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Abstract. Let p be a prime integer, and q a power of p. The Ballico-Hefez
curve is a non-reflexive nodal rational plane curve of degree q + 1 in charac-

teristic p. We investigate its automorphism group and defining equation. We
also prove that the surface obtained as the cyclic cover of the projective plane
branched along the Ballico-Hefez curve is unirational, and hence is supersingu-

lar. As an application, we obtain a new projective model of the supersingular
K3 surface with Artin invariant 1 in characteristic 3 and 5.

1. Introduction

We work over an algebraically closed field k of positive characteristic p > 0. Let
q = pν be a power of p.

In positive characteristics, algebraic varieties often possess interesting properties
that are not observed in characteristic zero. One of those properties is the failure of
reflexivity. In [4], Ballico and Hefez classified irreducible plane curves X of degree
q + 1 such that the natural morphism from the conormal variety C(X) of X to
the dual curve X∨ has inseparable degree q. The Ballico-Hefez curve in the title
of this note is one of the curves that appear in their classification. It is defined in
Fukasawa, Homma and Kim [8] as follows.

Definition 1.1. The Ballico-Hefez curve is the image of the morphism φ : P1 → P2

defined by
[s : t] 7→ [sq+1 : tq+1 : stq + sqt].

Theorem 1.2 (Ballico and Hefez [4], Fukasawa, Homma and Kim [8]). (1) Let B be
the Ballico-Hefez curve. Then B is a curve of degree q +1 with (q2 − q)/2 ordinary
nodes, the dual curve B∨ is of degree 2, and the natural morphism C(B) → B∨ has
inseparable degree q.

(2) Let X ⊂ P2 be an irreducible singular curve of degree q +1 such that the dual
curve X∨ is of degree > 1 and the natural morphism C(X) → X∨ has inseparable
degree q. Then X is projectively isomorphic to the Ballico-Hefez curve.

Recently, geometry and arithmetic of the Ballico-Hefez curve have been inves-
tigated by Fukasawa, Homma and Kim [8] and Fukasawa [7] from various points
of view, including coding theory and Galois points. As is pointed out in [8], the
Ballico-Hefez curve has many properties in common with the Hermitian curve; that
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is, the Fermat curve of degree q+1, which also appears in the classification of Ballico
and Hefez [4]. In fact, we can easily see that the image of the line

x0 + x1 + x2 = 0

in P2 by the morphism P2 → P2 given by

[x0 : x1 : x2] 7→ [xq+1
0 : xq+1

1 : xq+1
2 ]

is projectively isomorphic to the Ballico-Hefez curve. Hence, up to linear transfor-
mation of coordinates, the Ballico-Hefez curve is defined by an equation

x
1

q+1
0 + x

1
q+1
1 + x

1
q+1
2 = 0

in the style of “Coxeter curves” (see Griffith [9]).

In this note, we prove the the following:

Proposition 1.3. Let B be the Ballico-Hefez curve. Then the group

Aut(B) := { g ∈ PGL3(k) | g(B) = B }
of projective automorphisms of B ⊂ P2 is isomorphic to PGL2(Fq).

Proposition 1.4. The Ballico-Hefez curve is defined by the following equations:
• When p = 2,

xq
0x1 + x0x

q
1 + xq+1

2 +
ν−1∑
i=0

x2i

0 x2i

1 xq+1−2i+1

2 = 0, where q = 2ν .

• When p is odd,

2(xq
0x1 + x0x

q
1) − xq+1

2 − (x2
2 − 4x1x0)

q+1
2 = 0.

Remark 1.5. In fact, the defining equation for p = 2 has been obtained by Fukasawa
in an apparently different form (see Remark 3 of [6]).

Another property of algebraic varieties peculiar to positive characteristics is the
failure of Lüroth’s theorem for surfaces; a non-rational surface can be unirational
in positive characteristics. A famous example of this phenomenon is the Fermat
surface of degree q+1. Shioda [18] and Shioda-Katsura [19] showed that the Fermat
surface F of degree q+1 is unirational (see also [16] for another proof). This surface
F is obtained as the cyclic cover of P2 with degree q +1 branched along the Fermat
curve of degree q + 1, and hence, for any divisor d of q + 1, the cyclic cover of P2

with degree d branched along the Fermat curve of degree q + 1 is also unirational.

