AUTOMORPHISM GROUPS OF CERTAIN ENRIQUES SURFACES: COMPUTATIONAL DATA

ICHIRO SHIMADA

1. INTRODUCTION

This note is the explanation of the computation data that are used to obtain the main results of the paper

[BS] S. Brandhorst, I. Shimada: Automorphism groups of certain Enriques surfaces.

The data is available from the author's webpage [2] as plain text files. The data consists of the following items.

GramL10, oneBP, irecs, Enrs, E6EnrRDPs.

They are written in 3 files:

Preliminaries.txt	:	GramL10, d	oneBP,
irecs.txt	:	irecs,	
Enrs.txt	:	Enrs,	
E6EnrRDPs.txt	:	E6EnrRDPs	

The data are made by GAP (see [3]). In particular, the **Record** format of GAP is used everywhere. The results of Algorithms in Sections 6.3 and 6.4 of [BS] are too large to be put on a webpage, and hence we omit them.

2. THE FILE Preliminaries.txt

In the file Preliminaries.txt, we have the items oneBP and oneBP.

The item **GramL10** is the Gram matrix of the even unimodular hyperbolic lattice L_{10} of rank 10 with respect to the basis $\{e_1, \ldots, e_{10}\}$ given in Figure 1.1 of the paper [BS]. Throughout this note, every computation data about the lattice L_{10} is expressed in terms the basis $\{e_1, \ldots, e_{10}\}$.

The item oneBP is the number

oneBP := $2^{21} \cdot 3^5 \cdot 5^2 \cdot 7 \cdot 17 \cdot 31 = 46998591897600$,

which is the unit of volume of chambers in \mathcal{P}_{10} .

3. THE FILE irecs.txt

The list irecs describes the primitive embeddings

$$\iota \colon L_{10}(2) \hookrightarrow L_{26}$$

classified in [1], except for the primitive embedding of type infty. Thus irecs consists of 16 records irec, and each has the following items. We use the notions

and notation in [1] and [BS]. Recall that R_{ι} denote the orthogonal complement of the image of ι in L_{26} .

- irec.name is the name of ι , which is one of the strings "12A", "12B", ..., "96C".
- irec.GramL26 is the Gram matrix of L_{26} with respect to a certain fixed basis. We use this basis for other data in this record irec.
- irec.embS is the 10×26 integer matrix M such that $v \mapsto vM$ gives the embedding $\iota: L_{10}(2) \hookrightarrow L_{26}$, where L_{10} is equipped with the basis $\{e_1, \ldots, e_{10}\}$.
- irec.embR is the 16×26 integer matrix M' such that $v \mapsto vM'$ gives the embedding of R_{ι} into L_{26} with respect to a certain fixed basis of R_{ι} .
- irec.GramR is the Gram matrix of R_{ι} with respect to the fixed basis.
- irec.rootsR is the list of roots of R_{ι} .
- irec.rootstypeR is the ADE-type of the system of roots of R_i .
- irec.m4RVects is the list of (-4)-vectors of R_{ι} .
- irec.weyl is the Weyl vector $\mathbf{w} \in L_{26}$ such that $D_0 := \iota_{\mathcal{P}}^{-1}(C(\mathbf{w}))$ is an induced chamber in $\mathcal{P}(L_{10})$, where $C(\mathbf{w}) \subset \mathcal{P}(L_{26})$ is the Conway chamber corresponding to \mathbf{w} .
- irec.weylprime is another Weyl vector $\mathbf{w}' \in L_{26}$ such that $\langle \mathbf{w}, \mathbf{w}' \rangle_{26} = 1$ and that $a_{26} = 2\mathbf{w} + \mathbf{w}'$ is an interior point of $C(\mathbf{w})$.
- irec.walls is the list of roots of L_{10} defining the walls of the induced chamber D_0 .
- irec.alphas is the list of pairs $\alpha = (r, v)$, where r is a root of L_{10} defining a wall of D_0 and v is a (-4)-vector of R_i such that $(r + v)/2 \in L_{26}$.
- irec.volindex is $1_{\rm BP}/{\rm vol}(D_0)$, where $1_{\rm BP} = 46998591897600$.
- irec.OL10D0 is the list of matrices of the elements of $O(L_{10}, D_0)$.
- irec.ample is a primitive vector of L_{10} belonging to the interior of D_0 that is fixed under the action of $O(L_{10}, D_0)$.
- irec.codim2facewallpairs is the list of pairs of two indexes $\{i, j\}$ such that $D_0 \cap (r_i)^{\perp} \cap (r_j)^{\perp}$ is a face of codimension 2 of D_0 , where r_i and r_j are the *i*th and the *j*th elements of irec.walls, respectively.
- irec.isotropicrays is the list of primitive isotropic rays $f \in L_{10}$ contained if \overline{D}_0 .
- irec.wallrecs is the list of records wrec, each of which contains the data about a wall w of D_0 . Let wrec be a record in irec.wallrecs corresponding to a wall $w = D_0 \cap (r)^{\perp}$ of D_0 . Then wrec has the following items. See the proof of Proposition 2.7 of [1] for notation.
 - wrec.r is the root r of L_{10} that defines the wall $w = D_0 \cap (r)^{\perp}$.
 - wrec.rlifts is the list of roots \tilde{r} of L_{26} such that $\langle \mathbf{w}, \tilde{r} \rangle_{26} = 1$ and $\iota_{\mathcal{P}}^{-1}((\tilde{r})^{\perp}) = (r)^{\perp}$.
 - wrec.thegtilde is the isometry $\tilde{g} \in O^{\mathcal{P}}(L_{26})$ such that \tilde{g} preserves the image of $\iota: L_{10}(2) \hookrightarrow L_{26}$ and that its restriction $\tilde{g}|L_{10}(2)$ to $L_{10}(2)$ maps D_0 to the induced chamber adjacent to D_0 across the wall $w = D_0 \cap (r)^{\perp}$. The existence of this isometry proves Proposition 2.7 of [1].
 - wrec.theg is the isometry $g = \tilde{g}|L_{10}(2)$ of L_{10} . We can check that this isometry is equal to the reflection with respect to the root wrec.r.
- irec.facerecs is a complete list of representatives of orbits of the action of $O(L_{10}, D_0)$ on the set of faces of D_0 . Here we include isotropic rays

