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Abstract. Let X be a complex algebraic K3 surface or a supersingular K3

surface in odd characteristic. We present an algorithm by which, under certain

assumptions on X, we can calculate a finite set of generators of the image of the

natural homomorphism from the automorphism group of X to the orthogonal

group of the Néron-Severi lattice of X. We then apply this algorithm to

certain complex K3 surfaces, among which are singular K3 surfaces whose

transcendental lattices are of small discriminants.

1. Introduction

The automorphism group Aut(X) of an algebraic K3 surface X is an important

and interesting object. Suppose that X is defined over the complex number field C,
or is supersingular in odd characteristic. Then, thanks to the Torelli-type theorem

due to Piatetski-Shapiro and Shafarevich [23] and Ogus [21], [22], we can study

Aut(X) by the Néron-Severi lattice SX of X. We denote by O(SX) the orthogonal

group of SX . Then we have a natural homomorphism

φX : Aut(X) → O(SX).

It is known that this homomorphism has only a finite kernel. Using the reduction

theory for arithmetic subgroups of O(SX), Sterk [36] and Lieblich and Maulik [16]

proved that Aut(X) is finitely generated. The Néron-Severi lattices for which

Aut(X) are finite were classified by Nikulin [18], [19] and Vinberg [40]. On the

other hand, when Aut(X) is infinite, it is in general a difficult problem to give a

set of generators.

We also have the following related problem. Let Nef(X) denote the nef cone of

X; that is, the cone of SX⊗R consisting of vectors x ∈ SX⊗R such that ⟨x,C⟩ ≥ 0

holds for any curve C on X, where ⟨ , ⟩ is the intersection form on SX . In order

to classify various geometric objects on X (for example, smooth rational curves,

Jacobian fibrations, or polarizations of a fixed degree) modulo Aut(X), it is useful

to describe explicitly a fundamental domain of the action of Aut(X) on Nef(X).
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Several authors have studied these problems by using the idea of Borcherds [4], [5]

to embed SX into an even unimodular hyperbolic lattice of rank 26. In these

works, however, they required that SX should satisfy a certain strong condition

(see Section 1.1 below for the details), and hence the range of applications is limited.

The purpose of this paper is to present an algorithm (Algorithm 6.1) that cal-

culates, under assumptions on SX milder than the preceding works, a finite set of

generators of the image of φX and a closed domain F of Nef(X) with the following

properties:

(i) For any v ∈ Nef(X), there exists an element g ∈ Aut(X) such that vg ∈ F .

(ii) The domain F is tiled by a finite number of convex cones, which we call

chambers. Each chamber is bounded by a finite number of hyperplanes and

its stabilizer subgroup in Aut(X) is finite.

See Remark 6.5 for the relation of F with a fundamental domain of the action of

Aut(X) on Nef(X). The detailed description of the assumptions we impose on SX

will be given in Section 8.

The algorithm can be applied to a wide class of K3 surfaces. We give two

examples.

Example 1.1. As an example of a K3 surface with small Picard number and an

infinite automorphism group, we consider a complex K3 surface X whose Néron-

Severi lattice SX has a Gram matrix

M :=

 0 1 0

1 −2 0

0 0 −24


with respect to a certain basis fϕ, zϕ, v such that fϕ and zϕ are the classes of a fiber

and the zero section of a Jacobian fibration ϕ : X → P1. Then the Mordell-Weil

group MWϕ of ϕ is isomorphic to Z. Hence Aut(X) contains an infinite subgroup

MWϕ ⋊ Z/2Z (see Section 9). We assume that the period ωX of X is generic in

TX ⊗C, where TX is the transcendental lattice of X. We let O(SX) act on SX from

the right so that

O(SX) = { g ∈ GL3(Z) | gM tg = M }.

Then φX is injective, and its image is generated by the following matrices: 1 0 0

0 1 0

0 0 −1

 ,

 1 0 0

12 1 −1

24 0 −1

 ,

 37 12 −5

36 13 −5

360 120 −49

 ,

 97 48 −14

0 1 0

672 336 −97

 .

The first two elements of these four matrices are the images of the involutions

that generate MWϕ ⋊Z/2Z ∼= Z/2Z ∗Z/2Z. We need two more automorphisms to

generate the full automorphism group Aut(X). Moreover we can show that Aut(X)

acts on the set of smooth rational curves on X transitively. In Figure 9.4, we give
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a tessellation of Nef(X) by a fundamental domain of Aut(X). See Section 9 or the

author’s web-page [31] for more examples of this type.

Example 1.2. A complex algebraic K3 surface is said to be singular if its Picard

number attains the possible maximum 20. By the result of Shioda and Inose [34],

the isomorphism class of a singular K3 surface X is determined by its oriented

transcendental lattice TX , and Aut(X) is always infinite. See [33] for the standard

Gram matrices [
a b

b c

]
of oriented transcendental lattices of singular K3 surfaces. Let discTX denote the

discriminant of TX . Since TX is an even lattice, we see that discTX = ac − b2 is

congruent to 0 or 3 mod 4. We consider singular K3 surfaces X with small discTX .

The automorphism groups of the singular K3 surfaces X with discTX = 3 and 4

were determined by Vinberg [39], and Aut(X) of the singular K3 surface X with

discTX = 7 was determined by Ujikawa [37]. The case where discTX = 8 can be

handled by usual Borcherds’ method (see Section 10). Therefore the next example

to be considered is the singular K3 surface X whose transcendental lattice is given

by a Gram matrix [
2 1

1 6

]
.

In this case, φX is injective. We find that ImφX is generated by 767 elements of

O(SX), and, as in Example 1.1, we can present them explicitly as 20× 20 matrices

with respect to a certain basis of SX . These matrices and related computational

data are given in the author’s web-page [31]. From these data, we see that the

number of smooth rational curves on X is at most 347 modulo Aut(X). (Note that

the number 767 of generators of Aut(X) and the upper-bound 347 of the number of

smooth rational curves modulo Aut(X) are not minimal.) See Section 10 for more

examples of this type.

Our main algorithm (Algorithm 6.1) can be applied to a wide class of K3 sur-

faces theoretically. The most crucial assumption that SX be embedded primitively

into an even unimodular hyperbolic lattice of rank 10, 18 or 26 is always satisfied

when X is defined over C (see Proposition 8.1). However, experiments show that

the computational complexity of Algorithm 6.1 grows rapidly as the rank and the

discriminant of SX become large.

To the best knowledge of the author, the automorphism group of the complex

Fermat quartic surface X is still unknown. This surface is a singular K3 surface

with discTX = 64, and we can apply our algorithm to this surface. It turns out,

however, that the computation is very heavy, and we could not finish the calculation

(see Remark 10.3).
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Even when the computation is too heavy to be completed in a reasonable time,

our algorithm yields many interesting automorphisms and projective models of the

given K3 surface on the way of computation. We have applied this method to the

supersingular K3 surface in characteristic 5 with Artin invariant 1 in [12].

It is a totally different problem to give geometrically an automorphism g of

X such that φX(g) is equal to a given matrix in O(SX). In [32], we discuss an

algorithmic approach to this problem, and apply it to certain singular K3 surfaces.

1.1. The difference of our algorithm from the preceding works. We briefly

review Borcherds’ method [4], [5], and its applications to K3 surfaces. A lattice

of rank n > 1 is said to be hyperbolic if its signature is (1, n − 1). Let S be an

even hyperbolic lattice of rank < 26. A positive cone PS of S is one of the two

connected components of {x ∈ S ⊗ R |x2 > 0}. We denote by O+(S) the stabilizer

subgroup of PS in O(S). Let W (S) denote the subgroup of O+(S) generated by

the reflections in the hyperplanes (r)⊥ perpendicular to r, where r runs through

the set RS := {r ∈ S | r2 = −2}. The mirrors (r)⊥ decompose PS into the union of

standard fundamental domains of the action of W (S) on PS . We call each of these

standard fundamental domains an R∗
S-chamber. Let G be a subgroup of O+(S)

with finite index. Let N be an R∗
S-chamber, and let AutG(N) denote the stabilizer

subgroup in G of the R∗
S-chamber N . In the application to a complex K3 surface

X, S is the Néron-Severi lattice SX , PS is the connected component containing an

ample class, the group G consists of elements g ∈ O+(S) liftable to isometries of

H2(X,Z) that preserve the period of X, and N is the intersection of Nef(X) with

PS .

Borcherds gave a method to calculate a finite set of generators of AutG(N).

Suppose that S is primitively embedded into an even unimodular hyperbolic lattice

L := II1,25 of rank 26 in such a way that every g ∈ G lifts to an isometry of L.

We also assume that the orthogonal complement R of S in L cannot be embedded

into the (negative-definite) Leech lattice. Let PL ⊂ L ⊗ R be the positive cone of

L containing PS . The structure of R∗
L-chambers is well-understood by Conway [7,

Chapter 27]. Then the tessellation of PL by the R∗
L-chambers induces a tessellation

of PS , which is invariant under the action of G. We call the tiles constituting this

induced tessellation R∗
L|S-chambers. Note that the R∗

S-chamber N is a union of

R∗
L|S-chambers. Two R∗

L|S-chambers D and D′ are said to be G-congruent if

there exists an element g ∈ G that maps D to D′. By the reduction theory for

arithmetic subgroups of O(S), we see that the number of G-congruence classes of

R∗
L|S-chambers is finite. Let

D := {D0, . . . , Dm−1}
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be a complete set of representatives of G-congruence classes of R∗
L|S-chambers such

that each Di is contained in N . From the list D, we can obtain a finite set of

generators of AutG(N).

Kondo [14] applied this method to the Néron-Severi lattice of a generic Jacobian

Kummer surface, and described its automorphism group. Since then, automorphism

groups of the following K3 surfaces have been determined by this method;

(a) the supersingular K3 surface in characteristic 2 with Artin invariant 1 by

Dolgachev and Kondo [9],

(b) complex Kummer surfaces of product type by Keum and Kondo [13],

(c) the Hessian quartic surface by Dolgachev and Keum [10],

(d) the singular K3 surface X with discTX = 7 by Ujikawa [37],

(e) the supersingular K3 surface in characteristic 3 with Artin invariant 1 by

Kondo and Shimada [15].

The classical two examples of Vinberg [39] can also be treated by this method.

In all these examples, the number |D| of G-congruence classes of R∗
L|S-chambers

is 1. Borcherds [4] studied the case where the orthogonal complement R of S in L

contains a root sublattice of finite index, and gave in [4, Lemma 5.1] a sufficient

condition for any two R∗
L|S-chambers to be O+(S)-congruent. In particular, the

method employed in the above examples is limited to K3 surfaces X such that SX

can be embedded primitively in L with R containing a root lattice as a sublattice

of finite index. Note that, for example, only a finite number of isomorphism classes

of singular K3 surfaces satisfy this condition.

We extend Borcherds’ method to the situation in which |D| is not necessarily 1.

In fact, we have |D| = 46 in Example 1.1 and |D| = 1098 in Example 1.2 above.

Starting from an initial R∗
L|S-chamber, we compute R∗

L|S-chambers adjacent to

the R∗
L|S-chambers obtained so far successively until no new G-congruence classes

appear. Each R∗
L|S-chamber is expressed by its Weyl vector (see Definition 5.5).

Thus our main algorithm contains sub-algorithms that calculate the set of walls

of a given R∗
L|S-chamber (Algorithm 5.11), compute the Weyl vector of the adja-

cent R∗
L|S-chamber across a given wall (Algorithm 5.14), and determine whether an

R∗
L|S-chamber is G-congruent to another R∗

L|S-chamber (Algorithm 3.19). In these

algorithms, we use methods given in our previous paper [30]. In the calculation of

the set of walls, we also employ the standard algorithm of linear programming (Al-

gorithm 3.17).

1.2. The plan of the paper. In Section 2, we fix notions and notation about

lattices and hyperbolic spaces. In Section 3, we introduce the notion of chamber

decomposition of a positive cone of a hyperbolic lattice, and present some algorithms

about chambers. In Section 4, we review Vinberg-Conway theory ([38] and [7,

Chapter 27]) on the structure of R∗
L-chambers in the even unimodular hyperbolic

lattice L = II1,n−1 of rank n = 10, 18 and 26. Then, in Section 5, we introduce
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the notion of R∗
L|S-chambers associated with a primitive embedding S ↪→ L of an

even hyperbolic lattice S, and present some algorithms. In Section 6, we present

our main algorithm (Algorithm 6.1), and prove its correctness. In Section 7, we

review the Torelli-type theorem for K3 surfaces, and show how to calculate the

automorphism group from the Néron-Severi lattice. In Section 8, we explain how

to apply Algorithm 6.1 to the study of K3 surfaces. In particular, we describe in

detail what geometric data of a K3 surface X must be calculated before we apply

Algorithm 6.1 to X. In Sections 9 and 10, we demonstrate Algorithm 6.1 on some

K3 surfaces with Picard number 3, and some singular K3 surfaces.

In this paper, Aut denotes the automorphism group of a lattice theoretic object,

whereas Aut denotes the geometric automorphism group of a K3 surface.

For the actual computation, we used the C library gmp [11].

2. Preliminaries on lattices and hyperbolic spaces

Let L be a free Z-module of finite rank. We say that a submodule M of L is

primitive if L/M is torsion-free, and that v ∈ L is primitive if so is the submodule

⟨v⟩ := Zv ⊂ L.

Let L be a lattice; that is, a free Z-module of finite rank with a non-degenerate

symmetric bilinear form ⟨ , ⟩L : L× L → Z. The subscript L in ⟨ , ⟩L is omitted if

no confusion will occur. The symmetric bilinear form on L⊗R obtained from ⟨ , ⟩
is also denoted by ⟨ , ⟩. We denote by L∨ := Hom(L,Z) the dual lattice of L, which

is naturally embedded in L ⊗ Q by ⟨ , ⟩. We say that L is unimodular if L = L∨

holds. The norm ⟨v, v⟩ of v ∈ L⊗R is denoted by v2. We let the orthogonal group

O(L) of L act on L from the right, and write the action of g ∈ O(L) on v ∈ L⊗ R
by v 7→ vg.

A lattice L is said to be even if x2 ∈ 2Z holds for any x ∈ L. For an even lattice

L, we put

RL := { r ∈ L | r2 = −2 }.