We prove an analogue of this result for the Ballico-Hefez curve. Let d be a divisor
of q + 1 larger than 1. Note that d is prime to p.

Proposition 1.6. Let γ : Sd → P2 be the cyclic covering of P2 with degree d
branched along the Ballico-Hefez curve. Then there exists a dominant rational map
P2 · · · → Sd of degree 2q with inseparable degree q.

Note that Sd is not rational except for the case (d, q + 1) = (3, 3) or (2, 4).

A smooth surface X is said to be supersingular (in the sense of Shioda) if the
second l-adic cohomology group H2(X) of X is generated by the classes of curves.
Shioda [18] proved that every smooth unirational surface is supersingular. Hence
we obtain the following:
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Corollary 1.7. Let ρ : S̃d → Sd be the minimal resolution of Sd. Then the surface
S̃d is supersingular.

We present a finite set of curves on S̃d whose classes span H2(S̃d). For a point
P of P1, let lP ⊂ P2 denote the line tangent at φ(P ) ∈ B to the branch of B
corresponding to P . It was shown in [8] that, if P is an Fq2 -rational point of P1,
then lP and B intersect only at φ(P ), and hence the strict transform of lP by the
composite S̃d → Sd → P2 is a union of d rational curves l

(0)
P , . . . , l

(d−1)
P .

Proposition 1.8. The cohomology group H2(S̃d) is generated by the classes of
the following rational curves on S̃d; the irreducible components of the exceptional
divisor of the resolution ρ : S̃d → Sd and the rational curves l

(i)
P , where P runs

through the set P1(Fq2) of Fq2-rational points of P1 and i = 0, . . . , d − 1.

Note that, when (d, q + 1) = (4, 4) and (2, 6), the surface S̃d is a K3 surface. In
these cases, we can prove that the classes of rational curves given in Proposition 1.8
generate the Néron-Severi lattice NS(S̃d) of S̃d, and that the discriminant of NS(S̃d)
is −p2. Using this fact and the result of Ogus [13, 14] and Rudakov-Shafarevic [15]
on the uniqueness of a supersingular K3 surface with Artin invariant 1, we prove
the following:

Proposition 1.9. (1) If p = q = 3, then S̃4 is isomorphic to the Fermat quartic
surface

w4 + x4 + y4 + z4 = 0.

(2) If p = q = 5, then S̃2 is isomorphic to the Fermat sextic double plane

w2 = x6 + y6 + z6.

Recently, many studies on these supersingular K3 surfaces with Artin invariant
1 in characteristics 3 and 5 have been carried out. See [10, 12] for characteristic 3
case, and [11, 17] for characteristic 5 case.

Thanks are due to Masaaki Homma and Satoru Fukasawa for their comments.
We also thank the referee for his/her suggestion on the first version of this paper.

2. Basic properties of the Ballico-Hefez curve

We recall some properties of the Ballico-Hefez curve B. See Fukasawa, Homma
and Kim [8] for the proofs.

It is easy to see that the morphism φ : P1 → P2 is birational onto its image B,
and that the degree of the plane curve B is q + 1. The singular locus Sing(B) of B
consists of (q2 − q)/2 ordinary nodes, and we have

φ−1(Sing(B)) = P1(Fq2) \ P1(Fq).

In particular, the singular locus Sing(Sd) of Sd consists of (q2 − q)/2 ordinary
rational double points of type Ad−1. Therefore, by Artin [1, 2], the surface Sd is
not rational if (d, q + 1) ̸= (3, 3), (2, 4).

Let t be the affine coordinate of P1 obtained from [s : t] by putting s = 1, and
let (x, y) be the affine coordinates of P2 such that [x0 : x1 : x2] = [1 : x : y]. Then
the morphism φ : P1 → P2 is given by

t 7→ (tq+1, tq + t).
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For a point P = [1 : t] of P1, the line lP is defined by

x − tqy + t2q = 0.

Suppose that P /∈ P1(Fq2). Then lP intersects B at φ(P ) = (tq+1, tq + t) with
multiplicity q and at the point (tq

2+q, tq
2

+ tq) ̸= φ(P ) with multiplicity 1. In
particular, we have lP ∩ Sing(B) = ∅.