contained in \overline{D}_0 to the set of faces of D_0 . The list **irec.facerecs** consists of records **frec**, each of which expresses a representative face f of an orbit of faces under the action of $O(L_{10}, D_0)$. The record **frec** has the following items:

- frec.dim is the dimension of f.
- frec.walls is the list of indexes i such that $f \subset (r_i)^{\perp}$, where $D_0 \cap (r_i)^{\perp}$ is the *i*th wall in the list ircc.walls above.
- frec.adetype is the ADE-type of the Dynkin diagram formed by the roots r_i that define walls of D_0 containing f. This ADE-type is an ordinary ADE-type when f is not an isotropic ray, whereas it is an *affine* ADE-type when f is an isotropic ray.
- frec.basis is a basis of the minimal linear space $\langle f \rangle$ of $L_{10} \otimes \mathbb{R}$ containing f. When dim f = 1 so that frec.basis consists of a single element v, we can determine whether f is an isotropic ray or not by calculating $\langle v, v \rangle$.
- frec.orbitsize is the size of the orbit of f under the action of $O(L_{10}, D_0)$.

4. Generalities

Let $\pi: X \to Y$ be the universal covering of a complex Enriques surface Y, and ε the deck-transformation of π . The lattice S_X is equipped with a basis.

4.1. ADE-types. An ADE-type is a list of strings "A1", "A2", ..., "E8".

4.2. Elements of $\operatorname{aut}(Y)$. An element g of $\operatorname{aut}(Y)$ is expressed by a record grec that has items grec.gX and grec.gY. Let $\tilde{g} \in \operatorname{aut}(X, \varepsilon)$ be an element of $\operatorname{aut}(X)$ commuting with ε such that $\tilde{g}|S_Y = g$ and that \tilde{g} acts on the discriminant group S_X^{\vee}/S_X trivially. The item grec.gX is the matrix representing the action of \tilde{g} on S_X , and the item grec.gY is the matrix representing the action of g on $S_Y \cong L_{10}$. Let emb be the matrix such that $v \mapsto v \cdot \operatorname{emb}$ is the embedding $\pi^* \colon S_Y(2) \cong L_{10}(2) \hookrightarrow S_X$. Then we have $\operatorname{emb} \cdot \operatorname{gX} = \operatorname{gY} \cdot \operatorname{emb}$.