Elements of RL are called (−2)-vectors. Each r ∈ RL defines the reflection

sr : x 7→ x+ ⟨x, r⟩r,

which is an element of O(L). We denote by W (L) the subgroup of O(L) generated

by all reflections sr with respect to the (−2)-vectors r ∈ RL, and call it the Weyl

group.

A lattice L of rank n > 0 is said to be negative-definite if the signature of the

real quadratic space L ⊗ R is (0, n). A negative-definite lattice L is said to be a

root lattice if L is generated by RL.

A lattice L of rank n > 1 is said to be hyperbolic if the signature of L ⊗ R is

(1, n − 1). Let L be a hyperbolic lattice. Then a positive cone of L is one of the

two connected components of {x ∈ L⊗ R |x2 > 0}. The closure of a positive cone
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PL in L⊗R is denoted by PL. We denote by P Q
L the convex hull of PL ∩ (L⊗Q).

The stabilizer subgroup in O(L) of a positive cone is denoted by O+(L). We have

O(L) = O+(L)× {±1}. Note that W (L) is contained in O+(L).

The following algorithms will be used frequently in this paper.

Algorithm 2.1. Let Q be a positive-definite symmetric matrix of size n with

rational entries, ℓ a column vector of length n with rational entries, and c a rational

number. Then we can calculate the list of all row vectors x ∈ Zn satisfying

xQ tx+ 2x ℓ+ c = 0

by the method described in [30, Section 3.1].

Algorithm 2.2. Let L be a hyperbolic lattice, let v be a vector of L ⊗ Q with

v2 > 0, let α be a rational number, and let d be an integer. Then the finite set

{ x ∈ L | ⟨x, v⟩ = α, ⟨x, x⟩ = d }

can be calculated by the method described in [30, Sections 3.2].

Algorithm 2.3. Let L be a hyperbolic lattice, let v, h be vectors of L ⊗ Q such

that

⟨v, h⟩ > 0, ⟨h, h⟩ > 0, ⟨v, v⟩ > 0,

and let d be a negative integer. Then the finite set

{ x ∈ L | ⟨v, x⟩ < 0, ⟨h, x⟩ > 0, ⟨x, x⟩ = d }

can be calculated by the method described in [30, Sections 3.3].

Let L be a hyperbolic lattice of rank m+ 1, and let PL be a positive cone of L.

The multiplicative group R>0 of positive real numbers acts on PL \ {0} by scalar

multiplication. We put

HL := (PL \ {0})/R>0, HQ
L := (P Q

L \ {0})/R>0, HL := PL/R>0,

∂HL := HL \HL, ∂HQ
L := HQ

L \HL,

and denote by πL : PL\{0} → HL the natural projection. The space HL is naturally

endowed with a structure of the hyperbolic m-space. A point of ∂HQ
L is called a

rational boundary point. For simplicity, when we are given a subset T of PL,

we denote by πL(T ) ⊂ HL the image of T \ {0} by πL. For example, we have

∂HQ
L = πL(PL∩L). A subset K of HL is said to be a linear subspace of HL if there

exists a linear subspace K̃ of L ⊗ R such that K = πL(PL ∩ K̃) holds. Let b be

a point of ∂HL. A linear subspace K of HL is said to pass through b at infinity if

the linear subspace K̃ of L⊗R that satisfies K = πL(PL ∩ K̃) contains a non-zero

vector v such that b = πL(v).

We denote by HL the set of hyperplanes of PL. We put

NL := { v ∈ L⊗ R | v2 < 0 },
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and, for v ∈ L⊗ R, we put

[v]⊥ := { x ∈ L⊗ R | ⟨x, v⟩ = 0 } and (v)⊥ := [v]⊥ ∩ PL.

Since [v]⊥ intersects PL if and only if v2 < 0, the map v 7→ (v)⊥ induces a bijection

fromNL/R× toHL. For v ∈ NL, we obtain a hyperplane πL((v)
⊥) of the hyperbolic

space HL.

We recall some properties of horospheres. For the details, see Ratcliffe [24,

Chapter 4]. Let b be a point of ∂HL. Consider the upper halfspace model

(2.1) { (z1, . . . , zm) ∈ Rm | z1 > 0 }

of HL such that b corresponds to the infinite point given by z1 = ∞. Then every

horosphereHSb with the base b is defined by z1 = γ with some positive real constant

γ. Therefore, as a Riemannian submanifold of HL, every horosphere is isomorphic

to a Euclidean affine space. If K is a linear subspace of HL that passes through

b at infinity, then K ∩HSb is an affine subspace of any horosphere HSb with the

base b. We say that a horosphere defined by z1 = γ is smaller than a horosphere

defined by z1 = γ′ if γ > γ′.

The definition of horospheres can be restated as follows. Let f be a non-zero

vector in PL with f2 = 0 such that πL(f) = b. Then the function

hf : v 7→ ⟨v, f⟩2/v2

on NL ∪PL ∪ (−PL) is invariant under the scaling of v by multiplicative constants,

and hence its restriction to PL induces a function

h̄f : HL → R>0.

The horospheres with the base b are exactly the level sets of the function h̄f . Note

that the horosphere defined by h̄f = α is smaller than the horosphere defined by

h̄f = α′ if and only if α < α′.

The following lemma should be well-known, but we could not find appropriate

references. Let f and b be as above. The function −hf (v) = −⟨v, f⟩2/v2 restricted

to NL measures how far the hyperplane πL((v)
⊥) of HL is from the boundary point

b. For a horosphere HSb with the base b, we put

c(f,HSb) := sup { −hf (v) | v ∈ NL, πL((v)
⊥) ∩HSb ̸= ∅ }.

Lemma 2.4. Suppose that HSb is defined by h̄f = α. Then we have c(f,HSb) ≤ α.

Proof. We choose linear coordinates (x0, x1, . . . , xm) of L ⊗ R such that the qua-

dratic form x 7→ x2 on L⊗ R is given by

(x0, x1, . . . , xm) 7→ x2
0 − x2

1 − x2
2 − · · · − x2

m,

such that PL is contained in the halfspace x0 > 0, and such that f = (1, 1, 0, . . . , 0).

Let v = (v0, v1, . . . , vm) be a vector in NL. Suppose that there exists a vector
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x = (x0, x1, . . . , xm) in PL such that x ∈ (v)⊥ and that πL(x) ∈ HSb. It is enough

to show that

(2.2) −hf (v) ≤ α.

Rescaling x by a positive real constant, we can assume that x2 = 1. If ⟨v, f⟩ = 0,

then (2.2) holds. Suppose that ⟨v, f⟩ ≠ 0. Replacing v by −v if necessary, we can

assume that ⟨v, f⟩ = v0 − v1 is positive. Since πL(x) ∈ HSb, we have hf (x) = α.

Since x ∈ PL, we have ⟨x, f⟩ = x0 − x1 > 0. Combining these, we get

x0 − x1 =
√
α.

Using ⟨v, x⟩ = v0x0 − v1x1 − · · · − vmxm = 0, we obtain

x0 =
(v2x2 + · · ·+ vmxm)− v1

√
α

v0 − v1
, x1 =

(v2x2 + · · ·+ vmxm)− v0
√
α

v0 − v1
.

Combining these with x2 = 1 and using v0 ̸= v1, we get

(2.3) g2(x2) + · · ·+ gm(xm) + α(v0 + v1) + (v0 − v1) = 0,

where

gi(t) = (v0 − v1) t
2 − 2

√
α vit.

Since ⟨v, f⟩ = v0 − v1 > 0, we have gi(t) ≥ −αv2i /(v0 − v1) for any t ∈ R. Thus we
obtain αv2 + ⟨v, f⟩2 ≤ 0 from (2.3). Since v2 < 0, we get (2.2). □

3. Chamber decomposition

Let L be an even hyperbolic lattice with a fixed positive cone PL. For a subset

∆ of NL = {v ∈ L⊗ R | v2 < 0}, we define a cone ΣL(∆) in L⊗ R by

(3.1) ΣL(∆) := { x ∈ L⊗ R | ⟨x, v⟩ ≥ 0 for all v ∈ ∆ }.

Definition 3.1. A closed subset D of PL is called a chamber if its interior D◦ is

non-empty and there exists a subset ∆ of NL such that D = ΣL(∆) ∩ PL holds.

Let D be a chamber. A hyperplane (v)⊥ of PL is called a wall of D if (v)⊥ ∩D◦ is

empty and (v)⊥ ∩D contains a non-empty open subset of (v)⊥.

Definition 3.2. Let F ⊂ HL be a locally finite family of hyperplanes in PL. Then

the closure in PL of each connected component of

PL \
∪

(v)⊥∈F

(v)⊥

is a chamber, which we call an F-chamber.

By definition, every wall of an F-chamber is an element of F . If D and D′ are

distinct F-chambers, then D◦ ∩D′ = ∅ holds.
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Definition 3.3. Let D be an F-chamber, and let (v)⊥ ∈ F be a wall of D. Then

there exists a unique F-chamber D′ such that D′ ̸= D and that D ∩ D′ ∩ (v)⊥

contains a non-empty open subset of (v)⊥. We say that D′ is adjacent to D across

the wall (v)⊥.

We fix a subgroup G of O+(L) with finite index. We assume that G satisfies the

following condition of the existence of a membership algorithm:

[G] There exists an algorithm by which we can determine, for a given g ∈
O+(L), whether g ∈ G or not.

Let V be a subset of NL ∩ L∨ = {v ∈ L∨ | v2 < 0}, and consider the family of

hyperplanes

V∗ := { (v)⊥ | v ∈ V }
in PL. We assume that V has the following properties:

[V1] There exists a positive real number c ∈ R such that, for any v ∈ V, we have
−v2 < c.

[V2] The set V is invariant under the action of G on NL ∩ L∨.

Then we can consider V∗-chambers by the following:

Lemma 3.4. The family V∗ of hyperplanes is locally finite in PL.

Proof. Since {v2 | v ∈ L∨} is discrete in R, the subset {v2 | v ∈ V} of the interval

(−c, 0) ⊂ R is finite by [V1] and V ⊂ NL ∩ L∨. For a negative real number a and

a compact subset J of PL, the locus

{ x ∈ L⊗ R | x2 = a, (x)⊥ ∩ J ̸= ∅ }

is compact. Since L∨ is discrete in L⊗ R, we obtain the proof of Lemma 3.4. □

Definition 3.5. Let D be a V∗-chamber. A subset ∆ of NL∩L∨ is called a defining

set of D if D = ΣL(∆) ∩ PL holds. A defining set ∆ of D is said to be minimal if

the following hold:

• For any v ∈ ∆, the hyperplane (v)⊥ is a wall of D, and

• if v and v′ are distinct vectors of ∆, then (v)⊥ ̸= (v′)⊥.

We define two types of minimal defining sets, each of which is unique for a given

V∗-chamber D. The one is called the V-minimal defining set, denoted by ∆V(D),

and characterized by the following property: ∆V(D) is a subset of V, and if v ∈
∆V(D), then αv /∈ V for any α ∈ R with 0 < α < 1. The other is called the

primitively minimal defining set, denoted by ∆L∨(D), and characterized by the

following property: Every v ∈ ∆L∨(D) is primitive in L∨. (Note that ∆L∨(D) may

not be contained in V, because elements of V need not be primitive in L∨.)

Let D be a V∗-chamber. Then Dg is also a V∗-chamber for any g ∈ G by the

property [V2]. For a V∗-chamber D, we put

AutG(D) := { g ∈ G | Dg = D }.
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Let D and D′ be V∗-chambers. We say that D and D′ are G-congruent if there

exists an element g ∈ G such that D′ = Dg. The following simple observation is

the key point of our method:

(3.2) If g ∈ G satisfies Dg ∩D′◦ ̸= ∅, then Dg = D′.

In particular, if g ∈ G satisfies Dg ∩D◦ ̸= ∅, then g ∈ AutG(D).

Example 3.6. The subset RL of NL ∩ L∨ has the properties [V1] and [V2] for

G = O+(L). Let D be an R∗
L-chamber. Then D is a fundamental domain of the

action of the Weyl group W (L) on PL, and W (L) is generated by the reflections sr,

where r runs through the RL-minimal defining set ∆RL
(D) of D. Moreover, any

twoR∗
L-chambers are O+(L)-congruent, and O+(L) is isomorphic to the semi-direct

product W (L)⋊AutO+(L)(D).

We consider the following properties of V:
[V3] Any V∗-chamber has a finite defining set.

[V4] For any V∗-chamber D, the set πL(D) ∩ ∂HL is contained in ∂HQ
L , where

D is the closure of D in PL.

The main results of this section are the following:

Theorem 3.7. Suppose that V satisfies [V1]-[V4]. Then there exist only a finite

number of G-congruence classes of V∗-chambers.

Theorem 3.8. Suppose that V satisfies [V1]-[V4]. Then the group AutG(D) is

finite for any V∗-chamber D.

3.1. Proof of Theorem 3.7. We assume that V satisfies [V1]-[V4].

Definition 3.9. A subset Π of P Q
L is called a rational polyhedral cone if there exist

a finite number of non-zero vectors v1, . . . , vn ∈ PL ∩ L such that

Π = R≥0v1 + · · ·+ R≥0vn.

Recall that G is assumed to be of finite index in O+(L). We have the following

result from the reduction theory of arithmetic subgroups of O(L) (see Ash et al. [2,

Chapter II, Section 4] and Sterk [36]).

Theorem 3.10. There exist a finite number of rational polyhedral cones Π1, . . . ,ΠN

in P Q
L such that PL is equal to ∪

g∈G

N∪
i=1

(Πg
i ∩ PL).

Therefore Theorem 3.7 follows from the following:

Proposition 3.11. Let Π be a rational polyhedral cone in P Q
L . Then the number

of V∗-chambers that intersect Π ∩ PL is finite.
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For the proof of Proposition 3.11, we need two corollaries of Lemma 2.4. Let b

be a point of ∂HL. A closed horoball HBb with the base b is a subset of HL defined

by z1 ≥ γ with some positive real constant γ in the upper halfspace model (2.1)

with b at z1 = ∞. Let ∂HBb be the horosphere defined by z1 = γ. The map

ρb : HBb → ∂HBb defined by

ρb(z1, z2, . . . , zm) := (γ, z2, . . . , zm)

is called the natural projection. Let b = πL(f) ∈ ∂HQ
L be a rational boundary

point, where f is a non-zero vector in PL ∩ L with f2 = 0. We put

Vb := { v ∈ V | ⟨v, f⟩ = 0 }.

