invariants of abelian coverings, preprint.
- Kawauchi, The invertibility problem on amphicheiral excellent knots, Proc. Japan Acad., 55 (1979), 399-402.
- S. Kojima, Finiteness of symmetries on 3-manifolds, preprint.
 - and M. Yamasaki, Some new invariants of links, Invent. Math., 54 (1979), 213-228.
- C. Livingston, Knots which are not concordant to their reverses, Quart. J. Math., 34 (1983), 323–328.
 - Lüdicke, Zyklische Knoten, Arch. Math., 32 (1979), 588-599.
- Marumoto, Relations between some conjectures in knot theory, Math. Sem. Notes. Kobe Univ., 5 (1977), 377-388.
- Meeks III, L. Simon and S. T. Yau, Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature, Ann. of Math., 116 (1982), 621-659.
 - M. Montesinos and W. Whitten, Constructions of two-fold branched covering spaces, preprint.
 - W. Morgan, Action de groupes finis sur S³. Lecture Notes in Math., 901, Springer-Verlag, 1981, pp. 277-289.
 - and H. Bass, The Smith conjecture, Pure and Applied Math., 112, Academic Press, 1984.
- Murasugi, On periodic knots, Comment Math. Helv., 46 (1971), 162-174.
 - On symmetry of knots, Tsukuba J. Math., 4 (1980), 331-347.
 - K. A. Perko Jr., On the classification of knots, Proc. Amer. Math. Soc., 45 (1974), 262-266.
- —, On 10 crossing knots, preprint.
 - R. Riley, An elliptic path from parabolic representations to hyperbolic structures, Lecture Notes in Math., 722, Springer-Verlag, 1979, pp. 99-133.
- Seven excellent knots, London Math. Soc., Lecture Note Series 48, 1982, pp. 81-151.
- Rolfsen, Knots and links, Math. Lecture Ser. 7, Publish or Perish Inc., 1976.
- Sakai, A remark on the Alexander polynomials of knots, Math. Sem. Notes, Kobe Univ., 5 (1977), 451–456.
- On the polynomials of invertible knots, Math. Ann., 266 (1983), 229-232.
- Sakuma, Non-free-periodicity of amphicheiral hyperbolic knots, to appear in the proceedings of the topology symposium held at Kyoto.
 - Uniqueness of symmetries of knots, to appear in Math. Z.
- Schubert, Die eindeutige Zerlegbarkeit eines Knotens in Primknoten, Sitzungsber, Heidelb. Akad. Wiss., Math.-Natur. Kl., 3 (1949), 57-104.
- Scott, Finite group actions on 3-manifolds, preprint.
- Siebenmann, Exercices sur les noeuds rationnels, preprint.

M. Sakuma

- [40] —, On vanishing of the Rohlin invariant and non-finitely amphicheiral homology 3. spheres, Lecture Notes in Math., 788, Springer-Verlag, 1980, pp. 177-222.
- [41] W. P. Thurston, Three manifolds with symmetry, preprint.
- [42] H. F. Trotter, Noninvertible knots exist, Topology, 2 (1964), 275-280.
- [43] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math., 87 (1968), 56-88.
- [44] W. Whitten, Inverting double knots, Pacific. J. Math., 97 (1981), 209-216.

Department of Mathematics
Osaka City University

2 Osaka 558, Japan