AUTOMORPHISM GROUPS OF THREE SINGULAR K3 SURFACES: EXPLANATION OF THE DATA

ICHIRO SHIMADA

In this note, we explain the computational data related to Section 10 of the paper

[Algo] An algorithm to compute automorphism groups of K3 surfaces and an application to singular K3 surfaces

given in the author's web-page

http://www.math.sci.hiroshima-u.ac.jp/~shimada/K3.html.

In each of the three text files

disc11.txt, disc15.txt, disc16.txt,

we present a finite set of generators Gamma of the image of $\varphi_X : \operatorname{Aut}(X) \to O^+(S_X)$, where X is a singular K3 surface whose transcendental lattice T_X is given by

2 1		4	1		2	0	
1 6	,	1	4	,	0	8	,

respectively.

More precisely, we present the following data in each of these files. We fix bases of the lattices \mathbf{L} , S_X and R. To indicate elements of S_X^{\vee} or R^{\vee} , we use the dual bases of these bases.

- GramMatL. A Gram matrix of $\mathbf{L} = U \oplus E_8 \oplus E_8 \oplus E_8$.
- GramMatS. A Gram matrix of $S_X = U_{\phi} \oplus T_X^- \oplus E_8 \oplus E_8$. (The order of basis is different from $S_X = \mathbf{L}_{18}(\phi) \oplus T_X^-$ given in the paper.)
- GramMatR. A Gram matrix of the orthogonal complement R of S_X in \mathbf{L} .
- embMatS. The 20 × 26 matrix M such that $x \mapsto xM$ gives the primitive embedding of S_X into L.
- embMatR. The 6×26 matrix M such that $x \mapsto xM$ gives the primitive embedding of R into L.
- prMatSdual. The 26 × 20 matrix M such that $x \mapsto xM$ gives the projection $\mathbf{L} \to S_X^{\vee}$, where a vector S_X^{\vee} is expressed by the dual basis.
- prMatRdual. The 26 × 6 matrix M such that $x \mapsto xM$ gives the projection $\mathbf{L} \to R^{\vee}$, where a vector R^{\vee} is expressed by the dual basis.

ICHIRO SHIMADA

- discgrS. The discriminant group S[∨]_X/S_X. If discgrS = [a], then S[∨]_X/S_X ≅ Z/aZ (in this case, we put ν = 1), while if discgrS = [a, b], then S[∨]_X/S_X ≅ Z/aZ⊕Z/bZ (in this case, we put ν = 2).
- etaS1 and etaS1. etaS1 is a $\nu \times 20$ matrix, and etaS2 is a $20 \times \nu$ matrix. These two data describe the homomorphism $\eta_{S_X} : O(S_X) \to O(q_{S_X})$. Suppose that we are given a 20×20 matrix M representing an element g of $O(S_X)$ with respect to the fixed basis of S_X . Then the action of g on S_X^{\vee} is given by the matrix $M^{\vee} := (\text{GramMatS})^{-1} \cdot M \cdot (\text{GramMatS})$ with respect to the dual basis. (Note that the action of $O(S_X)$ on S_X is from the right.) Then $\eta_{S_X}(g)$ is given by the $\nu \times \nu$ matrix etaS1 $\cdot M^{\vee} \cdot$ etaS2 under an isomorphism $S_X^{\vee}/S_X \cong \mathbb{Z}/a\mathbb{Z}$ or $S_X^{\vee}/S_X \cong \mathbb{Z}/a\mathbb{Z} \oplus \mathbb{Z}/b\mathbb{Z}$. Since $C_X = \{\pm 1\}$, we can determine whether $g \in G_X$ or not by etaS1 and etaS2.
- fphi. The vector $f_{\phi} \in S_X$ of the class of a fiber of $\phi : X \to \mathbb{P}^1$.
- u0. The vector $u_0 \in S_X$. We can confirm that $D_0 \subset N(X)$ by fphi, u0 and the data chamberdata[0][wallorbit] below.
- Gamma. The finite set Γ of generators of the image of φ_X : $\operatorname{Aut}(X) \to \operatorname{O}^+(S_X)$ obtained by Algorithm 6.1.
- B. The set \mathcal{B} of (-2)-vectors obtained by Algorithm 6.1.
- maxchamnumb. The maximum of the index i of the chambers D_i in the complete set \mathbb{D} of representatives of G_X -equivalence classes of $\mathcal{R}^*_{\mathbf{L}|S}$ -chambers contained in N(X) obtained by Algorithm 6.1.