If v ∈ V satisfies v /∈ Vb, then we have ⟨v, f⟩2 ≥ 1 because f ∈ L and V ⊂ L∨. By

the property [V1], there exists a positive real number δb such that

δb < −⟨v, f⟩2/v2 for any v ∈ V \ Vb.

Therefore we obtain the following corollary of Lemma 2.4:

Corollary 3.12. Let b be a rational boundary point. If we choose a sufficiently

small closed horoball HBb with the base b, then the following hold.

(1) Let v be an element of V. Then the hyperplane πL((v)
⊥) of HL intersects

HBb if and only if πL((v)
⊥) passes through b at infinity.

(2) Let D be a V∗-chamber. If b /∈ πL(D), then πL(D) ∩HBb is empty, whereas

if b ∈ πL(D), then πL(D) ∩HBb = ρ−1
b (πL(D) ∩ ∂HBb) holds.

We regard ∂HBb as a Euclidean affine space. Then the family of affine hyper-

planes

{ πL((v)
⊥) ∩ ∂HBb | v ∈ Vb }

of ∂HBb is locally finite, because V∗ is locally finite in PL and π−1
L (∂HBb) ⊂ PL.

Therefore we obtain the following:

Corollary 3.13. Let b and HBb be as in Corollary 3.12, and let J be a com-

pact subset of ∂HBb. Then the number of V∗-chambers that intersect the subset

π−1
L (ρ−1

b (J)) of PL is finite.

Proof of Proposition 3.11. Let v1, . . . , vn ∈ PL ∩ L be non-zero vectors such that

rational polyhedral cone Π is equal to R≥0v1 + · · ·+R≥0vn. We number v1, . . . , vn

in such a way that

v21 = · · · = v2k = 0 and v2k+1 > 0, . . . , v2n > 0.

Let bi be the rational boundary point πL(vi) for i = 1, . . . , k, and let HBi be

a sufficiently small closed horoball with the base bi. The natural projection is



AUTOMORPHISM GROUPS OF K3 SURFACES 13

denoted by ρi : HBi → ∂HBi. We put HB◦
i := HBi \∂HBi. Since πL(Π)∩∂HL =

{b1, . . . , bk}, we see that

πL(Π)
′ := πL(Π) \

k∪
i=1

(HB◦
i ∩ πL(Π))

is a compact subset of HL. Therefore the number of V∗-chambers D such that

πL(D) intersects πL(Π)
′ is finite. For j ̸= i, let pi,j ∈ ∂HBi denote the intersection

point of ∂HBi and the geodesic line in HL passing through bi at infinity and passing

through πL(vj) possibly at infinity. Then the convex hull Ji of these points pi,j with

j ̸= i in the Euclidean affine space ∂HBi is compact and satisfies HBi ∩ πL(Π) =

ρ−1
i (Ji). Consequently, the number of V∗-chambers D such that πL(D) intersects

HBi ∩ πL(Π) is finite by Corollary 3.13. □

3.2. Proof of Theorem 3.8. We continue to assume that V satisfies [V1]-[V4].

Lemma 3.14. Let ∆ be a subset of NL ∩ L∨ such that D = ΣL(∆) ∩ PL is a

V∗-chamber. Then ΣL(∆) is contained in PL.

Proof. Note that ΣL(∆) is a closed convex subset of L ⊗ R. Suppose that there

exists an element x0 ∈ ΣL(∆) such that x0 /∈ PL. Let U be a non-empty open

subset of D◦. Then, for any y ∈ U , the line segment x0y of L⊗R connecting x0 and

y is contained in ΣL(∆), and x0y ∩ PL is contained in D. Hence the intersection

point z(y) of x0y and ∂ PL = {x ∈ PL |x2 = 0} belongs to the closure D of D in

PL. Since U is open, the subset πL({z(y) | y ∈ U}) of πL(D)∩∂HL has uncountably

many points, which contradicts the property [V4] of V. □

Lemma 3.15. Let D be a V∗-chamber. Then any defining set ∆ of D spans L⊗R.

Proof. Let V be the linear subspace of L ⊗ R spanned by ∆. The orthogonal

complement V ⊥ of V in L ⊗ R is contained in ΣL(∆) by definition and hence

V ⊥ ⊂ PL by Lemma 3.14. This holds only when V ⊥ = 0. □

Theorem 3.8 is now easy to prove by [V3]. We give, however, a proof based on

an algorithm (Algorithm 3.18) to compute AutG(D).

Lemma 3.16. Suppose that a defining set ∆1 of a V∗-chamber D satisfies the

following; if v, v′ ∈ ∆1 are distinct, then (v)⊥ ̸= (v′)⊥ holds. Let v be an element

of ∆1. (1) The hyperplane (v)
⊥ is a wall of D if and only if ΣL(∆1) ̸= ΣL(∆1\{v}).

(2) If ∆1 \ {v} does not span L⊗ R, then (v)⊥ is a wall of D.

Proof. The ‘only if’ part of (1) is obvious by the assumption on ∆1. Conversely,

suppose that ΣL(∆1) ̸= ΣL(∆1 \ {v}). Then there exists a vector x0 ∈ L⊗R such

that ⟨v, x0⟩ < 0 and x0 ∈ ΣL(∆1 \{v}). Assume that (v)⊥ is not a wall of D. Then

D is equal to ΣL(∆1 \ {v}) ∩ PL, and hence ΣL(∆1 \ {v}) is contained in PL by

Lemma 3.14. In particular, we have x0 ∈ PL. Let y0 be a point of D◦. Then the
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intersection point z0 of the line segment x0y0 and (v)⊥ satisfies z20 > 0, ⟨v, z0⟩ = 0

and ⟨v′, z0⟩ > 0 for any v′ in ∆1 \ {v}. Since V∗ is locally finite in PL, these mean

that a sufficiently small open neighborhood of z0 in (v)⊥ is contained in D. In

anyway, (v)⊥ is a wall of D. Thus (1) is proved. If (v)⊥ is not a wall of D, then

∆1 \ {v} is also a defining set of D. Hence (2) follows from Lemma 3.15. □

Algorithm 3.17. Let ∆ be a finite defining set of a V∗-chamber D. This algorithm

calculates the primitively minimal defining set ∆L∨(D) of D.

Step 0. We set ∆1 := {} and ∆2 := {}.
Step 1. For each element v ∈ ∆, we calculate the maximal positive integer av such

that v/av ∈ L∨, and append v/av to the set ∆1. Then we have D = ΣL(∆1)∩PL,

and moreover, if v, v′ ∈ ∆1 are distinct, then (v)⊥ ̸= (v′)⊥ holds.

Step 2. For each v ∈ ∆1, we carry out the following computation. Suppose that

∆1 \ {v} does not span L ⊗ R. Then (v)⊥ is a wall of D by Lemma 3.16, and

we append v to ∆2. Suppose that ∆1 \ {v} spans L ⊗ R. Then we can solve the

following problem of linear programming, in which the variable x ranges through

the vector space L⊗Q:

(3.3)

minimize ⟨v, x⟩

subject to ⟨v′, x⟩ ≥ 0 for all v′ ∈ ∆1 \ {v}.

(See, for example, Chvátal [6] for the algorithms of linear programming.) Note that

the solution is either 0 or unbounded to −∞. If the solution is 0, then (v)⊥ is not

a wall of D by Lemma 3.16. Suppose that the solution is unbounded to −∞. Then

there exists a vector x0 ∈ L ⊗ R such that ⟨v, x0⟩ < 0 and x0 ∈ ΣL(∆1 \ {v}).
Hence (v)⊥ is a wall of D by Lemma 3.16, and we append v to the set ∆2.

Step 3. We then output ∆2 as ∆L∨(D).

Remark that, for any V∗-chamberD, the primitively minimal defining set ∆L∨(D)

is finite by the property [V3] of V and Algorithm 3.17. We use the obvious brute-

force method based on the finiteness of ∆L∨(D) in the following two algorithms.

Algorithm 3.18. Suppose that the primitively minimal defining set ∆L∨(D) of a

V∗-chamber D is given. This algorithm calculates all elements of AutG(D). Let

∆L∨(D)l denote the set of ordered l-tuples of distinct elements of ∆L∨(D), where

l := rankL. By Lemma 3.15, there exists an l-tuple [v1, . . . , vl] ∈ ∆L∨(D)l that

forms a basis of L ⊗ Q. We set A := {}. For each [v′1, . . . , v
′
l] ∈ ∆L∨(D)l, we

calculate the linear transformation g of L⊗Q such that

vgi = v′i (i = 1, . . . , l).

Recall that we can determine whether g ∈ G or not by the assumption [G]. If

g belongs to G and induces a permutation of ∆L∨(D), then we append g to A.

When this calculation is done for all [v′1, . . . , v
′
l] ∈ ∆L∨(D)l, the set A is equal to

AutG(D).
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Proof of Theorem 3.8. Since ∆L∨(D) is finite, Algorithm 3.18 terminates in finite

steps. □

Algorithm 3.19. Let D and D′ be V∗-chambers. Suppose that ∆L∨(D) and

∆L∨(D′) are given. This algorithm determines whether D is G-congruent to D′ or

not. We fix an element [v1, . . . , vl] of ∆L∨(D)l that forms a basis of L ⊗ Q. For

each [v′′1 , . . . , v
′′
l ] ∈ ∆L∨(D′)l, we calculate the linear transformation g of L ⊗ Q

that satisfies vgi = v′′i for i = 1, . . . , l. If g belongs to G and induces a bijection

from ∆L∨(D) to ∆L∨(D′), then D and D′ are G-congruent. If no such [v′′1 , . . . , v
′′
l ]

are found, then D and D′ are not G-congruent.

Remark 3.20. Suppose that p is a point in the interior of D. By (3.2), we see that

an element g ∈ G is contained in AutG(D) if and only if pg ∈ D, and g ∈ G induces

an isomorphism from D to D′ if and only if pg ∈ D′.

4. Vinberg-Conway theory

Let n be 10, 18 or 26. Throughout this section, we denote by L an even uni-

modular hyperbolic lattice II1,n−1 of rank n. Note that L exists and is unique

up to isomorphism (see, for example, [27, Chapter V]). We fix a positive cone PL

of L. Vinberg [38] and Conway [7, Chapter 27] described the structure of R∗
L-

chambers; that is, the standard fundamental domains of the action of W (L) on PL

(see Example 3.6).

Definition 4.1. Let D be an R∗
L-chamber. We say that a vector w ∈ L is a Weyl

vector of D if the RL-minimal defining set ∆RL
(D) of D is given by

∆RL
(D) = { r ∈ RL | ⟨w, r⟩ = 1 }.

If a Weyl vector of an R∗
L-chamber D exists, then it is unique, because, as will

be shown below, ∆RL
(D) spans L ⊗ R. If w is the Weyl vector of D, then wg

is the Weyl vector of Dg for any g ∈ O+(L). Since any two R∗
L-chambers are

O+(L)-congruent, the Weyl vector of a single R∗
L-chamber gives Weyl vectors of all

R∗
L-chambers via the action of O+(L).

Theorem 4.2 (Conway, Chapter 27 of [7]). For any R∗
L-chamber D, there exists

a Weyl vector w ∈ L of D. We have

w2 =


1240 if n = 10

620 if n = 18

0 if n = 26

and |∆RL
(D)| =


10 if n = 10

19 if n = 18

∞ if n = 26.

Remark 4.3. The finite sets ∆RL
(D) for n = 10 and 18 had been calculated by

Vinberg [38].

We give an explicit description of the Weyl vectors and the set ∆RL
(D), and

prove the following:
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Proposition 4.4. If D is an R∗
L-chamber, then πL(D)∩∂HL is contained in ∂HQ

L .

In the following, we denote by U the even hyperbolic lattice of rank 2 with a

fixed basis fU , zU , with respect to which the Gram matrix is

(4.1)

[
0 1

1 −2

]
,

and by f∨
U , z

∨
U the basis of U dual to fU , zU .

Remark 4.5. We choose this non-standard basis of U for geometric reasons; fU will

be the class of a fiber of a Jacobian fibration on a K3 surface and zU will be the

class of the zero section. See Sections 9 and 10.

Let E8 denote the (negative-definite) root lattice of type E8 with the standard

basis e1, . . . , e8, whose Coxeter graph is
e1

e2 e3 e4 e5 e6 e7 e8 .

We denote by e∨1 , . . . , e
∨
8 the basis of E8 dual to e1, . . . , e8. We put

θ := 3e1 + 2e2 + 4e3 + 6e4 + 5e5 + 4e6 + 3e7 + 2e8.

4.1. The case where n = 10. We put L := U ⊕E8, and choose PL in such a way

that 2fU + zU ∈ PL. Then the vector

w0 := 30f∨
U + z∨U + e∨1 + · · ·+ e∨8

is the Weyl vector of an R∗
L-chamber D0. By Vinberg [38], we have

∆RL
(D0) = {zU , e1, . . . , e8, fU − θ},

and

πL(D0) ∩ ∂HL = {πL(fU )} ⊂ ∂HQ
L .

4.2. The case where n = 18. We put L := U ⊕ E8 ⊕ E8, and choose PL in such

a way that 2fU + zU ∈ PL. Let e′1, . . . , e
′
8 be the basis of the second E8 with the

same Coxeter graph as e1, . . . , e8. Then the vector

w0 := 30f∨
U + z∨U + e∨1 + · · ·+ e∨8 + e′∨1 + · · ·+ e′∨8

is the Weyl vector of an R∗
L-chamber D0. By Vinberg [38], we have

∆RL
(D0) = {zU , e1, . . . , e8, e′1, . . . , e′8, fU − θ, fU − θ′},

where θ′ is defined in the same way as θ with ei replaced by e′i. Moreover, we have

πL(D0) ∩ ∂HL = {πL(fU ), πL(v1)} ⊂ ∂HQ
L ,

where

v1 := e1 + e3 + e′1 + e′3 +2(zU + (fU − θ) + (fU − θ′) + e4 + · · ·+ e8 + e′4 + · · ·+ e′8).
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4.3. The case where n = 26. We denote by Λ the negative-definite Leech lattice;

that is, Λ is an even unimodular negative-definite lattice of rank 24 such that

RΛ = ∅. We put L := U ⊕ Λ, and choose PL in such a way that 2fU + zU ∈ PL.