Suppose that P ∈ P1(Fq2) \P1(Fq). Then lP intersects B at the node φ(P ) of B
with multiplicity q +1. More precisely, lP intersects the branch of B corresponding
to P with multiplicity q, and the other branch transversely.

Suppose that P ∈ P1(Fq). Then φ(P ) is a smooth point of B, and lP intersects
B at φ(P ) with multiplicity q + 1. In particular, we have lP ∩ Sing(B) = ∅.

Combining these facts, we see that φ(P1(Fq)) coincides with the set of smooth
inflection points of B. (See [8] for the definition of inflection points.)

3. Proof of Proposition 1.3

We denote by φB : P1 → B the birational morphism t 7→ (tq+1, tq + t) from P1

to B. We identify Aut(P1) with PGL2(k) by letting PGL2(k) act on P1 by

[s : t] 7→ [as + bt : cs + dt] for
[

a b
c d

]
∈ PGL2(k).

Then PGL2(Fq) is the subgroup of PGL2(k) consisting of elements that leave the set
P1(Fq) invariant. Since φB is birational, the projective automorphism group Aut(B)
of B acts on P1 via φB . The subset φB(P1(Fq)) of B is projectively characterized
as the set of smooth inflection points of B, and we have P1(Fq) = φ−1

B (φB(P1(Fq))).
Hence Aut(B) is contained in the subgroup PGL2(Fq) of PGL2(k). Thus, in order
to prove Proposition 1.3, it is enough to show that every element

g :=
[

a b
c d

]
with a, b, c, d ∈ Fq

of PGL2(Fq) is coming from the action of an element of Aut(B). We put

g̃ :=

 a2 b2 ab
c2 d2 cd
2ac 2bd ad + bc

 ,

and let the matrix g̃ act on P2 by the left multiplication on the column vector
t[x0 : x1 : x2]. Then we have

φ ◦ g = g̃ ◦ φ,

because we have λq = λ for λ = a, b, c, d ∈ Fq. Therefore g 7→ g̃ gives an isomor-
phism from PGL2(Fq) to Aut(B).

4. Proof of Proposition 1.4

We put

F (x, y) :=

{
x + xq + yq+1 +

∑ν−1
i=0 x2i

yq+1−2i+1
if p = 2 and q = 2ν ,

2x + 2xq − yq+1 − (y2 − 4x)
q+1
2 if p is odd,

that is, F is obtained from the homogeneous polynomial in Proposition 1.4 by
putting x0 = 1, x1 = x, x2 = y. Since the polynomial F is of degree q + 1 and the
plane curve B is also of degree q + 1, it is enough to show that F (tq+1, tq + t) = 0.
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Suppose that p = 2 and q = 2ν . We put

S(x, y) :=
ν−1∑
i=0

(
x

y2

)2i

.

Then S(x, y) is a root of the Artin-Schreier equation

s2 + s =
(

x

y2

)q

+
x

y2
.

Hence S1 := S(tq+1, tq + t) is a root of the equation s2 + s = b, where

b :=
[

tq+1

(tq + t)2

]q

+
tq+1

(tq + t)2
=

t2q2+q+1 + tq
2+3q + tq

2+q+2 + t3q+1

(tq + t)2q+2
.

We put

S′(x, y) :=
x + xq + yq+1

yq+1
.

We can verify that S2 := S′(tq+1, tq + t) is also a root of the equation s2 + s = b.
Hence we have either S1 = S2 or S1 = S2 + 1. We can easily see that both of the
rational functions S1 and S2 on P1 have zero at t = ∞. Hence S1 = S2 holds, from
which we obtain F (tq+1, tq + t) = 0.

Suppose that p is odd. We put

S(x, y) := 2x + 2xq − yq+1, S1 := S(tq+1, tq + t), and

S′(x, y) := (y2 − 4x)
q+1
2 , S2 := S′(tq+1, tq + t).

Then it is easy to verify that both of S2
1 and S2

2 are equal to

t2q2+2q − 2t2q2+q+1 + t2q2+2 − 2tq
2+3q + 4tq

2+2q+1 − 2tq
2+q+2 + t4q − 2t3q+1 + t2q+2.