4.3. Smooth rational curves on Y. A smooth rational curve C on Y is expressed by a record rrec that has items rrec.ratY and rrec.lifts. The item rrec.ratY is the class $[C] \in S_Y$ of the curve C, and the item rrec.lifts is the pair of classes $[\widetilde{C}_1], [\widetilde{C}_2] \in S_X$ of the two irreducible components of $\pi^{-1}(C) = \widetilde{C}_1 + \widetilde{C}_2$. Let emb be as above. Then we have ratY \cdot emb = lifts[1] + lifts[2].

4.4. The lists V_0 and \mathcal{H} . The outputs V_0 and \mathcal{H} of Procedure 4.1 of the paper [BS] are described by the following data. In our applications, a vertex of the graph (V, E) is an $L_{26}/S_Y(2)$ -chamber. For each Enriques surface Y, we fix an $L_{26}/S_Y(2)$ -chamber D_0 contained in Nef_Y, and hence each $L_{26}/S_Y(2)$ -chamber D is expressed as D_0^{τ} by some isometry $\tau \in O^{\mathcal{P}}(L_{10})$. (The isometry τ is unique up to left multiplications of elements of $O(L_{10}, D_0)$.) The group G acting on (V, E) is a subgroup of aut(Y), and hence each element of G is expressed by a record grec in the way explained in Section 4.2.

The ordered list V_0 of vertices is expressed by an ordered list V0 of records chamrec. Each chamrec has the following items. Let D be the $L_{26}/S_Y(2)$ -chamber expressed by chamrec.

- chamrec.pos is the position of the chamrec in V0. Caution: The position starts from 1 so that chamrec is V0[chamrec.pos], whereas, in the explanation of Procedure 4.1 in the paper [BS], the position starts from 0.
- chamrec.from and chamrec.adjpos indicate from which chamber the chamber D is obtained. Namely, the chamber D is the chamber adjacent to the chamber D_{prev} expressed by a record prevchamrec in V0 whose position prevchamrec.pos is equal to chamrec.from, and the wall across which D is adjacent to D_{prev} is the chamrec.adjpos-th wall in the list prevchamrec.adjrecs of adjacent chambers of D_{prev} (see below). If the chamber D is the initial chamber of the list V_0 (that is, chamrec.pos is 1), both of chamrec.from and chamrec.adjpos are "none".
- chamrec.taug is a matrix $\tau \in O^{\mathcal{P}}(L_{10})$ such that $D = D_0^{\tau}$.
- chamrec.autcham is the list of elements of the stabilizer subgroup $T_G(D, D)$ of D in the group G. Since G is a subgroup of aut(Y), each element of chamrec.autcham is expressed by a record grec.
- chamrec.adjrecs is the list of adjacent chambers D' of D. Each element of chamrec.adjrecs is a record adjrec with the following items.
 - adjrec.wall is the root r' of S_Y defining the wall of D across which D' is adjacent to D. When we apply our algorithm to the calculation of the group aut(Y) (Section 6.1 of [BS]) or the stabilizer subgroup of an elliptic fibration $\phi: Y \to \mathbb{P}^1$ (Section 6.4 of [BS]), the chamber D' is the image $D^{s_{r'}}$ of D by the reflection $s_{r'}$ with respect to the root r'. When we apply our algorithm to the calculation of the stabilizer subgroup of a smooth rational curve C on Y (Section 6.3 of [BS]), the wall is in fact the face $D \cap (r)^{\perp} \cap (r')^{\perp}$ of D with codimension 2, where r = [C], and the chamber D' is

$$\begin{cases} D^{s_{r'}} & \text{if } \langle r, r' \rangle = 0, \\ D^{s_r s_{r'}} & \text{if } \langle r, r' \rangle = 1, \end{cases}$$

where s_r is the reflection with respect to the root r = [C]. When we apply the algorithm to the graph (V_{Γ}, E_{Γ}) and the group G_{Γ} associated with an RDP-configuration Γ (Section 7.1 of [BS]), the root r' is a defining root of a wall of D such that

$$w_f := \mathcal{P}_{\langle \Gamma \rangle^\perp} \cap D \cap (r')^\perp$$

is the wall of the $L_{26}/\langle\Gamma\rangle^{\perp}(2)$ -chamber $f := \mathcal{P}_{\langle\Gamma\rangle^{\perp}} \cap D$. Note that f is a face of D with dimension $10 - |\Gamma| = \dim \mathcal{P}_{\langle\Gamma\rangle^{\perp}}$ (that is, f contains a non-empty open subset of $\mathcal{P}_{\langle\Gamma\rangle^{\perp}}$), whereas w_f is a face of D with dimension $9 - |\Gamma|$ contained in f. The adjacent chamber is the unique $L_{26}/S_Y(2)$ -chamber D' such that $D' \neq D$, that D' is contained in Nef_Y, that D' contains w_f , and that $\mathcal{P}_{\langle\Gamma\rangle^{\perp}} \cap D'$ contains a non-empty open subset of $\mathcal{P}_{\langle\Gamma\rangle^{\perp}}$.