Theorem 4.6 (Conway and Sloane, Chapter 26 of [7]). A vector w ∈ L is a

Weyl vector of some R∗
L-chamber if and only if w is a non-zero primitive vector of

norm 0 contained in PL such that ⟨w⟩⊥/⟨w⟩ is isomorphic to Λ, where ⟨w⟩⊥ is the

orthogonal complement of the primitive submodule ⟨w⟩ of L.

Therefore w0 := fU is the Weyl vector of an R∗
L-chamber D0. For simplicity, we

denote vectors of L⊗ R = (U ⊕ Λ)⊗ R by

[s, t, y] := sfU + tzU + y, where s, t ∈ R, y ∈ Λ⊗ R.

Then we have

∆RL
(D0) = { rλ | λ ∈ Λ }, where rλ :=

[
−λ2/2, 1, λ

]
.

Conway, Parker and Sloane [8] ([7, Chapter 23]) proved that the covering radius of

the Leech lattice is
√
2 (see also Borcherds [3]). A point c of Λ⊗R is called a deep

hole if −(c−λ)2 ≥ 2 holds for any λ ∈ Λ. In Lemma 4.4 of [4], Borcherds observed

the following:

Lemma 4.7. Let b be a point of πL(D0) ∩ ∂HL. Then either b = πL(w0) or there

exists a deep hole c such that

b = πL(vc), where vc :=
[
−c2/2 + 1, 1, c

]
.

In particular, the set πL(D0) ∩ ∂HL is contained in ∂HQ
L .

Proof. Note that PL is contained in {x ∈ L⊗ R | ⟨w0, x⟩ ≥ 0}, and that x ∈ PL

satisfies ⟨x,w0⟩ = 0 if and only if x belongs to the half-line R≥0w0. Suppose that

b = πL(u), where u = [s, t, y] is a non-zero vector of norm 0 in D0. Since u ∈ PL,

we have t = ⟨w0, u⟩ ≥ 0, and t = 0 holds if and only if R≥0w0 = R≥0u. Hence t = 0

implies b = πL(w0). Suppose that t > 0. We can assume that t = 1. Since u2 = 0,

we have 2s− 2 + y2 = 0. Since u ∈ D0, we have

⟨u, rλ⟩ = − (y − λ)2

2
− 1 ≥ 0 for any λ ∈ Λ.

Therefore y ∈ Λ⊗R is a deep hole c and u = vc holds. Let p1, . . . , pN be the points

of Λ nearest to c; that is, p1, . . . , pN are the points of Λ satisfying (pi − c)2 = −2.

Then their differences pi − pj span Λ ⊗ Q, and c is the intersection point of the

bisectors of distinct two points of p1, . . . , pN . Hence c belongs to Λ ⊗ Q, and we

have πL(u) ∈ ∂HQ
L . □

Remark 4.8. The coordinates of deep holes of Λ are explicitly given in Conway,

Parker and Sloane [8].
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Remark 4.9. We have an isomorphism

L ∼= U ⊕ E8 ⊕ E8 ⊕ E8.

The vector wE ∈ U ⊕E3
8 given by [30, 1, 18, 18, 18] in terms of the dual basis f∨, z∨,

e∨1 , . . . , e
′′∨
8 is a Weyl vector of L. Indeed, let u ∈ U ⊕ E3

8 be the vector given by

[1,−2, 08, 08, 08] in terms of the dual basis above. Since w2
E = 0 and ⟨w0, u⟩ = 1,

the vectors wE and u span an even hyperbolic unimodular lattice of rank 2, and

its orthogonal complement in U ⊕E3
8 is isomorphic to ⟨wE⟩⊥/⟨wE⟩. Calculating a

Gram matrix of this orthogonal complement and using Algorithm 2.1, we confirm

that ⟨wE⟩⊥/⟨wE⟩ has no (−2)-vectors, and therefore is isomorphic to Λ.

5. Generalized Borcherds’ method

Suppose that S is an even hyperbolic lattice with a fixed positive cone PS , and let

G be a subgroup of O+(S) with finite index satisfying the existence of membership

algorithm [G] in Section 3 with L replaced by S. We present an algorithm that

calculates a set of generators of AutG(N) = {g ∈ G |Ng = N} for a given R∗
S-

chamber N under the assumptions [SG1], [SG2] and [SG3] below.

We recall the definition of the discriminant form of an even lattice. See Nikulin [17]

for the details. For an even lattice L, the discriminant group AL := L∨/L is

equipped with a non-degenerate quadratic form

qL : AL → Q/2Z, x mod L 7→ x2 mod 2Z,

which is called the discriminant form of L. Let O(qL) denote the group of auto-

morphisms of (AL, qL). We have a natural homomorphism

ηL : O(L) → O(qL).

For an isomorphism δ : (A1, q1) →∼ (A2, q2) of discriminant forms, we denote by

δ∗ : O(q1) →∼ O(q2)

the induced isomorphism on the automorphism groups.

Let n be 10, 18 or 26. As in Section 4, we denote by L an even unimodular

hyperbolic lattice of rank n. We assume that S satisfies the following embeddability

condition:

[SG1] S is primitively embedded into L.

Let R denote the orthogonal complement of S in L. Then R is an even negative-

definite lattice. We assume that

[SG2] if n = 26, the lattice R cannot be embedded into the Leech lattice Λ.

For example, if RR is non-empty, then [SG2] is satisfied, because RΛ = ∅. In fact,

in all examples that are treated in this paper, the assumption [SG2] is verified by

showing RR ̸= ∅.



AUTOMORPHISM GROUPS OF K3 SURFACES 19

We denote by

x 7→ xS and x 7→ xR

the orthogonal projections from L⊗R to S⊗R and R⊗R, respectively. Since L is

contained in S∨⊕R∨, the images of L by these projections are contained in S∨ and

R∨, respectively. Since L is unimodular, the result of Nikulin [17, Proposition 1.6.1]

implies that the subgroup L/(S ⊕R) of AS ⊕AR is the graph of an isomorphism

δL : (AS , qS) →∼ (AR,−qR).

We assume that the subgroup G of O+(S) satisfies the following liftability condi-

tion (see Proposition 5.2 below):

[SG3] δL∗(ηS(G)) ⊂ Im ηR, where δL∗ : O(qS) →∼ O(qR) is induced by δL.

For example, if G is contained in η−1
S ({±1}), then [SG3] is satisfied.

Let PL be the positive cone of L that contains the fixed positive cone PS of S.

Let r be an element of RL. Then the hyperplane (r)⊥ ∈ HL of PL intersects PS

if and only if r2S < 0 holds, and in this case, the hyperplane (rS)
⊥ ∈ HS of PS is

equal to the intersection PS ∩ (r)⊥. We put

RL|S := { rS | r ∈ RL, r2S < 0 },

and show that the subset RL|S of NS ∩ S∨ has the properties [V1]-[V4] given in

Section 3 with L replaced by S.

Proposition 5.1. If v ∈ RL|S, then −v2 ≤ 2. In particular, RL|S satisfies [V1].

Proof. Since R is negative-definite and r2S + r2R = −2 holds for any r ∈ RL, we

have −2 ≤ v2 for any v = rS ∈ RL|S . □

By Lemma 3.4, the family of hyperplanes

R∗
L|S = { (rS)

⊥ ∈ HS | r ∈ RL, r2S < 0 }

= { PS ∩ (r)⊥ | r ∈ RL, PS ∩ (r)⊥ ̸= ∅ }

is locally finite in PS .

Proposition 5.2. Let g be an element of G. Then there exists an element g̃ ∈
O+(L) that leaves S invariant and is equal to g on S.

Proof. By [SG3], there exists an element h ∈ O(R) such that δL∗(ηS(g)) = ηR(h).

Then the action of (ηS(g), ηR(h)) on AS ⊕AR preserves the graph L/(S⊕R) of δL,

and hence the action of (g, h) on S∨ ⊕R∨ preserves L ⊂ S∨ ⊕R∨. The restriction

g̃ ∈ O(L) of (g, h) to L belongs to O+(L), because g̃ leaves PS ⊂ PL invariant.

Thus we obtain a desired lift g̃ ∈ O+(L). □

Proposition 5.3. The action of G on NS ∩ S∨ leaves RL|S invariant; that is,

RL|S satisfies [V2].
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Proof. For any v ∈ RL|S and g ∈ G, we have r ∈ RL such that v = rS and a lift

g̃ ∈ O+(L) of g. Then vg = (rg̃)S ∈ RL|S holds. □

By the definition of RL|S , every R∗
L|S-chamber D is written as

D = D ∩ PS

by some R∗
L-chamber D.

Definition 5.4. An R∗
L-chamber D is said to be S-nondegenerate if D = D ∩ PS

is an R∗
L|S-chamber. In other words, D is S-nondegenerate if and only if D ∩ PS

contains a non-empty open subset of PS .

Definition 5.5. Let D be an R∗
L|S-chamber, and let D be an R∗

L-chamber such

that D = D ∩ PS . By certain abuse of terminology, we say that the Weyl vector

w ∈ L of D is a Weyl vector of D.

Remark 5.6. The set {r ∈ RL | PS ⊂ (r)⊥} is equal to RR. In particular, the num-

ber of hyperplanes (r)⊥ ∈ R∗
L passing through a point v ∈ PS is at least |RR|/2,

and is equal to |RR|/2 if v is general. We remark two consequences of this fact.

Let D be an R∗
L|S-chamber. Then there exists a canonical one-to-one correspon-

dence between the set of R∗
L-chambers D satisfying D = D ∩ PS and the set of

connected components of

(R⊗ R) \
∪

ρ∈RR

[ρ]⊥, where [ρ]⊥ := {x ∈ R⊗ R | ⟨x, ρ⟩R = 0}.

If R∗
L-chambers D and D′ satisfy D = D ∩ PS = D′ ∩ PS , then there exists a

sequence of reflections si (i = 1, . . . , N) of L with respect to ρi ∈ RR ⊂ RL such

that their product s1 · · · sN maps D to D′. Then the Weyl vector w of D is mapped

to the Weyl vector w′ of D′ by s1 · · · sN . Since each (−2)-vector ρi is contained in

R, we have wS = w′
S . Therefore, for an R∗

L|S-chamber D, wS ∈ S∨ is independent

of the choice of a Weyl vector w of D.

Let D be an R∗
L-chamber, and let v be a vector in D∩PS . If the number of walls

of D passing though v is equal to |RR|/2, then a small neighborhood of v in PS is

contained in D∩PS , and hence D is S-nondegenerate, and D = D∩PS contains v

in its interior.

Next we consider the property [V3] for RL|S . Let w be a Weyl vector of L, and

let D be the corresponding R∗
L-chamber (not necessarily S-nondegenerate). Recall

that the RL-minimal defining set ∆RL
(D) of D is equal to {r ∈ RL | ⟨w, r⟩L = 1}.

We put

(5.1) ∆w := { r ∈ ∆RL
(D) | r2S < 0 } = { r ∈ ∆RL

(D) | (r)⊥ ∩ PS ̸= ∅ }

and

(5.2) prS(∆w) := {rS | r ∈ ∆w}.
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Then we have D ∩ PS = ΣS(prS(∆w)) ∩ PS . Therefore, if D is S-nondegenerate,

then prS(∆w) is a defining set of the R∗
L|S-chamber D = D ∩ PS .

Proposition 5.7. For any Weyl vector w in L, the set ∆w is finite. In particular,

any R∗
L|S-chamber D has a finite defining set, and hence RL|S satisfies [V3].

Proof. First we show w2
S > 0. Note that w2 = w2

S + w2
R and w2

R ≤ 0. Hence

w2
S > 0 holds when n = 10 or n = 18 by Theorem 4.2. Suppose that n = 26 and

w2
S = 0. Then wR = 0 and w = wS hold. Therefore ⟨w⟩⊥/⟨w⟩ would contain R,

which contradicts Theorem 4.6 and the assumption [SG2].

We denote by dR the order of the discriminant group AR. Then dRv
2 ∈ Z and

d2Rv
2 ∈ 2Z hold for any v ∈ R∨. We put

(5.3) nR := { c ∈ Q | dRc ∈ Z, d2Rc ∈ 2Z, −2 < c ≤ 0 },

which is obviously finite. Since R is negative-definite, the set

(5.4) R∨[c] := { v ∈ R∨ | v2 = c }

is finite for each c ∈ nR. In particular, the set

(5.5) aR[c] := { ⟨wR, v⟩R | v ∈ R∨[c] }

is finite for each c ∈ nR. Suppose that r ∈ ∆w, so that r2S < 0. Note that

r2 = r2S + r2R = −2 and ⟨w, r⟩L = ⟨wS , rS⟩S + ⟨wR, rR⟩R = 1.

Since r2R ≤ 0, we have −2 ≤ r2S < 0 and −2 < r2R ≤ 0. Hence n′ := r2R belongs

to nR, and rR is an element of R∨[n′]. Since w2
S > 0, the quadratic part of the

inhomogeneous quadratic form x 7→ x2 on the affine hyperplane

{ x ∈ S ⊗ R | ⟨wS , x⟩S = b }

of S⊗R is negative-definite for any b ∈ R. If we put a′ := ⟨wR, rR⟩R ∈ aR[n
′], then

rS belongs to the finite set

(5.6) S∨[n′, a′] := { v ∈ S∨ | ⟨wS , v⟩S = 1− a′, v2 = −2− n′ }.

Since nR, R
∨[n′], aR[n

′] and S∨[n′, a′] are finite, ∆w is finite. □

We state the above proof in the form of an algorithm.

Algorithm 5.8. Suppose that a Weyl vector w ∈ L is given. This algorithm

calculates the set ∆w defined by (5.1).

Step 0. We calculate wS ∈ S∨, wR ∈ R∨, and the set nR defined by (5.3). We

set ∆′ := {}.
Step 1. For each c ∈ nR, we calculate R∨[c] defined by (5.4) by Algorithm 2.1,

and calculate aR[c] defined by (5.5).

Step 2. Using Algorithm 2.2, we calculate the finite set S∨[n′, a′] defined by (5.6)

for each pair of n′ ∈ nR and a′ ∈ aR[n
′].
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Step 3. For each triple n′ ∈ nR, vR ∈ R∨[n′] and vS ∈ S∨[n′, a′], where a′ =

⟨wR, vR⟩R, we determine whether vS + vR ∈ S∨ ⊕ R∨ belongs to L or not, and if

vS + vR ∈ L, then we append r := vS + vR to ∆′.