Therefore either S1 = S2 or S1 = −S2 holds. Comparing the coefficients of the
top-degree terms of the polynomials S1 and S2 of t, we see that S1 = S2, whence
F (tq+1, tq + t) = 0 follows.

5. Proof of Propositions 1.6 and 1.8

We consider the universal family

L := { (P,Q) ∈ P1 × P2 | Q ∈ lP }
of the lines lP , which is defined by

x − tqy + t2q = 0

in P1 × P2, and let
π1 : L → P1, π2 : L → P2

be the projections. We see that π1 : L → P1 has two sections

σ1 : t 7→ (t, x, y) = (t, tq+1, tq + t),

σq : t 7→ (t, x, y) = (t, tq
2+q, tq

2
+ tq).

For P ∈ P1, we have π2(σ1(P )) = φ(P ) and lP ∩ B = {π2(σ1(P )), π2(σq(P ))}. Let
Σ1 ⊂ L and Σq ⊂ L denote the images of σ1 and σq, respectively. Then Σ1 and
Σq are smooth curves, and they intersect transversely. Moreover, their intersection
points are contained in π−1

1 (P1(Fq2)).
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We denote by M the fiber product of γ : Sd → P2 and π2 : L → P2 over P2. The
pull-back π∗

2B of B by π2 is equal to the divisor qΣ1 + Σq. Hence M is defined by

(5.1)

{
zd = (y − tq − t)q(y − tq

2 − tq),
x − tqy + t2q = 0.

We denote by M → M the normalization, and by

α : M → L, η : M → Sd

the natural projections. Since d is prime to q, the cyclic covering α : M → L of
degree d branches exactly along the curve Σ1 ∪ Σq. Moreover, the singular locus
Sing(M) of M is located over Σ1∩Σq, and hence is contained in α−1(π−1

1 (P1(Fq2))).

Since η is dominant and ρ : S̃d → Sd is birational, η induces a rational map

η′ : M · · · → S̃d.

Let A denote the affine open curve P1 \ P1(Fq2). We put

LA := π−1
1 (A), MA := α−1(LA).

Note that MA is smooth. Let π1,A : LA → A and αA : MA → LA be the restrictions
of π1 and α, respectively. If P ∈ A, then lP is disjoint from Sing(B), and hence
η(α−1(π−1

1 (P ))) = γ−1(lP ) is disjoint from Sing(Sd). Therefore the restriction of
η′ to MA is a morphism. It follows that we have a proper birational morphism

β : M̃ → M

from a smooth surface M̃ to M such that β induces an isomorphism from β−1(MA)
to MA and that the rational map η′ extends to a morphism η̃ : M̃ → S̃d. Summing
up, we obtain the following commutative diagram:

(5.2)

MA ↪→ M̃
η̃−→ S̃d

|| ¤ ↓ β ↓ ρ

MA ↪→ M
η−→ Sd

αA ↓ ¤ ↓ α ↓ γ

LA ↪→ L
π2−→ P2

π1,A ↓ ¤ ↓ π1

A ↪→ P1 .

Since the defining equation x − tqy + t2q = 0 of L in P1 × P2 is a polynomial
in k[x, y][tq], and its discriminant as a quadratic equation of tq is y2 − 4x ̸= 0,
the projection π2 is a finite morphism of degree 2q and its inseparable degree is
q. Hence η is also a finite morphism of degree 2q and its inseparable degree is
q. Therefore, in order to prove Proposition 1.6, it is enough to show that M is
rational. We denote by k(M) = k(M) the function field of M . Since x = tqy − t2q

on M , the field k(M) is generated over k by y, z and t. Let c denote the integer
(q + 1)/d, and put

z̃ :=
z

(y − tq − t)c
∈ k(M).



BALLICO-HEFEZ CURVES 7

Then, from the defining equation (5.1) of M , we have

z̃d =
y − tq

2 − tq

y − tq − t
.

Therefore we have

y =
z̃d(tq + t) − (tq

2
+ tq)

z̃d − 1
,

and hence k(M) is equal to the purely transcendental extension k(z̃, t) of k. Thus
Proposition 1.6 is proved.

We put
Ξ := M̃ \ MA = β−1(α−1(π−1

1 (P1(Fq2)))).

