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Abstract. Let f be an automorphism of a complex Enriques surface
Y and let pf denote the characteristic polynomial of the isometry f∗ of
the numerical Néron-Severi lattice of Y induced by f . We apply a mod-
ification of McMullen’s method to prove that the modulo-2 reduction
(pf (x) mod 2) is a product of modulo-2 reductions of (some of) the five
cyclotomic polynomials Φm, where m ≤ 9 and m is odd. We study En-
riques surfaces that realize modulo-2 reductions of Φ7, Φ9 and show that
each of the five polynomials (Φm(x) mod 2) is a factor of the modulo-2
reduction (pf (x) mod 2) for a complex Enriques surface.

1. Introduction

The subject of this note are isometries of the numerical Néron-Severi lat-
tices induced by automorphisms of Enriques surfaces. To state our results,
let Y (resp. X) be a complex Enriques surface (resp. its K3 cover) and
let Num(Y ) be the numerical Néron-Severi lattice of Y (i.e. Num(Y ) :=
NS(Y )/Tors). Each automorphism f ∈ Aut(Y ) induces an isometry f∗ ∈
O(Num(Y )). It is natural to study the properties of the characteristic poly-
nomial of the latter.

In this note we prove the following refinement of [14, Theorem 1.2].

Theorem 1.1. Let f be an automorphism of a complex Enriques surface Y
and let pf be the characteristic polynomial of the isometry f∗ : Num(Y ) →
Num(Y ).

a) The modulo-2 reduction (pf (x) mod 2) is a product of (some of) the
following polynomials:

F1(x) = x+ 1, F3(x) = x2 + x+ 1, F5(x) = x4 + x3 + x2 + x+ 1,

F7(x) = x6 + x5 + x4 + x3 + x2 + x+ 1, F9(x) = x6 + x3 + 1 .

b) Each of the five polynomials F1, F3, F5, F7, F9 does appear in the fac-
torization of the modulo-2 reduction (pf (x) mod 2) for an automorphism f

Date: 23rd of September 2019.
2010 Mathematics Subject Classification. Primary: 14J28; 14J50 Secondary: 37B40.
S. B. is supported by SFB-TRR 195 ”Symbolic Tools in Mathematics and their Ap-

plication” of the German Research Foundation(DFG). S. R. is partially supported by
the Polish National Science Centre (NCN) OPUS grant 2017/25/B/ST1/00853. I. S. is
supported by JSPS KAKENHI Grant Number 15H05738, 16H03926, and 16K13749.

1



2 S. BRANDHORST, S. RAMS, AND I. SHIMADA

of a complex Enriques surface. Any realization of F7 and F9 is by a semi-
symplectic automorphism.

Recall that the proof of [14, Theorem 1.2] shows that each factor of
(pf (x) mod 2) either equals one of the five polynomials listed in Thm 1.1, or
it is the modulo-2 reduction F15 of the cyclotomic polynomial Φ15 ∈ Z[x].
Moreover, examples with factors F1, F3, F5 were given in [9] (see also [14,
Example 3.1]), whereas the question if F7, F9 and F15 can appear in the fac-
torization of the modulo-2 reduction of pf for an automorphism f ∈ Aut(Y )
was left open (c.f. [14, Example 3.1.b]). This question is answered in Theo-
rem 1.1.

To state the next theorem, we introduce some notation. Let us denote
the covering involution of the double étale cover π : X → Y by ε. Moreover,
we put f̃ ∈ Aut(X) to denote a (non-unique) lift of an automorphism f ∈
Aut(Y ). Let N := (H2(X,Z)ε)⊥ be the orthogonal complement of the ε-
invariant sublattice H2(X,Z)ε in the lattice H2(X,Z). Recall that N is

stable under the cohomological action f̃∗ and the restriction fN := f̃∗|N is
of finite order. Using Theorem 1.1, we can sharpen [14, Theorem 1.1] as
well.

Theorem 1.2. Let Y be a complex Enriques surface and let f be an auto-
morphism of Y . Then, the order of fN is a divisor of at least one of the
following five integers:

36, 48, 56, 84, 120.