For $i = 0, \ldots, maxchamnumb$, we give the following data of the $\mathcal{R}^*_{\mathbf{L}|S}$ -chamber D_i .

- chamberdata[i][weyl]. A Weyl vector w of D_i .
- chamberdata[i][Deltaw]. The set Δ_w , which is a subset of **L**. Note that the set $\operatorname{pr}_S(\Delta_w) \subset S_X^{\vee}$ calculated by prMatSdual and chamberdata[i][Deltaw] is a defining set of the chamber D_i . In general, $\operatorname{pr}_S(\Delta_w)$ contains many redundant vectors (vectors that do not define walls of D_i).
- chamberdata[i][orderaut]. The order of $\operatorname{Aut}_{G_X}(D_i)$.
- chamberdata[i][generatorsaut]. A finite set of generators of $\operatorname{Aut}_{G_X}(D_i)$.
- chamberdata[i][numborbitswalls]. The number t of the orbits of the action of $\operatorname{Aut}_{G_X}(D_i)$ on the primitively minimal defining set $\Delta_{S_X^{\vee}}(D_i)$ of D_i . For $\mathbf{k} = 0, \ldots, \mathbf{t} - 1$, we present the following data of the kth orbit o_k .
 - chamberdata[i][wallorbit][k]. The list of elements of o_k written in terms of the dual basis of S_X^{\vee} . The first member v of chamberdata[i][wallorbit][k] is used as the representative in Steps 2-3 and 2-4 of Algorithm 6.1.
 - chamberdata[i][adjacent][k]. The description of the $\mathcal{R}^*_{\mathbf{L}|S}$ -chamber D' adjacent to D_i along the wall $(v)^{\perp} \in o_k^*$.
 - * If it is [_minustwo], the orbit o_k satisfies $o_k^* \subset \mathcal{R}_{S_X}^*$. Hence D' is not calculated. Instead, $r = \alpha v$ with $\alpha \in \mathbb{Z}_{>0}$ and $\alpha^2 v^2 = -2$ is in the set B.

- * If it is [_backto, j], then D' is equal to the previously found $\mathcal{R}^*_{\mathbf{L}|S}$ -chamber D_j . (The chamber D_i is calculated as an chamber adjacent to D_j .)
- * If it is [_newcham, j], then D' is equal to a new representative $D_j \in \mathbb{D}$ of G_X congruence class.
- * Suppose that it is [_isom, j, _via, M]. Then M is a 20×20 matrix representing an element $h \in G_X$ with respect to the fixed basis of S_X , and we have $D' = D_j^h$. In this case, we also present the following:
 - · chamberdata[i][adjacentweyl][k]. A Weyl vector w' of D'.

· chamberdata[i][adjacentDeltaw][k]. The set $\Delta_{w'}$.

The action of h on S_X^{\vee} is given by the matrix $M^{\vee} := (\texttt{GramMatS})^{-1} \cdot M \cdot (\texttt{GramMatS})$ with respect to the dual basis. Let w_j be the Weyl vector chamberdata[j][weyl] of D_j . Using prMatSdual, we obtain $\operatorname{pr}_S(\Delta_{w_j})$ from chamberdata[j][Deltaw], and $\operatorname{pr}_S(\Delta_{w'})$ from chamberdata[i][adjacentDeltaw][k]. Then M^{\vee} maps $\operatorname{pr}_S(\Delta_{w_j})$ maps $\operatorname{pr}_S(\Delta_{w'})$ bijectively.

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, HIROSHIMA UNIVERSITY, 1-3-1 KAGAMIYAMA, HIGASHI-HIROSHIMA, 739-8526 JAPAN

 $E\text{-}mail\ address:\ {\tt shimada@math.sci.hiroshima-u.ac.jp}$