Since the cyclic covering α : M → L branches along the curve Σ1 = σ1(P1), the
section σ1 : P1 → L of π1 lifts to a section σ̃1 : P1 → M of π1 ◦ α. Let Σ̃1 denote
the strict transform of the image of σ̃1 by β : M̃ → M .

Lemma 5.1. The Picard group Pic(M̃) of M̃ is generated by the classes of Σ̃1 and
the irreducible components of Ξ.

Proof. Since Σ1 ∩ Σq ∩ LA = ∅, the morphism

π1,A ◦ αA : MA → A

is a smooth P1-bundle. Let D be an irreducible curve on M̃ , and let e be the degree
of

π1 ◦ α ◦ β|D : D → P1.

Then the divisor D−eΣ̃1 on M̃ is of degree 0 on the general fiber of the smooth P1-
bundle π1,A◦αA. Therefore (D−eΣ̃1)|MA

is linearly equivalent in MA to a multiple
of a fiber of π1,A ◦αA. Hence D is linearly equivalent to a linear combination of Σ̃1

and irreducible curves in the boundary Ξ = M̃ \ MA. ¤

The rational curves on S̃d listed in Proposition 1.8 are exactly equal to the
irreducible components of

ρ−1(γ−1(
∪

P∈P1(Fq2 )

lP )).

Let V ⊂ H2(S̃d) denote the linear subspace spanned by the classes of these rational
curves. We will show that V = H2(S̃d).

Let h ∈ H2(S̃d) denote the class of the pull-back of a line of P2 by the morphism
γ ◦ ρ : S̃d → P2. Suppose that P ∈ P1(Fq). Then lP is disjoint from Sing(B).
Therefore we have

h = [(γ ◦ ρ)∗(lP )] = [l(0)P ] + · · · + [l(d−1)
P ] ∈ V.

Let B̃ denote the strict transform of B by γ ◦ρ. Then B̃ is written as d ·R, where R
is a reduced curve on S̃d whose support is equal to η̃(Σ̃1). On the other hand, the
class of the total transform (γ ◦ ρ)∗B of B by γ ◦ ρ is equal to (q + 1)h. Since the
difference of the divisors d · R and (γ ◦ ρ)∗B is a linear combination of exceptional
curves of ρ, we have

(5.3) η̃∗([Σ̃1]) ∈ V.
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By the commutativity of the diagram (5.2), we have

η̃(Ξ) ⊂ ρ−1(γ−1(
∪

P∈P1(Fq2 )

lP )).

Hence, for any irreducible component Γ of Ξ, we have

(5.4) η̃∗([Γ]) ∈ V.

Let C be an arbitrary irreducible curve on S̃d. Then we have

η̃∗η̃
∗([C]) = 2q[C].

By Lemma 5.1, there exist integers a, b1, . . . , bm and irreducible components Γ1, . . . , Γm

of Ξ such that the divisor η∗C of M̃ is linearly equivalent to

aΣ̃1 + b1Γ1 + · · · + bmΓm.

By (5.3) and (5.4), we obtain

[C] =
1
2q

η̃∗η̃
∗([C]) ∈ V.

Therefore V ⊂ H2(S̃d) is equal to the linear subspace spanned by the classes of all
curves. Combining this fact with Corollary 1.7, we obtain V = H2(S̃d).

6. Supersingular K3 surfaces

In this section, we prove Proposition 1.9. First, we recall some facts on super-
singular K3 surfaces. Let Y be a supersingular K3 surface in characteristic p, and
let NS(Y ) denote its Néron-Severi lattice, which is an even hyperbolic lattice of
rank 22. Artin [3] showed that the discriminant of NS(Y ) is written as −p2σ, where
σ is a positive integer ≤ 10. This integer σ is called the Artin invariant of Y .
Ogus [13, 14] and Rudakov-Shafarevic [15] proved that, for each p, a supersingular
K3 surface with Artin invariant 1 is unique up to isomorphisms. Let Xp denote
the supersingular K3 surface with Artin invariant 1 in characteristic p. It is known
that X3 is isomorphic to the Fermat quartic surface, and that X5 is isomorphic
to the Fermat sextic double plane. (See, for example, [12] and [17], respectively.)
Therefore, in order to prove Proposition 1.9, it is enough to prove the following:

Proposition 6.1. Suppose that (d, q+1) = (4, 4) or (2, 6). Then, among the curves
on S̃d listed in Proposition 1.8, there exist 22 curves whose classes together with
the intersection pairing form a lattice of rank 22 with discriminant −p2.