- adjrec.israt is true if the root r' is the class of a smooth rational curve on Y (that is, the chamber D' is outside of Nef_Y), whereas adjrec.israt is false if r' is not the class of a smooth rational curve on Y and hence the chamber D' is contained in Nef_Y.

When adjrec.israt is true and r' is the class of a smooth rational curve C' on Y, the record adjrec has the following item.

4

- adjrec.split is the pair of roots $[\widetilde{C}_1], [\widetilde{C}_2]$ of S_X that are the classes of the two irreducible components of $\pi^{-1}(C') = \widetilde{C}_1 + \widetilde{C}_2$.

When adjrec.israt is false and the adjacent chamber D' is contained in Nef_Y, the record adjrec has the following item.

- adjrec.isnew is true or false. If adjrec.isnew is true, then the chamber D' is G-equivalent to none of chambers that had been added to V_0 when we processed D', and hence D' was appended to V_0 . If adjrec.isnew is false, the chamber D' is G-equivalent to a chamber that had been already added to V_0 .

When adjrec.israt is false and adjrec.isnew is true, the record adjrec has the following item.

- adjrec.positionInV0 indicates the position of V_0 at which D' is added, that is, the chamber D' is described by the record

chamrec' := V0[adjrec.positionInV0].

When adjrec.israt is false and adjrec.isnew is false, the record adjrec has the following item. Let D'' be the unique chamber in V_0 to which D' is G-equivalent.

- adjrec.isomto indicates the position of D'' in V_0 .
- adjrec.isomby is the record grec of an element $g \in G$ such that $D'^g = D''$.

The subset \mathcal{H} of the group G is expressed by a set HHH of records grec. Caution. The identity is not contained in HHH.

5. THE FILE Enrs.txt

In the file Enrs.txt, we have a list Enrs of 182 records Enr. Each of these records corresponds to a $(\tau, \bar{\tau})$ -generic Enriques surface Y listed in Table 1.1 of [BS], except for the cases Nos. 88 and 146 A record Enr in this list has the following contents.

- Enr.no is the number of the corresponding row in Table 1.1 of [BS].
- Enr.typeR is the ADE-type $\tau(R)$.
- Enr.typeRbar is the ADE-type $\tau(R)$.
- Enr.typeRtilde is the ADE-type $\tau(R)$.
- Enr.exists is true or false, and shows whether a $(\tau, \bar{\tau})$ -generic Enriques surface exists or not.
- Enr.cde is the triple $[c_{(\tau,\bar{\tau})}, d_{(\tau,\bar{\tau})}, e_{(\tau,\bar{\tau})}].$
- Enr.ker is the list of elements of the kernel of the natural homomorphism $\operatorname{aut}(X,\varepsilon) \to \operatorname{aut}(Y)$. Each element is a matrix in $O^{\mathcal{P}}(S_X)$.
- Enr.irecname is the name if irec that is used in the computation.
- Enr.SXrec is a record describing the embeddings $S_Y(2) \hookrightarrow S_X \hookrightarrow L_{26}$ of lattices. See the subsection below for the details.
- Enr.Autrec is a record that describes the result of the computation in Section 6.1 of the paper [BS]. See the subsection below for the details.
- Enr.Rats is a record that describes the action of $\operatorname{aut}(Y)$ on the list $\mathcal{R}_{\text{temp}}$ of smooth rational curves C on Y such that [C] defines a wall of an $L_{26}/S_Y(2)$ -chamber D belonging to Enr.Autrec.VO. See the subsection below for the details.

• Enr.Ells is a record that describes the action of $\operatorname{aut}(Y)$ on the list $\mathcal{E}_{\operatorname{temp}}$ of elliptic fibrations $\phi: Y \to \mathbb{P}^1$ such the ray $\mathbb{R}_{\geq 0}[F_{\phi}]$, where F_{ϕ} is a general fiber of ϕ , is contained in the closure \overline{D} of an $L_{26}/S_Y(2)$ -chamber D belonging to Enr.Autrec.VO. See the subsection below for the details. Caution. This item Enr.Ells is *not* provided if Enr.exists is false; that is, we calculate Enr.Ells only when the data Enr.SXrec is geometrically realizable.