Step 4. Output ∆′ as ∆w.

We give a criterion of the S-nondegeneracy of a given R∗
L-chamber.

Criterion 5.9. Let D be an R∗
L-chamber with the Weyl vector w. Then D is

S-nondegenerate if and only if there exists a vector v ∈ PS that satisfies the finite

number of strict inequalities

(5.7) ⟨v, rS⟩S > 0 for any r ∈ ∆w.

If v ∈ PS satisfies these inequalities, then the R∗
L|S-chamber D ∩ PS contains v in

its interior.

Next we consider the property [V4] for RL|S .

Proposition 5.10. For any R∗
L|S-chamber D, we have πS(D) ∩ ∂HS ⊂ ∂HQ

S . In

particular, RL|S satisfies [V4].

Proof. Let D be an R∗
L-chamber such that D = D∩PS . Then we have D = D∩PS .

Since ∂HQ
S = ∂HS ∩ ∂HQ

L under the canonical inclusion HS ↪→ HL, the assertion

follows from Proposition 4.4. □

Thus the subset RL|S of NS ∩ S∨ has the properties [V1]-[V4]. Hence we can

apply Algorithms 3.17, 3.18 and 3.19 described in Section 3 to V = RL|S .

Algorithm 5.11. Suppose that a Weyl vector w ∈ L of an R∗
L|S-chamber D is

given. This algorithm calculates the primitively minimal defining set ∆S∨(D) of

D.

Step 0. We calculate ∆w by Algorithm 5.8.

Step 1. We calculate the defining set prS(∆w) of D.

Step 2. We then calculate ∆S∨(D) from prS(∆w) by Algorithm 3.17.

Remark 5.12. Let D and D′ be R∗
L|S-chambers. By Algorithms 3.18, 3.19 and 5.11,

we can calculate AutG(D) and determine whether D and D′ are G-congruent or

not from Weyl vectors w of D and w′ of D′. Note that, by Remark 5.6, the defining

set prS(∆w) of D is independent of the choice of the Weyl vector w. Moreover, by

Proposition 5.2, if g ∈ AutG(D), then g preserves prS(∆w), and if D′ = Dg, then

g maps prS(∆w) to prS(∆w′) bijectively. Hence, when we apply Algorithms 3.18

and 3.19 to R∗
L|S-chambers, we can use prS(∆w) and prS(∆w′) in the place of the

primitively defining sets ∆S∨(D) and ∆S∨(D′).

Let w be a Weyl vector of an R∗
L|S-chamber D, and let v be an element of

∆S∨(D). Then (v)⊥ is a wall of D. We calculate the R∗
L|S-chamber that is adjacent

to D across (v)⊥. First we prepare an auxiliary algorithm.
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Algorithm 5.13. Suppose that v ∈ NS ∩ S∨ is given. We regard the hyperplane

(v)⊥ of PS as a linear subspace of the larger space PL; that is, (v)
⊥ is of codimension

rankR+1 in PL, whereas (r)
⊥ for r ∈ RL is of codimension 1 in PL. This algorithm

calculates the set

(5.8) Pv := { r ∈ RL | (v)⊥ ⊂ (r)⊥ } = { r ∈ RL | rS ∈ Rv }.

We set P := {}. There exist only a finite number of α ∈ Q such that αv ∈ S∨

and α2v2 ≥ −2. For each such rational number α and each u ∈ R∨[c], where

c = −2−α2v2 and R∨[c] defined by (5.4), we determine whether αv+u ∈ S∨⊕R∨

belongs to L or not, and if αv + u ∈ L, then we append r := αv + u ∈ L to P .

Then we output P as Pv. (Remark that Pv includes the subset RR of RL.)

We consider the linear subspace

V := Rv ⊕ (R⊗ R)

of L ⊗ R. Let ⟨ , ⟩V : V × V → R denote the restriction of ⟨ , ⟩L to V . Note that

⟨ , ⟩V is negative-definite. Let x 7→ xV denote the orthogonal projection from L⊗R
to V . Each element r of Pv defined by (5.8) belongs to V . Hence rV = r holds

for any r ∈ Pv. We denote by {D0, . . . ,Dm} the set of R∗
L-chambers containing

the hyperplane (v)⊥ of PS (that is, the linear subspace of PL with codimension

rankR+ 1), and put

D◦
j,V := { x ∈ V | ⟨x, r⟩V > 0 for any r ∈ Pv ∩∆RL

(Dj) }.

Then Dj 7→ D◦
j,V gives a one-to-one correspondence from {D0, . . . ,Dm} to the set

of connected components of

V \
∪

r∈Pv

[r]⊥V , where [r]⊥V := { x ∈ V | ⟨x, r⟩V = 0 }.

Let wj be the Weyl vector of Dj . By renumbering D0, . . . ,Dm, we can assume that

D = PS ∩ D0 and that w0 is the given Weyl vector w of D. Since ⟨wj,V , r⟩V =

⟨wj , r⟩L = 1 for any r ∈ Pv ∩ ∆RL
(Dj), the vector wj,V belongs to D◦

j,V . There

exists an R∗
L-chamber Dopp among {D0, . . . ,Dm} such that

D◦
opp,V = −D◦

0,V .

Then PS ∩ Dopp is the R∗
L|S-chamber D′ adjacent to D across (v)⊥. We calculate

the Weyl vector of Dopp. Let u be a sufficiently general vector of L⊗Q, and let ε

be a sufficiently small positive real number. Consider the oriented line segment

p(t) := (1− t)wV + t(−wV + εuV ) (0 ≤ t ≤ 1)

in V from wV = w0,V ∈ D◦
0,V to −wV +εuV ∈ D◦

opp,V . Let P
′
v = {r1, . . . , rN} ⊂ Pv

be a complete set of representatives of Pv/{±1}. For i = 1, . . . , N , let ti be the
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value of t such that p(ti) ∈ [ri]
⊥
V . Since ⟨x, ri⟩L = ⟨xV , ri⟩V for any x ∈ L⊗ R, we

have

ti =

(
2− ε

⟨u, ri⟩L
⟨w, ri⟩L

)−1

.

Since u is general, we can assume that t1, . . . , tN are distinct. We put the numbering

of the elements r1, . . . , rN of P ′
v so that t1 < · · · < tN holds. Let si ∈ O+(L) denote

the reflection with respect to ri. Then D0 and Dopp are related by

Dopp = Ds1s2...sN
0 .

Therefore ws1s2...sN is the Weyl vector of Dopp. By this consideration, we obtain

the following:

Algorithm 5.14. Suppose that a Weyl vector w ∈ L of an R∗
L|S-chamber D and

an element v of ∆S∨(D) are given. This algorithm calculates a Weyl vector w′ of

the R∗
L|S-chamber D′ adjacent to D across the wall (v)⊥.

We calculate the set Pv by Algorithm 5.13, and choose a complete set of repre-

sentatives P ′
v = {r1, . . . , rN} of Pv/{±1}. We also choose a vector u of L⊗Q such

that i ̸= j implies ⟨u, ri⟩L/⟨w, ri⟩L ̸= ⟨u, rj⟩L/⟨w, rj⟩L. We sort the elements ri of

P ′
v so that

i < j =⇒ ⟨u, ri⟩L
⟨w, ri⟩L

<
⟨u, rj⟩L
⟨w, rj⟩L

holds. Then ws1s2...sN is a Weyl vector of D′, where si ∈ O+(L) is the reflection

with respect to ri.

6. The main algorithm

We present our main algorithm, and prove its termination and correctness. Let

G, S and L be as in the previous section. Let N be an R∗
S-chamber. Since RS

is contained in RL|S , the R∗
S-chamber N is a union of R∗

L|S-chambers. We fix an

R∗
L|S-chamber D0 contained in N . An N -chain is a finite sequence

D(0), D(1), . . . , D(l)

of R∗
L|S-chambers contained in N such that D(a+1) is adjacent to D(a) for each

a. The length of an N -chain D(0), . . . , D(l) is defined to be l. Let D be an

R∗
L|S-chamber contained in N . Since N is connected, there exists an N -chain

D(0), . . . , D(l) such that D(0) = D0 and D(l) = D. The level of D is defined to be

the minimum of the lengths of all N -chains from D0 to D.

In the actual execution of the following algorithm, we use a Weyl vector to store

an R∗
L|S-chamber in the computer memory. Thus, for example, the set D is realized

as a set of vectors of L in the computer.

Algorithm 6.1. Suppose that a Weyl vector w0 of an R∗
L|S-chamber D0 is given.

Let N be the R∗
S-chamber containing D0. This algorithm calculates a finite set
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Γ of generators of AutG(N), a finite set D of R∗
L|S-chambers contained in N such

that the union

(6.1) FN :=
∪

Di∈D
Di

satisfies the property (2) in Proposition 6.3 below, and a set B of (−2)-vectors of

S that satisfies the property (3) in Proposition 6.3. In fact, the set D is a complete

set of representatives of G-congruence classes of R∗
L|S-chambers, and it is a union

of non-empty subsets Dℓ, where elements of Dℓ are of level ℓ.

Step 0. Set Γ to be {}, D0 to be {D0}, and B to be {}.
Step 1. Calculate the set ∆S∨(D0) from w0 by Algorithm 5.11.

Step 2. Execute adj(0), where adj(ℓ) is the following procedure, which calls

adj(ℓ+ 1) at the last step if the condition for termination is not fulfilled.

The procedure adj(ℓ). Suppose that, for each λ = 0, . . . , ℓ, a non-empty finite

set Dλ of R∗
L|S-chambers with the following properties has been calculated.

[D1] Each D ∈ Dλ is contained in N , and is of level λ, and

[D2] if D,D′ ∈ ∪ℓ
λ=0Dλ are distinct, then D and D′ are not G-congruent.

Suppose also that, for each D ∈ ∪ℓ
λ=0Dλ, we have calculated ∆S∨(D). This proce-

dure calculates Dℓ+1 and ∆S∨(D) for each D ∈ Dℓ+1.

LetDk+1, . . . , Dk+m be the elements of Dℓ, where k is the sum of the cardinalities

of Dλ with λ < ℓ (we put k = −1 if ℓ = 0), and m is the cardinality of Dℓ.

1. Put D′ := {} and set l := k +m+ 1.

2. For each Di ∈ Dℓ, we make the following calculation.

2-1. Calculate the finite group AutG(Di) from ∆S∨(Di) by Algorithm 3.18,

and append a finite set of generators of AutG(Di) to Γ .

2-2. Note that AutG(Di) acts on ∆S∨(Di). Decompose ∆S∨(Di) into the

AutG(Di)-orbits o1, . . . , ot. Since R∗
S is G-invariant, the set o∗ν :=

{(v)⊥ | v ∈ oν} is either disjoint from R∗
S or entirely contained in R∗

S .

Let v be an element of oν . Since v is primitive in S∨, we have o∗ν ⊂ R∗
S

if and only if there exists a positive integer α such that α2v2 = −2

and αv ∈ S.

2-3. For each orbit oν such that o∗ν is disjoint from R∗
S , we make the fol-

lowing calculation.

2-3-1. Choose a vector v ∈ oν , and calculate a Weyl vector w′ ∈ L

of the R∗
L|S-chamber D′ adjacent to Di across the wall (v)⊥ by

Algorithm 5.14. We then calculate ∆S∨(D′) by Algorithm 5.11.

Since (v)⊥ /∈ R∗
S and Di ⊂ N , we have D′ ⊂ N . Since Di is of

level ℓ, we see that D′ is of level ≤ ℓ+ 1.
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2-3-2. By Algorithm 3.19, determine whether D′ is G-congruent to an

R∗
L|S-chamber D′′ in

D̃ := D0 ∪ · · · ∪ Dℓ ∪ D′ = {D0, D1, . . . , Dl−1}

or not. If D′ = D′′h for some D′′ ∈ D̃ and h ∈ G, then append

h to Γ . If there exist no such D′′ ∈ D̃ and h ∈ G, then D′

represents a new G-congruence class and its level is ℓ + 1, and

hence we put Dl := D′, append Dl to D′ and increment l by 1.

2-4. For each orbit oν such that o∗ν ⊂ R∗
S , choose a vector v ∈ oν , find a

positive integer α such that r := αv ∈ RS , and append r to B.
3. If D′ ̸= ∅, then put Dℓ+1 := D′, which has the properties [D1] and [D2]

above, and execute adj(ℓ+ 1). If D′ = ∅, then put

D := D0 ∪ D1 ∪ · · · ∪ Dℓ,

and terminate.

Proposition 6.2. Algorithm 6.1 terminates.

Proof. By construction, any two distinct R∗
L|S-chambers in D0 ∪ · · · ∪ Dℓ ∪ D′ are

not G-congruent during the calculation. Thus Proposition 6.2 follows from Theo-

rem 3.7. □

Proposition 6.3. (1) The group AutG(N) is generated by Γ .

(2) For any v ∈ N , there exists an element g ∈ AutG(N) such that vg ∈ FN ,

where FN is defined by (6.1).

(3) Let r be an element of the RS-minimal defining set ∆RS
(N) of N . Then

there exists an element g ∈ AutG(N) such that rg ∈ B.

Proof. Since eachDi ∈ D is contained inN , we have AutG(Di) ⊂ AutG(N) by (3.2),

and hence all elements of Γ appended in Step 2-1 is an element of AutG(N). If

h ∈ G is appended to Γ in Step 2-3-2, then we have D′ = D′′h for some R∗
L|S-

chambers D′ and D′′ contained in N , and hence h ∈ AutG(N) by (3.2). Therefore

the subgroup ⟨Γ ⟩ of G generated by Γ is contained in AutG(N).

To prove the rest of Proposition 6.3, it is enough to show the following. This

claim also proves that D is a complete set of representatives of G-congruence classes

of R∗
L|S-chambers contained in N .

Claim 6.4. For an arbitrary R∗
L|S-chamber D contained in N , there exists an

element γ ∈ ⟨Γ ⟩ such that Dγ ∈ D.