Proof. Suppose that p = q = 3 and d = 4. We put α :=
√
−1 ∈ F9, so that

F9 := F3(α). Consider the projective space P3 with homogeneous coordinates
[w : x0 : x1 : x2]. By Proposition 1.4, the surface S4 is defined in P3 by an equation

w4 = 2(x3
0x1 + x0x

3
1) − x4

2 − (x2
2 − x1x0)2.

Hence the singular locus Sing(S4) of S4 consists of the three points

Q0 := [0 : 1 : 1 : 0] (located over φ([1 : α]) = φ([1 : −α]) ∈ B),
Q1 := [0 : 1 : 2 : 1] (located over φ([1 : 1 + α]) = φ([1 : 1 − α]) ∈ B),
Q2 := [0 : 1 : 2 : 2] (located over φ([1 : 2 + α]) = φ([1 : 2 − α]) ∈ B),

and they are rational double points of type A3. The minimal resolution ρ : S̃4 → S4

is obtained by blowing up twice over each singular point Qa (a ∈ F3). The rational
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curves l
(i)
P on S̃4 given in Proposition 1.8 are the strict transforms of the following

40 lines L̄
(ν)
τ in P3 contained in S4, where ν = 0, . . . , 3:

L̄
(ν)
0 := {x1 = w − ανx2 = 0},

L̄
(ν)
1 := {x0 + x1 − x2 = w − αν(x2 + x0) = 0},

L̄
(ν)
2 := {x0 + x1 + x2 = w − αν(x2 − x0) = 0},

L̄(ν)
∞ := {x0 = w − ανx2 = 0},

L̄
(ν)
±α := {−x0 + x1 ± αx2 = w − ανx2 = 0},

L̄
(ν)
1±α := {±αx0 + x1 + (−1 ± α)x2 = w − αν(x2 + x0) = 0},

L̄
(ν)
2±α := {∓αx0 + x1 + (1 ± α)x2 = w − αν(x2 − x0) = 0}.

We denote by L
(ν)
τ the strict transform of L̄

(ν)
τ by ρ. Note that the image of L̄

(ν)
τ by

the covering morphism S4 → P2 is the line lφ([1:τ ]). Note also that, if τ ∈ F3∪{∞},
then L̄

(ν)
τ is disjoint from Sing(S4), while if τ = a + bα ∈ F9 \ F3 with a ∈ F3 and

b ∈ F3 \ {0} = {±1}, then L̄
(ν)
τ ∩ Sing(S4) consists of a single point Qa. Looking

at the minimal resolution ρ over Qa explicitly, we see that the three exceptional
(−2)-curves in S̃4 over Qa can be labeled as Ea−α, Ea, Ea+α in such a way that the
following hold:

• 〈Ea−α, Ea〉 = 〈Ea, Ea+α〉 = 1, 〈Ea−α, Ea+α〉 = 0.
• Suppose that b ∈ {±1}. Then L

(ν)
a+bα intersects Ea+bα, and is disjoint from

the other two irreducible components Ea and Ea−bα.
• The four intersection points of L

(ν)
a+bα (ν = 0, . . . , 3) and Ea+bα are distinct.

Using these, we can calculate the intersection numbers among the 9+40 curves Eτ

and L
(ν)
τ ′ (τ ∈ F9, τ ′ ∈ F9 ∪ {∞}, ν = 0, . . . , 3). From among them, we choose the

following 22 curves:

E−α, E0, Eα, E1−α, E1, E1+α, E2−α, E2, E2+α,

L
(0)
0 , L

(1)
0 , L

(2)
0 , L

(3)
0 , L

(0)
1 , L

(1)
1 , L

(0)
2 , L

(1)
2 , L(1)

∞ ,

L
(0)
−α, L

(1)
−α, L

(2)
1−α, L

(0)
2−α.

Their intersection numbers are calculated as in Table 6.1. We can easily check that
this matrix is of determinant −9.