5.1. The record Enr.SXrec. The record Enr.SXrec is the record describing the lattice S_X and the primitive embeddings

$$\iota \colon S_Y(2) \cong L_{10}(2) \hookrightarrow S_X \hookrightarrow L_{26}$$

of lattices. The record Enr.SXrec has the following items, many of which are just the copies of items of the record irec describing the primitive embedding $\iota: S_Y(2) \hookrightarrow L_{26}$. In the paper [BS], the orthogonal complement of $S_Y(2)$ in S_X is denoted by S_{X-} . In this note, we use Q to denote the lattice S_{X-} . The lattices L_{26}, S_X and Q are equipped with certain bases. The lattice $S_Y \cong L_{10}$ is equipped with the basis $\{e_1, \ldots, e_{10}\}$.

- SXrec.GramL26 is the Gram matrix of L_{26} .
- SXrec.embSXL26 is the matrix M such that $v \mapsto vM$ is the embedding $S_X \hookrightarrow L_{26}$.
- SXrec.embSYSX is the matrix M' such that $v \mapsto vM'$ is the embedding $\pi^* \colon S_Y(2) \cong L_{10}(2) \hookrightarrow S_X.$
- SXrec.embQSX is the matrix M'' such that $v \mapsto vM''$ is the embedding $Q \hookrightarrow S_X$.
- SXrec.GramSX is the Gram matrix of S_X .
- SXrec.configrats is a list of roots $[\tilde{C}_1], \ldots, [\tilde{C}_m]$ in S_X , where $\tilde{C}_1, \ldots, \tilde{C}_m$ are distinct smooth rational curves on X such that the divisor $\sum \tilde{C}_i$ is an ADE-configuration of type R and that $\sum \tilde{C}_i$ is mapped isomorphically to a divisor on Y by $\pi: X \to Y$. The classes in this list together with the image S_{X+} of $\pi^*: S_Y(2) \hookrightarrow S_X$ generate S_X .
- SXrec.walls is the list of defining roots of the walls of the fixed $L_{26}/S_Y(2)$ -chamber D_0 .
- SXrec.ampleY is a primitive vector of $S_Y \cong L_{10}$ in the interior of the $L_{26}/S_Y(2)$ -chamber D_0 , which is an ample class of S_Y . This class is chosen in such a way that it is invariant under the action of the group $O(L_{10}, D_0)$.
- SXrec.m4vsInQ is the list of (-4)-vectors in Q.
- SXrec.codim2faces is the list of non-ordered pairs $\{i, j\}$ such that the intersection of the *i*th wall and the *j*th wall in SXrec.walls is a face of codimension 2 of D_0 .
- SXrec.isotropicrays is the list of primitive isotropic rays in the closure \overline{D}_0 of D_0 .
- SXrec.volumeindex is $1_{\rm BP}/{\rm vol}(D_0)$.
- SXrec.enrinvol is the matrix presentation of the Enriques involution $\varepsilon \in O^{\mathcal{P}}(S_X)$.

5.2. The record Enr.Autrec. The record Enr.Autrec is the record describing the results of the algorithm in Section 6.1 of the paper [BS] for the calculation of the

 $\mathbf{6}$

action of $\operatorname{aut}(Y)$ on Nef_Y . This record Enr.Autrec is comprised of Enr.Autrec.VO and Enr.Autrec.HHH as are explained in Section 4.4.

- 5.3. The record Enr.Rats. The record Rats := Enr.Rats has the following items.
 - Rats.representatives is the list of records rrec of smooth rational curves that are chosen as representatives of the orbit decomposition of $\mathcal{R}_{\text{temp}}$ by the action of $\operatorname{aut}(Y)$.
 - Rats.Ratstemp is the list of records describing elements of $\mathcal{R}_{\text{temp}}$. For $C \in \mathcal{R}_{\text{temp}}$, the corresponding record temprrec has the following items:
 - temprrec.rat is the record rrec1 describing C.
 - temprrec.rep is the record rrec2 describing the representative C' of the orbit containing C. Hence rrec2 is a member of the list Rats.representatives.
 - temprrec.by is the record grec describing an automorphism $g \in aut(Y)$ that maps C to C'.

5.4. The record Enr.Ells. This item Enr.Ells is provided only when Enr.exists is true. The record Ells := Enr.Ells has the following items.