Indeed, suppose that Claim 6.4 is proved. Let g be an arbitrary element of

AutG(N). Since Dg
0 ⊂ N , there exists an element γ ∈ ⟨Γ ⟩ such that (Dg

0)
γ is

equal to some Di ∈ D. Since Di and D0 are G-congruent and Di, D0 ∈ D, we have

D0 = Di. Therefore gγ ∈ AutG(D0) ⊂ ⟨Γ ⟩ follows, and hence we have g ∈ ⟨Γ ⟩.
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Let v ∈ N be an arbitrary vector, and let D be an R∗
L|S-chamber containing v and

contained in N . By Claim 6.4, we have γ ∈ ⟨Γ ⟩ such that Dγ = Di ∈ D. Then we

have vγ ∈ FN . Suppose that r ∈ ∆RS
(N). Then there exist an R∗

L|S-chamber D

contained in N and a vector v ∈ ∆S∨(D) such that r = αv for some positive integer

α. By Claim 6.4, we have γ ∈ ⟨Γ ⟩ such that Dγ = Di ∈ D. Then vγ ∈ ∆S∨(Di)

is contained in an AutG(Di)-orbit oν such that o∗ν ⊂ R∗
S . Hence there exists an

element γ′ ∈ AutG(Di) such that rγγ
′
is appended to B in Step 2-3-3.

Now we prove Claim 6.4. We fix an R∗
L|S-chamber D contained in N , and prove

the existence of γ ∈ ⟨Γ ⟩ such that Dγ ∈ D. An N -chain D(0), D(1), . . . , D(l) of

R∗
L|S-chambers is said to be D-admissible if D(0) belongs to D and there exists an

element γ ∈ ⟨Γ ⟩ such that D(l) = Dγ . Since N is connected, there exists at least

one D-admissible N -chain. It is enough to show that there exists a D-admissible

N -chain of length 0. We suppose that the D-admissible N -chain with minimal

length

D(0) = Di, D
(1), . . . , D(l) = Dγ (Di ∈ D, γ ∈ ⟨Γ ⟩)

is of length l > 0, and derive a contradiction. Let v′ ∈ ∆S∨(Di) be the vector such

that (v′)⊥ is the wall between D(0) = Di and D(1). Since Di and D(1) are contained

in N , the AutG(Di)-orbit oν ⊂ ∆S∨(Di) containing v′ satisfies o∗ν ∩R∗
S = ∅. Let v

be the vector of oν chosen in Step 2-3-1, and let g ∈ AutG(Di) be an element that

maps v′ to v. Then D(1)g is the R∗
L|S-chamber adjacent to D(0) = Di across (v)

⊥.

Since g ∈ ⟨Γ ⟩, the N -chain

D(0) = Di, D
(1)g, . . . , D(l)g = Dγg

is D-admissible. By the minimality of l, D(1)g does not belong to D. Hence, in

Step 2-3-2, the R∗
L|S-chamber D(1)g is not appended to D′, which means that there

exist a chamber D′′ ∈ D and and an element h ∈ G such that D(1)gh = D′′. The

element h−1 is appended to Γ in Step 2-3-2, and hence γgh ∈ ⟨Γ ⟩. Then

D(1)gh = D′′, D(2)gh, . . . , D(l)gh = Dγgh

is a D-admissible N -chain of length l − 1, which is a contradiction. □

Remark 6.5. For Di ∈ D, let E(Di) ⊂ Di be a fundamental domain of the action of

the finite group AutG(Di) on Di. Then their union
∪

Di∈D E(Di) is a fundamental

domain of the action of AutG(N) on N . In particular, if we have |AutG(D)| = 1

for any D ∈ D, then FN is a fundamental domain of the action of AutG(N) on N .

Remark 6.6. When Algorithm 6.1 is applied to the case G = O+(S), we see that

O+(S) is generated by Γ and the reflections {sr | r ∈ B}.

Remark 6.7. Suppose that n = 26 and that R contains a root lattice as a sublattice

of finite index. By Borcherds [4, Lemma 5.1], there exist only a small number of

O+(S)-congruence classes of R∗
L|S-chambers.
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Remark 6.8. By Remark 5.12, we can make Step 2-3 faster; namely, we can deter-

mine whether D′ represents a new G-congruence class or not by using prS(∆w′)

instead of ∆S∨(D′).

7. The automorphism group of a K3 surface

In this section, we review the classical theory of the automorphism groups of

K3 surfaces. Let X be an algebraic K3 surface with the Néron-Severi lattice SX

of rank > 1. Then SX is an even hyperbolic lattice. Let P(X) denote the positive

cone of SX containing an ample class. The nef cone Nef(X) of X is defined by

Nef(X) := { v ∈ SX ⊗ R | ⟨v, [C]⟩ ≥ 0 for any curve C on X },

where [C] ∈ SX is the class of a curve C. Note that, by Kleiman’s criterion, Nef(X)

is contained in the closure P(X) of P(X) in SX ⊗ R. We put

N(X) := Nef(X) ∩ P(X) = Nef(X) \ (Nef(X) ∩ ∂ P(X)).

It is known that N(X) is an R∗
SX

-chamber, and that the RSX
-minimal defining

set ∆RSX
(N(X)) consists of the classes of smooth rational curves on X (see, for

example, Rudakov-Shafarevich [25]). For simplicity, we put

Aut(N(X)) := { g ∈ O+(SX) | N(X)g = N(X) } = AutO+(SX)(N(X)).

By a (−2)-wall, we mean a wall bounding N(X); that is, a wall ([C])⊥, where C is

a smooth rational curve on X.

7.1. Complex K3 surfaces. Suppose that X is defined over C. With the cup-

product, the second cohomology groupH := H2(X,Z) is an even unimodular lattice

of signature (3, 19). Let TX denote the orthogonal complement of SX in H, which

we call the transcendental lattice of X. We regard a non-zero holomorphic 2-form

ωX on X as a vector of TX ⊗ C, and put

(7.1) CX := { g ∈ O(TX) | ωg
X = λωX for some λ ∈ C× }.

Since H is unimodular, the subgroup H/(SX ⊕ TX) of the discriminant group

ASX ⊕ATX of SX ⊕ TX is the graph of an isomorphism

δST : (ASX
, qSX

) →∼ (ATX
,−qTX

)

by Nikulin [17, Proposition 1.6.1], which induces an isomorphism of the automor-

phism groups δST∗ : O(qSX ) →∼ O(qTX ) of discriminant forms. Recall that, for an

even lattice L, we have a natural homomorphism ηL : O(L) → O(qL).

Theorem 7.1 (Piatetski-Shapiro and Shafarevich [23]). Via the natural actions

of Aut(X) on the lattices SX and TX , the automorphism group Aut(X) of X is

identified with

{ (g, h) ∈ Aut(N(X))× CX | δST∗(ηSX
(g)) = ηTX

(h) }.
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Since O(qTX
) is finite, the subgroup

(7.2) GX := { g ∈ O+(SX) | δST∗(ηSX (g)) ∈ ηTX (CX) }

of O+(SX) has finite index.

Corollary 7.2. The kernel of the natural homomorphism φX : Aut(X) → O(SX)

is isomorphic to Ker(ηTX
) ∩ CX , and its image is equal to

AutGX
(N(X)) = {g ∈ GX |N(X)g = N(X)}.

7.2. Supersingular K3 surfaces in odd characteristics. Suppose that X is a

supersingular K3 surface defined over an algebraically closed field k of odd charac-

teristic p. By Artin [1], we know that the discriminant group ASX
is a p-elementary

abelian group of rank 2σ, where σ is a positive integer ≤ 10, which is called the

Artin invariant of X. The Fp-vector space S0 := pS∨
X/pSX of dimension 2σ has a

natural quadratic form

Q0 : px mod pSX 7→ px2 mod p (x ∈ S∨
X)

that takes values in Fp. We denote by O(Q0) the finite group of automorphisms

of (S0, Q0). We have a natural homomorphism O(SX) → O(Q0). We denote by

φ : S0 ⊗ k → S0 ⊗ k the map idS0 ⊗ Fk, where Fk is the Frobenius map of k. Let

cDR : SX → H2
DR(X/k) denote the Chern class map. Then the kernel Ker(c̄DR) of

the induced homomorphism c̄DR : SX ⊗k → H2
DR(X/k) from SX ⊗k = SX/pSX to

H2
DR(X/k) is contained in S0 ⊗ k. (Note that we have pS∨

X ⊂ SX .) The subspace

K := φ−1(Ker(c̄DR))

of S0 ⊗ k is called the period of X.

Theorem 7.3 (Ogus [21], [22]). Via the natural action of Aut(X) on SX , the

automorphism group Aut(X) of X is identified with

{ g ∈ Aut(N(X)) | Kg = K }.

Since O(Q0) is finite, the subgroup

(7.3) GX := { g ∈ O+(SX) | Kg = K }

of O+(SX) has finite index.

Corollary 7.4. The natural homomorphism Aut(X) → O(SX) is injective, and its

image is equal to AutGX
(N(X)).
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8. Geometric application of Algorithm 6.1

Let X be a complex algebraic K3 surface or a supersingular K3 surface in odd

characteristic. Let SX be the Néron-Severi lattice of X, and let N(X) be the R∗
SX

-

chamber Nef(X)∩P(X) in the positive cone P(X) containing an ample class. Let

GX be the subgroup of O+(SX) defined by (7.2) or (7.3). Applying Algorithm 6.1

to the case S = SX , G = GX and N = N(X), we can calculate a finite set of

generators of

Im(φX : Aut(X) → O(SX)) = AutGX (N(X))

and a closed domain FN(X) of N(X) with the properties given in Proposition 6.3,

provided that the following hold:

(1) The subgroup GX of O+(SX) satisfies the condition [G] of the existence of

a membership algorithm in Section 3.

(2) We can find a primitive embedding of SX into an even unimodular hyper-

bolic lattice L of rank 10, 18 or 26 such that the orthogonal complement R

of SX in L satisfies [SG2] and [SG3] in Section 5.

(3) We can find a Weyl vector of an R∗
L|S-chamber D0 contained in the R∗

S-

chamber N(X).

We discuss these requirements for a complex K3 surface X. Let ρX denote the

Picard number of X, and let TX denote the transcendental lattice of X.

8.1. Requirement (1). By the definition (7.2) of GX , we have a membership al-

gorithm for the subgroup GX of O+(SX) if we have explicit descriptions of the

isomorphism δST : (ASX , qSX ) →∼ (ATX ,−qTX ) induced by the even unimodular

overlattice H2(X,Z) of SX ⊕ TX , the homomorphisms ηSX
: O(SX) → O(qSX

),

ηTX
: O(TX) → O(qTX

), and the subgroup CX of O(TX).

Suppose that CX = {±1}. Then the condition g ∈ GX is reduced to the condi-

tion ηSX
(g) ∈ {±1}, and hence all we need to do is to calculate the homomorphism

ηSX
. This assumption CX = {±1} holds in many cases. For example, if ρX < 20

and the period ωX is generic in TX ⊗ C, then CX = {±1}. Indeed, since the

eigenspaces in TX ⊗C of any g ∈ O(TX) \ {±1} are proper subspaces, a period ωX

for which CX ̸= {±1} must lie in a countable union of proper subspaces of TX ⊗C.

8.2. Requirement (2). We have the following:

Proposition 8.1. For a complex algebraic K3 surface X, the lattice SX has a

primitive embedding into an even unimodular hyperbolic lattice L26 of rank 26.

Proof. Recall that TX is an even lattice of signature (2, 20−ρX) such that (ATX
, qTX

)

is isomorphic to (ASX
,−qSX

). By Nikulin [17, Theorem 1.10.1], the existence of

the lattice TX implies the existence of an even lattice R of signature (0, 26 − ρX)

with (AR, qR) ∼= (ATX
, qTX

). Hence, by Nikulin [17, Proposition 1.6.1], SX can be

embedded primitively into an even unimodular hyperbolic lattice of rank 26 with
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R being the orthogonal complement. Since an even unimodular hyperbolic lattice

of rank 26 is unique up to isomorphism, Proposition 8.1 follows. □

Therefore SX always satisfies the condition [SG1] in Section 5. It is, how-

ever, difficult in general to obtain a primitive embedding SX ↪→ L explicitly. In

fact, by Nikulin [17, Proposition 1.6.1], this problem is equivalent to construct a

negative-definite lattice R of rank equal to rankL− rankSX such that (AR, qR) ∼=
(ASX ,−qSX ) holds. For the algorithm to construct an integral lattice in a given

genus explicitly, see Conway and Sloane [7, Chapter 15].

Remark 8.2. In the case where X is supersingular, we can use the table [20] of

positive-definite integral lattices of rank 4.

Once a primitive embedding SX ↪→ L is obtained, we can calculate a Gram

matrix of R of the orthogonal complement, the isomorphism δL : (ASX
, qSX

) →∼

(AR,−qR) of discriminant forms induced by L ⊂ S∨
X ⊕ R∨, and the induced iso-

morphism δL∗ : O(qSX
) →∼ O(qR). Since both R and Λ are negative-definite, we

can enumerate all embeddings of R into Λ, and hence the condition [SG2] can be

checked. In practice, [SG2] is often verified simply by showing that RR ̸= ∅. Note

that O(R) is a finite group, and hence its image by ηR : O(R) → O(qR) can be

calculated. By the definition of GX , the subgroup ηSX (GX) of O(qSX ) is equal to

Im ηSX ∩ δ−1
ST∗(ηTX (CX)).

Hence, if δ−1
L∗ (Im ηR) contains δ−1

ST∗(ηTX (CX)), then the liftability condition [SG3]

is satisfied. This sufficient condition for [SG3] is fulfilled in the following cases that

occur frequently: the case where ηR is surjective, or the case where CX = {±1}.

8.3. Requirement (3). In order to find an initial R∗
L|S-chamber D0 contained in

N(X), we can employ one of the following two methods.

Let D0 be the R∗
L-chamber corresponding to the standard Weyl vector w0 given

in Section 4. We choose an interior point u0 of D0. When rankL is 10 or 18, w0 is

an interior point of D0. When rankL is 26 and w0 = fU , we can use

u0 := 3fU + zU ∈ L = U ⊕ Λ,

because we have u2
0 = 4, ⟨u0, w0⟩L = 1 and ⟨u0, rλ⟩L = 1− λ2/2 > 0 for all λ ∈ Λ.