The proof for the case p = q = 5 and d = 2 is similar. We put α :=
√

2 so
that F25 = F5(α). In the weighted projective space P(3, 1, 1, 1) with homogeneous
coordinates [w : x0 : x1 : x2], the surface S2 for p = q = 5 is defined by

w2 = 2(x5
0x1 + x0x

5
1) − x6

2 − (x2
2 + x0x1)3.

The singular locus Sing(S2) consists of ten ordinary nodes

Q{a+bα,a−bα} (a ∈ F5, b ∈ {1, 2})

located over the nodes φ([1 : a + bα]) = φ([1 : a − bα]) of the branch curve B.
Let E{a+bα,a−bα} denote the exceptional (−2)-curve in S̃2 over Q{a+bα,a−bα} by
the minimal resolution. As the 22 curves, we choose the following eight exceptional
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2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

−2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 −2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −2 1 1 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 −2 1 1 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 1 1 −2 1 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 −2 0 1 0 1 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 −2 1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 −2 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −2 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 −2 1 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 −2 0 1 0 0
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 −2 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 −2 1 1
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 −2 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 −2

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Table 6.1. Gram matrix of NS(S̃4) for q = 3

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

−2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 −2 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 −2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −2 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 −2 3 1 1 0 1 1 0 0 1 1 1 0 1
0 0 0 0 0 0 0 0 3 −2 0 0 1 0 0 1 1 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 −2 0 0 0 1 1 0 1 0 0 0 1
0 1 0 0 0 0 0 0 1 0 0 −2 0 0 1 1 1 1 0 1 1 0
1 0 0 0 0 0 0 0 0 1 0 0 −2 0 0 0 1 1 1 1 0 1
0 1 0 0 0 0 0 0 1 0 0 0 0 −2 0 1 0 0 1 0 0 0
0 0 1 0 0 0 0 0 1 0 1 1 0 0 −2 1 1 0 1 0 1 1
0 0 0 1 0 0 0 0 0 1 1 1 0 1 1 −2 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 −2 1 1 1 0 0
0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 1 −2 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 −2 0 1 0
0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 1 1 0 0 −2 1 1
0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 1 −2 1
0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 0 0 0 1 1 −2

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Table 6.2. Gram matrix of NS(S̃2) for q = 5



BALLICO-HEFEZ CURVES 11

(−2)-curves

E{−α,α}, E{−2 α,2 α}, E{1−α,1+α}, E{1−2 α,1+2 α},

E{2−α,2+α}, E{3−2 α,3+2 α}, E{4−α,4+α}, E{4−2 α,4+2 α},

and the strict transforms of the following 14 curves on S2:

{ x1 = w − 2αx2
3 = 0 },

{ x1 = w + 2αx2
3 = 0 },

{ x0 + x1 + 4 x2 = w + 2 α (3x0 + x2)
3 = 0 },

{ 3x0 + x1 + 3αx2 = w − 2αx2
3 = 0 },

{ 2x0 + x1 + 4αx2 = w + 2 αx2
3 = 0 },

{ 3x0 + x1 + 2αx2 + 3x0 = w − 2αx2
3 = 0 },

{ (3 + 3α) x0 + x1 + (4 + α)x2 = w + 2 α (3 x0 + x2)
3 = 0 },

{ (4 + α) x0 + x1 + (4 + 2 α)x2 = w + 2 α (3 x0 + x2)
3 = 0 },

{ (2 + 3α) x0 + x1 + (3 + 3 α) x2 = w − 2α (x0 + x2)
3 = 0 },

{ (1 + α) x0 + x1 + (3 + α)x2 = w − 2α (x0 + x2)
3 = 0 },

{ (1 + α) x0 + x1 + (2 + 4 α)x2 = w − 2α (x2 + 4 x0)
3 = 0 },

{ (2 + 3α) x0 + x1 + (2 + 2 α) x2 = w + 2 α (x2 + 4 x0)
3 = 0 },

{ (3 + 3α) x0 + x1 + (1 + 4 α) x2 = w − 2α (x2 + 2 x0)
3 = 0 },

{ (4 + 4α) x0 + x1 + (1 + 2 α) x2 = w − 2α (x2 + 2 x0)
3 = 0 }.

Their intersection matrix is given in Table 6.2. It is of determinant −25. ¤

Remark 6.2. In the case q = 5, the Ballico-Hefez curve B is one of the sextic plane
curves studied classically by Coble [5].
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