- Ells.representatives is the list of records ellfib of elliptic fibrations $\rho: Y \to \mathbb{P}^1$ chosen as representatives of the orbit decomposition of $\mathcal{E}_{\text{temp}}$ by the action of $\operatorname{aut}(Y)$. Each ellfib has the following item:
 - ellfib.ell is the primitive isotropic ray $f_{\rho} := [F_{\rho}]/2$, where F_{ρ} is a general fiber of $\rho: Y \to \mathbb{P}^1$.
 - ellfib.reduciblefibers describes the reducible fibers of the elliptic fibration $\rho: Y \to \mathbb{P}^1$. This record is a list of the records fiberrec corresponding to reducible fibers. Each fiberrec has the following items.
 - * fiberrec.adetype is the ADE-type of the reducible fiber, which is one of the strings "A1", "A2", ..., "E8". This string expresses the *affine* ADE-type of the reducible fiber.
 - * fiberrec.multiplicity is the multiplicity m, which is 1 if the fiber has a reduced component, whereas m = 2 if the multiplicities of all components are even.
 - * fiberrec.irredcomps is the list of records rrec that describe irreducible components of the fiber.
- Ells.Ellstemp is the list of records describing elements of \mathcal{E}_{temp} . For
 - $\phi \in \mathcal{E}_{\text{temp}}$, the corresponding record **tempphirec** has the following items: - **tempphirec.ell** is the primitive isotropic ray $f_{\phi} := [F_{\phi}]/2$, where F_{ϕ} is a general fiber of ϕ .
 - tempphirec.rep is the primitive isotropic ray f_{ρ} of the representative $\rho: Y \to \mathbb{P}^1$ of the orbit pf ϕ under the action of $\operatorname{aut}(Y)$.
 - tempphirec.by is the record grec describing an automorphism $g \in aut(Y)$ that maps f_{ϕ} to f_{ρ} .

6. THE FILE E6EnrRDPs.txt

In the file E6EnrRDPs.txt, we have a list E6EnrRDPs of 750 records about the RDP-configurations on an (E_6, E_6) -generic Enriques surface Y. See Section 7.1 of the paper [BS]. Each record RDPrec in E6EnrRDPs describes an RDP-configuration

 Γ obtained as $\Gamma(f)$ for some face f of the fundamental domain D_0 . Each RDPrec has the following items.

- RDPrec.position is the position of RDPrec in the list E6EnrRDPs.
- RDPrec.rats is the list of smooth rational curves in the RDP-configuration Γ. Each member of RDPrec.rats is a record rrec explained in Section 4.3.
- RDPrec.adetype is the ADE-type of the RDP-configuration Γ .
- RDPrec.isrepresentative is true or false. This item being true means that Γ is chosen as a representative of the aut(Y)-orbit of RDP-configurations containing Γ . In this case, the record RDPrec has the following two additional items.
 - RDPrec.VO and RDPrec.HHH are the result of Procedure 4.1 of the paper [BS] applied to the graph (V_{Γ}, E_{Γ}) and the group G_{Γ} .

If RDPrec.isrepresentative is false, the record RDPrec has the following two additional items.

- RDPrec.isomto is a pair [i, j], which indicates the following. The *i*th RDP-configuration Γ' in E6EnrRDPs is the representative of the aut(Y)-orbit containing Γ . Let RDPrec' = RDPrecs[i] be the record describing the representative Γ' . The initial chamber D_0 of the graph (V_{Γ}, E_{Γ}) is mapped to the *j*th chamber D' in the list RDPrec'.VO by an element g of aut(Y) such that $\Gamma^g = \Gamma'$, which is described by RDPrec.isomby below.
- RDPrec.isomby is a record grec explained in Section 4.2 that describes the automorphism $g \in \operatorname{aut}(Y)$ that maps D_0 to D' and Γ to Γ' .

References

- Simon Brandhorst and Ichiro Shimada. Borcherds' method for Enriques surfaces, 2019. arXiv:1903.01087.
- [2] Ichiro Shimada. Automorphism groups of certain Enriques surfaces: computation data. 2020. http://www.math.sci.hiroshima-u.ac.jp/~shimada/K3andEnriques.html,
- [3] The GAP Group. GAP Groups, Algorithms, and Programming. Version 4.11.0; 2020 (http://www.gap-system.org).

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, HIROSHIMA UNIVERSITY, 1-3-1 KAGAMIYAMA, HIGASHI-HIROSHIMA, 739-8526 JAPAN

Email address: ichiro-shimada@hiroshima-u.ac.jp