Next we find an ample class a0 ∈ SX . The method of this step depends, of

course, on what kind of geometric information of X is available. Once an ample

class a0 is obtained, we can determine whether a given vector v ∈ SX is ample or

not by means of the following criterion and Algorithms 2.2 and 2.3. Note that a

vector of SX is ample if and only if it belongs to the interior of N(X). Therefore

a vector v ∈ SX is ample if and only if

(i) v2 > 0 and ⟨v, a0⟩ > 0, so that v ∈ P(X),

(ii) the set {r ∈ RSX | ⟨v, r⟩ = 0} is empty, and
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(ii) the set {r ∈ RSX
| ⟨v, r⟩ < 0, ⟨a0, r⟩ > 0} is empty, so that the line segment

in P(X) connecting a0 and v does not intersect any hyperplane (r)⊥ per-

pendicular to some (−2)-vector r.

For example, we can produce many ample classes Aa0 + u by putting A to be

sufficiently large integers and u ∈ SX to be vectors with relatively small coordinates.

We choose a general ample class a ∈ SX . (The cases where a is not general

enough so that we have to re-choose a are indicated below.) Let i0 : SX ↪→ L be a

primitive embedding. We consider the oriented line segment

ℓ(t) := (1− t) i0(a) + t u0 (0 ≤ t ≤ 1)

in PL from i0(a) to u0. By Algorithm 2.3, we calculate the finite set

{ r ∈ RL | ⟨u0, r⟩L > 0, ⟨i0(a), r⟩L < 0 } = {r1, . . . , rN}

and sort the elements of this set in such a way that

t1 ≤ t2 < · · · ≤ tN , where ti satisfies ⟨ℓ(ti), ri⟩L = 0.

If t1, . . . , tN are not distinct, we re-choose a. We assume that t1, . . . , tN are distinct.

Then the oriented line segment ℓ intersects the hyperplanes (r1)
⊥, . . . , (rN )⊥ in

this order. We replace the embedding i0 by

i := srN ◦ · · · ◦ sr1 ◦ i0,

and consider SX as a primitive sublattice of L by i. Then the ample class a is

contained in D0∩P(X). We check whether the inequalities (5.7) in Criterion 5.9 are

satisfied for v = a and w = w0. If not, then we re-choose a and repeat the process

again. If (5.7) is satisfied, then D0 := D0 ∩ P(X) is an R∗
L|S-chamber containing

a in its interior. In particular, D0 is contained in N(X) and the standard Weyl

vector w0 is a Weyl vector of D0.

The other method does not necessarily succeed, but is practically useful. In fact,

we have used this method in [12] and [15]. Suppose that rankL = 26. We choose an

ample class a ∈ SX that is primitive in SX . By Algorithm 2.1, we can calculate the

list of all vectors v ∈ R such that a2 + v2 = 0. For each v in this list, we determine

whether the vector w := a+v ∈ SX⊕R of L is a Weyl vector or not by Theorem 4.6;

we check whether ⟨w⟩⊥/⟨w⟩ is a negative-definite unimodular lattice with no (−2)-

vectors by applying Algorithm 2.1 to a Gram matrix of ⟨w⟩⊥/⟨w⟩. Suppose that

a Weyl vector w0 := a+ v0 of this form is found, and let D0 be the corresponding

R∗
L-chamber. We check whether the inequalities (5.7) in Criterion 5.9 are satisfied

for v = a and w = w0. If (5.7) is satisfied, then D0 := D0 ∩ P(X) is an R∗
L|S-

chamber containing a in its interior. In particular, D0 is contained in N(X) and

the Weyl vector w0 is a Weyl vector of D0.
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9. Complex elliptic K3 surfaces with Picard number 3

We demonstrate Algorithm 6.1 on certain complex K3 surfaces with Picard

number 3, because, in this case, we can draw pictures of the closed domain FN(X)

defined by (6.1) in the hyperbolic plane.

Let X be a complex K3 surface with Picard number 3 and with a Jacobian

fibration

ϕ : X → P1

whose Mordell-Weil group MWϕ is of rank 1. We assume that the period ωX of X

is generic in TX ⊗ C, which implies that the group CX defined by (7.1) is equal to

{±1}. We denote by fϕ ∈ SX the class of a fiber of ϕ and by zϕ ∈ SX the class of

the zero section of ϕ. Then there exists a vector v3 ∈ SX , unique up to sign, such

that fϕ, zϕ, v3 form a basis of SX , and that the Gram matrix of SX with respect to

fϕ, zϕ, v3 is

M :=

 0 1 0

1 −2 0

0 0 −2k

 ,

where k := −v23/2. Since MWϕ is of rank 1, there exist no reducible fibers of ϕ and

hence we have k > 1 (see, for example, [35]). A vector ξfϕ + ηzϕ + ζv3 of SX ⊗ R
is written as [ξ, η, ζ]. The discriminant group ASX

of SX is a cyclic group of order

2k generated by u3 mod SX , where u3 := [0, 0,−1/2k]. Since k > 1, we have −1 /∈
Ker(ηTX ). Therefore, by Corollary 7.2 and the assumption CX = {±1}, the natural
homomorphism Aut(X) → O+(SX) is injective, and Aut(X) ∼= AutGX

(N(X))

holds, where GX is defined by (7.2). We describe the group GX in terms of matrices.

Note that the class a := [2, 1, 0] ∈ SX is nef, and hence g ∈ O(SX) belongs to

O+(SX) if and only if ⟨ag, a⟩SX
> 0. Therefore GX is canonically identified with

{ g ∈ GL3(Z) | gM tg = M, a gM ta > 0, u3g ≡ ±u3 mod Z3 }.

This identification provides us with the membership algorithm for GX in the con-

dition [G] in Section 3.

We embed SX into the even unimodular hyperbolic lattice L = U ⊕ E8 of rank

10 primitively. Note that [SG2] is irrelevant in this case, and [SG3] holds because

CX = {±1}. Let D0 be the R∗
L-chamber with the Weyl vector w0 ∈ L = U ⊕ E8

given in Section 4.1. We will find a primitive embedding i : SX ↪→ L such that

D0 := i−1(D0) is an R∗
L|SX

-chamber contained in N(X) by the method described

in Section 8.3. To find an initial primitive embedding i0, it is enough to choose a

primitive vector v′3 ∈ E8 such that v′23 = −2k, and define i0 : SX ↪→ L by

i0(fϕ) = fU , i0(zϕ) = zU , i0(v3) = v′3,
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where fU and zU are the basis of the hyperbolic plane U with respect to which the

Gram matrix is (4.1). As the general ample class a, we use [3A,A,−1] with A large

enough.

There exist two obvious elements in Aut(X). We have a canonical bijection

MWϕ
∼= { [ks2, 1, s] | s ∈ Z }

by sending sections of ϕ to the classes of their images. The Mordell-Weil group

MWϕ
∼= Z acts on X as translations. We also have the inversion automorphism

ιX : X → X induced by the multiplication by−1 on the generic fiber of ϕ. Therefore

Aut(X) contains MWϕ ⋊ ⟨ιX⟩ ∼= Z/2Z ∗ Z/2Z, which is generated by the two

involutions

h1 := ιX =

 1 0 0

0 1 0

0 0 −1

 , h2 :=

 1 0 0

k 1 −1

2k 0 −1

 .

To describe the closed domain FN(X) satisfying the properties given in Proposi-

tion 6.3, we use the following method. The norm of [1, x, y] ∈ SX ⊗R is 2x− 2x2−
2ky2. Hence, by the map [1, x, y] 7→ (x, y), the hyperbolic plane HSX

associated

with SX is identified with

HX := { (x, y) ∈ R2 | (x− 1/2)2 + (
√
ky)2 < 1/4 }.

The vector fϕ corresponds to the point (0, 0) of HX , and the hyperplane (zϕ)
⊥ is

given by x = 1/2. The Poincaré disk model of the hyperbolic plane HSX
is given

by the mapping

(9.1) (x, y) 7→ 1− 2x

1 +
√
2 r

+
√
−1

2
√
k y

1 +
√
2 r

, where r :=
√

2x− 2x2 − 2ky2

from HX to ∆ := {z ∈ C | |z| < 1}. This map sends the boundary point corre-

sponding to fϕ to 1 ∈ ∆̄, and the hyperplane (zϕ)
⊥ to the imaginary axis in ∆.

Example 9.1. We present the result for the case −2k = −22. Elements of L is

written in terms of the basis fU , zU , e1, . . . , e8. The primitive embedding i : SX ↪→ L

is given by

i(fϕ) = fU , i(zϕ) = zU , i(v3) = [0, 0, 12, 8, 16, 24, 20, 16, 11, 6].

As the elements of D, we obtained twenty-seven R∗
L|SX

-chambers D0, . . . , D26. It

turns out that AutGX
(Di) = {1} holds for i = 0, . . . , 26. Their walls and adjacency

relation are given in Table 9.1, where (a, b, c) is the wall defined by a+ bx+ cy = 0

in HX . For example, the chamber D23 has three walls µ1 : −1 − x − 10y = 0,

µ2 : 2 + x+ 17y = 0 and µ3 : 2x+ 5y = 0. The chamber adjacent to D23 across µ1
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-

6

x

y

fϕ

1
2
√
k

− 1
2
√
k

1
2

(zϕ)
⊥

Figure 9.1. HX

D0 (1,−2, 0) (−2)-wall

(0, 1, 6) D1

(0, 0,−1) ∼= D0 by h1

D1 (0, 1, 5) D3

(0,−1,−6) D0

(1,−1, 6) D2

D2 (1,−2, 0) (−2)-wall

(−1, 1,−6) D1

(0, 1, 5) D4

D3 (0,−1,−5) D1

(1,−1, 6) D4

(0, 1, 4) D5

D4 (1,−1, 5) D6

(0, 1, 4) D7

(−1, 1,−6) D3

(0,−1,−5) D2

D5 (0,−1,−4) D3

(1,−1, 6) D7

(0, 1, 3) D8

D6 (1,−2, 0) (−2)-wall

(−1, 1,−5) D4

(0, 1, 4) D9

D7 (1,−1, 5) D9

(0, 1, 3) D10

(−1, 1,−6) D5

(0,−1,−4) D4

D8 (0,−1,−3) D5

(1,−1, 6) D10

(0, 2, 5) D11

D9 (0,−1,−4) D6

(−1, 1,−5) D7

(1, 0, 8) D12

D10 (0,−1,−3) D7

(1, 1, 11) D13

(−1, 1,−6) D8

D11 (0,−2,−5) D8

(1, 1, 11) D14

(0, 1, 2) ∼= D11 by h2

D12 (1,−1, 4) D16

(1, 1, 11) D15

(−1, 0,−8) D9

D13 (1, 0, 8) D18

(−1,−1,−11) D10

(0, 2, 5) D17

D14 (0, 1, 2) ∼= D14 by h2

(−1,−1,−11) D11

(1,−1, 6) D17

D15 (1,−1, 4) D19

(−1,−1,−11) D12

(0, 1, 3) D20

D16 (1,−2, 0) (−2)-wall

(1, 1, 11) D19

(−1, 1,−4) D12

D17 (0,−2,−5) D13

(−1, 1,−6) D14

(1, 0, 8) D21

D18 (1,−1, 5) D20

(0, 2, 5) D21

(−1, 0,−8) D13

D19 (−1, 1,−4) D15

(−1,−1,−11) D16

(2,−1, 11) D22

D20 (0,−1,−3) D15

(−1, 1,−5) D18

(1, 1, 10) D23

D21 (0,−2,−5) D18

(−1, 0,−8) D17

(1, 1, 10) D24

D22 (1,−2, 0) (−2)-wall

(−2, 1,−11) D19

(1, 0, 7) D25

D23 (−1,−1,−10) D20

(2, 1, 17) ∼= D25 by h3

(0, 2, 5) D26

D24 (1,−1, 5) D26

(2, 3, 22) (−2)-wall

(−1,−1,−10) D21

D25 (1,−2, 0) (−2)-wall

(2, 1, 17) ∼= D23 by h3

(−1, 0,−7) D22

D26 (0,−2,−5) D23

(2, 3, 22) (−2)-wall

(−1, 1,−5) D24

Table 9.1. Chambers for the case −2k = −22

is D20, the chamber adjacent to D23 across µ3 is D26, and the chamber D′ adjacent



36 ICHIRO SHIMADA

Figure 9.2. Fundamental domain for the case −2k = −22 in HX

Figure 9.3. Fundamental domain for the case −2k = −24 in HX

to D23 across µ2 is isomorphic to D25 via

h3 :=

 20 9 −3

7 2 −1

154 66 −23

 .

Hence ImφX is generated by the three elements h1, h2, h3. The shape of the union

F := FN(X) of these Di in HX is given in Figure 9.2. Since the union F of these Di

has two (−2)-walls, which is depicted by thick lines in Figure 9.2, the set of smooth

rational curves on X is decomposed into at most two orbits under the action of

Aut(X). The left-hand side of Figure 9.4 shows the chambers

F, Fh1 , Fh2 , Fh3 , Fh1h2 , Fh2h1 , Fh1h3 , Fh3h1 , Fh3h2 , Fh2h3

on the Poincaré disk model (9.1) of HSX . The (−2)-walls are drawn by thick lines.

Remark 9.2. Example 1.1 in Introduction is the case−2k = −24. The set D contains

46 chambers, and their union F := FN(X) is given in Figure 9.3. Each chamber Di
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Figure 9.4. Tessellation of N(X) for the cases −2k = −22 and

−2k = −24

satisfies AutGX
(Di) = {1}. Since FN(X) has only one (−2)-wall, Aut(X) acts on

the set of smooth rational curves on X transitively. Observe that F := FN(X) has

four non-(−2)-walls, which correspond to the four generators h1, . . . , h4 of Aut(X)

given in Example 1.1. The right-hand side of Figure 9.4 shows the chambers

F, Fh1 , Fh2 , Fh3 , Fh4 , Fhihj , (1 ≤ i, j ≤ 4, i ̸= j)

on the Poincaré disk model (9.1) of HSX
.

Remark 9.3. We have made the same calculation for −2k = −4,−6, . . . ,−30. The

results are presented in the author’s web page [31].

10. Singular K3 surfaces

Recall that a K3 surface defined over C is singular if its Picard number attains

the possible maximum 20. We demonstrate Algorithm 6.1 on singular K3 surfaces

X such that their transcendental lattices TX satisfy discTX ≤ 16. There exist, up
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No. discTX [a, b, c] root-R |D| |CX |

1 3 [2, 1, 2] E6 1 6 Vinberg [39]

2 4 [2, 0, 2] D6 1 4 Vinberg [39]

3 7 [2, 1, 4] A6 1 2 Ujikawa [37]

4 8 [2, 0, 4] D5 +A1 1 2 Section 10.2

5 11 [2, 1, 6] none 1098 2 Section 10.3

6 12 [2, 0, 6] A5 +A1 1 2 Section 10.2

7 12 [4, 2, 4] D4 +A2 1 6 Keum and Kondo [13]

8 15 [2, 1, 8] A4 +A2 1 2 Section 10.2

9 15 [4, 1, 4] none 2051 2 Section 10.4

10 16 [2, 0, 8] none 4539 2 Section 10.5

11 16 [4, 0, 4] 2A3 1 4 Keum and Kondo [13]

Table 10.1. Transcendental lattices of small discriminants

to isomorphisms, exactly eleven singular K3 surfaces with discTX ≤ 16. Table 10.1

shows Gram matrices [
a b

b c

]
of the transcendental lattices of these K3 surfaces. We embed SX into an even

unimodular hyperbolic lattice L of rank 26. By the root-R condition, we mean

that there should exist a negative-definite root lattice R of rank 6 that satisfies

(AR, qR) ∼= (ATX
, qTX

). If TX satisfies the root-R condition, then there exists a

primitive embedding SX ↪→ L such that the orthogonal complement is isomorphic to

a root lattice R, and hence Borcherds’ method terminates quickly (see Remark 6.7).

The column root-R of Table 10.1 indicates the existence of such a root lattice R,

and its ADE-type if it exists.

The singular K3 surfaces of Nos. 1, 2, 3, 7 and 11 have been studied previously.

Therefore we treat the other six singular K3 surfaces Nos. 4, 5, 6, 8, 9 and 10.

10.1. The period and ample classes of X. The period ωX is given in TX ⊗ C
as a vector (1, α), where α is a root of

a+ 2bx+ cx2 = 0.

The choice of a root of this quadratic equation does not matter, because, in the

eleven cases in Table 10.1, the orientation reversing of TX yields an isomorphic

oriented lattice; that is, the GL2(Z)-equivalence class of TX contains only one

SL2(Z)-equivalence class (see [33]). Since O(TX) is finite, we can calculate the
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subgroup CX defined by (7.1). It turns out that, in the six cases Nos. 4, 5, 6, 8, 9

and 10, we have CX = {±1}. Therefore the conditions [G] and [SG3] for GX and

R are satisfied (see Sections 8.1 and 8.2).

In the following, we use the general theory of elliptic surfaces, for which we refer

to [35] or [28]. Shioda and Inose [34] showed that every singular K3 surface X

has a Jacobian fibration ϕ : X → P1 with two singular fibers ϕ−1(p) and ϕ−1(p′)

of type II∗. Hence SX contains an even unimodular hyperbolic lattice L18(ϕ) :=

Uϕ ⊕ E8 ⊕ E8 of rank 18 as a sublattice, where Uϕ is spanned by the class fϕ of a

fiber of ϕ and the class zϕ of the zero section of ϕ (and hence the Gram matrix of

Uϕ with respect the basis fϕ, zϕ is (4.1)), and each copy of E8 is spanned by the

classes of irreducible components of a singular fiber of type II∗. Since L18(ϕ) is

unimodular, there exists a negative-definite lattice T−
X of rank 2 such that

SX = L18(ϕ)⊕ T−
X .

We have (AT−
X
, qT−

X
) ∼= (ATX

,−qTX
). Since the Jacobian fibration ϕ is not unique,

the isomorphism class of T−
X is not unique in general (see [26] and [29]). However,

for the eleven cases in Table 10.1, T−
X is uniquely determined by the condition

(AT−
X
, qT−

X
) ∼= (ATX

,−qTX
) and is isomorphic to (−1)TX .

We search for rational ample classes a ∈ SX ⊗Q. Let e1, . . . , e8 (resp. e′1, . . . , e
′
8)

denote the classes of the irreducible components of ϕ−1(p) (resp. of ϕ−1(p′)) that

are disjoint from the zero section and whose dual graph is
e1

e2 e3 e4 e5 e6 e7 e8 e0 zϕ ,

where we denote by e0 (resp. e′0) the class of the irreducible component of ϕ−1(p)

(resp. of ϕ−1(p′)) that intersects the zero section. We have

e0 = fϕ − (3e1 + 2e2 + 4e3 + 6e4 + 5e5 + 4e6 + 3e7 + 2e8),

and a similar equality for e′0.

Let e′′1 and e′′2 be a basis of T−
X such that

⟨e′′1 , e′′1⟩ = −a, ⟨e′′1 , e′′2⟩ = −b, ⟨e′′2 , e′′2⟩ = −c.

Then the set RT−
X

= {v ∈ T−
X | v2 = −2} is equal to∅ in No. 9,

{e′′1 ,−e′′1} in Nos. 4, 5, 6, 8, 10.

Therefore the set {t ∈ P1 |ϕ−1(t) is reducible} is equal to{p, p′} in No. 9,

{p, p′, q} in Nos. 4, 5, 6, 8, 10, where q ∈ P1 \ {p, p′}.
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Suppose that we are in the case of in Nos. 4, 5, 6, 8 or 10. Then the reducible fiber

ϕ−1(q) is either of type I2 or III. Let C ′′
0 and C ′′

1 be the irreducible components

of ϕ−1(q) such that C ′′
0 intersects the zero section. Changing e′′1 and e′′2 to −e′′1 and

−e′′2 if necessary, we can assume that e′′1 is the class of C ′′
1 , and hence the class e′′0

of C ′′
0 is equal to fϕ − e′′1 .

We put

B := { [C] | C is a smooth rational curve on X such that ⟨C, fϕ⟩ = 0 }.

Then we have

B =

{e0, e1, . . . , e8, e′0, e′1, . . . , e′8} in No. 9,

{e0, e1, . . . , e8, e′0, e′1, . . . , e′8, e′′0 , e′′1} in Nos. 4, 5, 6, 8, 10.

Let e∨1 , . . . , e
∨
8 (resp. e′∨1 , . . . , e′∨8 ) be the basis of E8 dual to the basis e1, . . . , e8

(resp, e′1, . . . , e
′
8). We have

up := e∨1 + · · ·+ e∨8 = −68e1 − 46e2 − 91e3 − 135e4 − 110e5 − 84e6 − 57e7 − 29e8,

and the similar formula for up′ := e′∨1 + · · ·+ e′∨8 . Let e′′∨1 and e′′∨2 be the basis of

T−∨
X dual to the basis e′′1 , e

′′
2 . Then the vector

u0 :=

30zϕ + up + up′ in No. 9,

30zϕ + up + up′ + e′′∨1 in Nos. 4, 5, 6, 8, 10,

satisfies

⟨u0, v⟩ > 0 for any v ∈ B.

(The coefficient 30 of zϕ in u0 is determined by ⟨e0, up⟩ = ⟨e′0, up′⟩ = −29.) Con-

sider the projection πSX
: P(X) → HSX

to the 19-dimensional hyperbolic space

HSX
. The point b := πSX

(fϕ) is a rational boundary point of πSX
(N(X)). By

Corollary 3.12, if we choose a sufficiently small closed horoball HBb with the base

b, then HBb ∩ πSX
(N(X)) is bounded in HBb by the inequalities

⟨x, v⟩ ≥ 0 for any v ∈ B.

Therefore, if A is sufficiently large, then

a := Afϕ + u0 ∈ SX ⊗Q

is contained in the interior of N(X). We use this rational ample class a in search

for the primitive embedding SX ↪→ L such that the initial R∗
L|S-chamber D0 is

contained in N(X).

We use U ⊕ E8 ⊕ E8 ⊕ E8 as L and the Weyl vector wE given in Remark 4.9.

Let D0 be the R∗
L-chamber corresponding to wE . We have a natural isomorphism

from L18(ϕ) to the sublattice U ⊕E8⊕E8 of L. Hence, in order to find a primitive
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embedding i0 : SX ↪→ L, it is enough to find a primitive embedding T−
X ↪→ E8; that

is, to find vectors u1, u2 of E8 satisfying

u2
1 = −a, u2

2 = −c, ⟨u1, u2⟩E8 = −b,

and generating a primitive sublattice of rank 2 in E8. From this embedding i0

and using the method described in Section 8.3 with the ample class a = Afϕ + u0

above, we find a primitive embedding SX ↪→ L such that D0 := D0 ∩ P(X) is an

R∗
L|S-chamber contained in N(X). In the examples below, we confirmed that the

vector

hE := wE,S ∈ S∨
X

is in fact in the interior of D0 by Criterion 5.9 and hence D0 is S-nondegenerate.

Moreover, we confirmed that the interior point Afϕ + u0 of N(X) is contained in

D0 by showing that

⟨fϕ, v⟩ > 0 or (⟨fϕ, v⟩ = 0 and ⟨u0, v⟩ ≥ 0) for any v ∈ ∆S∨
X
(D0),

and hence we can conclude that D0 is contained in N(X). In particular, hE is also

an ample class of X, and hence we can consider the automorphism group

Aut(X,hE) := { g ∈ Aut(X) | g∗(hE) = hE }

of the polarized K3 surface (X,hE). Since φX is injective in our six cases, we have

Aut(X,hE) ∼= AutGX
(D0).

If TX satisfies the root-R condition, the orthogonal complement R of SX in L

satisfies [SG2], because RR ̸= ∅. If TX does not satisfy the root-R condition, we

present below a Gram matrix of R explicitly, from which we immediately see that

RR ̸= ∅ and hence R satisfies [SG2].

10.2. The cases where the root-R condition is satisfied. In these cases (Nos.

4,6 and 8), we have D = {D0}, and hence the description of Aut(X) is simple. We

have

h2
E =


61/2 in No. 4,

18 in No. 6,

12 in No. 8,

and

|Aut(X,hE)| = |AutGX
(D0)| =


48 in No. 4,

144 in No. 6,

720 in No. 8.

Table 10.2 presents the orbit decomposition of the set of walls of D0 by the action

of Aut(X,hE) ∼= AutGX (D0). The column |o| indicates the cardinality of the orbit
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No. 4

|o| nv av

6 −2 1 ∗
12 −2 1 ∗
8 −2 1 ∗
3 −3/2 3/2

6 −1 5

4 −1 5

24 −3/4 6

8 −3/4 6

2 −1/2 11/2 ∗
8 −1/4 13/2

No. 6

|o| nv av

12 −2 1 ∗
18 −2 1 ∗
4 −3/2 3/2

24 −7/6 7/2

6 −2/3 4

24 −2/3 5

36 −2/3 5

12 −1/2 11/2 ∗
36 −1/2 11/2 ∗
24 −1/6 11/2

No. 8

|o| nv av

36 −2 1 ∗
12 −4/3 2

40 −6/5 3

90 −4/5 4

30 −8/15 4

30 −8/15 4

120 −2/15 5

120 −2/15 5

Table 10.2. Orbit decomposition of the walls of D0

o. Each wall of D0 is uniquely written as (v)⊥, where v is a primitive vector of S∨
X

satisfying ⟨v, hE⟩ > 0. In Table 10.2, we also present the values

nv := v2, av := ⟨v, hE⟩

for each orbit. Note that a wall (v)⊥ of D0 with v primitive in S∨
X and ⟨v, hE⟩ > 0

is a (−2)-wall if and only if there exists a positive integer α such that α2 nv = −2

and αv ∈ SX . The orbits that consist of walls satisfying this condition are marked

by ∗. From Table 10.2, we see the following.

In No. 4, the automorphism group Aut(X) is generated by the finite group

Aut(X,hE) of order 48 and six extra automorphisms corresponding to the six walls

of D0 that are not (−2)-walls. Exactly four orbits consist of (−2)-walls, and hence

the number of orbits of Aut(X) on the set of smooth rational curves on X is at

most 4.

In No. 6, Aut(X) is generated by the finite group Aut(X,hE) of order 144 and

six extra automorphisms. The number of orbits of Aut(X) on the set of smooth

rational curves is at most 4.

In No. 8, Aut(X) is generated by the finite group Aut(X,hE) of order 720 and

seven extra automorphisms, and Aut(X) acts on the set of smooth rational curves

transitively.

Remark 10.1. In [32], geometric realizations of generators of Aut(X) for No. 8 will

be given. We also show that the finite group Aut(X,hE) of order 720 for No. 8 is

isomorphic to PGL2(F9).
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10.3. The case [a, b, c] = [2, 1, 6] (No. 5). The lattice R has a Gram matrix

−2 1 0 0 −1 0

1 −2 1 0 0 1

0 1 −2 1 0 0

0 0 1 −2 1 0

−1 0 0 1 −4 0

0 1 0 0 0 −2


.

The number of GX -equivalence classes of R∗
L|S-chambers is 1098, and the maximum

of the level (see Section 6 for the definition) is 13. The results are presented in

Example 1.2 in Introduction.

10.4. The case [a, b, c] = [4, 1, 4] (No. 9). The lattice R has a Gram matrix

−2 1 0 0 0 0

1 −2 1 0 0 −1

0 1 −2 1 0 0

0 0 1 −2 1 0

0 0 0 1 −2 1

0 −1 0 0 1 −4


.

The number of GX -equivalence classes of R∗
L|S-chambers is 2051, and the maximum

of the level is 16. We find that ImφX is generated by 1098 elements of O(SX).

Moreover the number of orbits of the action of Aut(X) on the set of smooth rational

curves is at most 154.

10.5. The case [a, b, c] = [2, 0, 8] (No. 10). The lattice R has a Gram matrix

−2 1 0 0 1 0

1 −2 1 0 0 1

0 1 −2 1 0 0

0 0 1 −2 0 −1

1 0 0 0 −2 0

0 1 0 −1 0 −4


.

The number of GX -equivalence classes of R∗
L|S-chambers is 4539, and the maximum

of the level is 17. We find that ImφX is generated by 3308 elements of O(SX).

Moreover the number of orbits of the action of Aut(X) on the set of smooth rational

curves is at most 705.
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Remark 10.2. The detailed computational data of the above three examples are

presented in the author’s web page [31].

Remark 10.3. The complex quartic surface X defined by w4 + x4 + y4 + z4 = 0 in

P3 is a singular K3 surface with

TX =

[
8 0

0 8

]
.

We embed SX into L primitively in such a way that the Weyl vector w0,SX
of

the initial R∗
L|S-chamber D0 is in the interior of D0 and is equal to the class of

a hyperplane section of X in P3. We found that the number of GX -congruence

classes of R∗
L|S-chambers is at least 10000.
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