Among the 28 numbers that satisfy the above condition, at least the following
14 integers

1, . . . , 10, 12, 14, 15, 20

are realized as orders.

Remark 1.3. We note that if the order of fN is 7 or 9, then the cyclic
subgroup generated by fN is unique up to conjugacy in the orthogonal group
O(N). For the remaining 14 integers

16, 18, 21, 24, 28, 30, 36, 40, 42, 48, 56, 60, 84, 120,

we do not know whether they arise as orders of fN for some f ∈ Aut(Y ).

Originally, our interest in the subject of this note was motivated by the
question what constraints on the dynamical spectra of Enriques surfaces
result from the existence of the double étale K3 cover (c.f. [22, Theorem
1.2]). Indeed, Theorem 1.1.a yields a new constraint on the Salem numbers
that appear as the dynamical degrees of automorphisms of Enriques surfaces
(e.g. it implies that none of the Salem numbers given as # 3, 13, 16, 34, 35 in
the table in [14, Appendix] can be the dynamical degree of an automorphisms
of a complex Enriques surface), whereas Theorem 1.1.b shows that the above
constraint cannot be strengthened.

It should be mentioned that automorphism groups of Enriques surfaces
remain a subject of intensive research. Much is known in the case of Enriques
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surfaces with finite automorphism groups (even in positive characteristic)
and unnodal Enriques surfaces, but a general picture is still missing. In this
context both the constraints given by Theorem 1.2 and the geometry of the
families of Enriques surfaces discussed in Propositions 5.3, 4.2, 4.7 are of
separate interest. Still, such considerations exceed the scope of this paper.
We sketch our strategy for the proof of Theorem 1.1. The argument in [14] is
based on criteria for a polynomial to be the characteristic polynomial of an
isometry of a lattice. Unfortunately, all the six polynomials F1, . . . , F9, F15

do appear as factors of modulo-2 reductions of characteristic polynomials of
isometries of the lattice U ⊕ E8(−1) and the lattice N . Thus we need to
take Hodge structures and the ample cone into account as well. In this note
we apply a modification of McMullen’s method (see [16], [17]) to obtain con-
straints on automorphisms of Enriques surfaces that can realize the factors
F7, F9, F15. In particular, we can rule out the existence of the highest-degree
factor F15 (Prop. 3.1), and derive properties of the K3 covers of Enriques
surfaces which realize F7 (Prop. 5.2) and F9 (Section 4). Then an algorithm
based on Borcherd’s method ([1], [2]) and the ideas from [28] and [4] allow
us to find abstract Enriques surfaces realizing F7 and F9. For the readers
convenience, the algorithm is presented in Section 6 in pseudocode. We close
this section with a related open question. For an Enriques surface Y we call
the order of the image of bi-canonical representation

Aut(Y )→ GL
(
H0(Y,K⊗2Y )

)
of the automorphism group the transcendental index I(Y ) of Y .

Question 1.4. What are the possible transcendental indices of complex
Enriques surfaces?

Note that all realizations of F7 and F9 must be by semi-symplectic auto-
morphisms. Hence, we know that 7 and 9 do not divide I(Y ).

Notation: In this note, we work over the field of complex numbers C. Given
a prime p, Zp denotes the ring of p-adic integers. For a ring R, we denote
by R× its group of units. For a group G and a prime p, Gp is the p-Sylow
subgroup of G.

2. Preliminaries

Basic notation. We maintain the notation of the previous section. In
particular, π : X → Y is the K3 cover of Y and ε is the covering involution
of π. Moreover, we have the finite index sublattice

(2.1) M ⊕N ⊆ H2(X,Z)

where M := H2(X,Z)ε coincides with the pullback of H2(Y,Z) by π and
N := M⊥ (see e.g. [20]). In particular, we have M ' U(2) ⊕ E8(−2)
and N ' U ⊕ U(2) ⊕ E8(−2), where U (resp. E8) denotes the unimodular
hyperbolic plane (resp. the unique even unimodular positive-definite lattice
of rank 8). Let f be an automorphism of Y . The sublattices M and N are
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preserved by the isometry f̃∗ ∈ Aut(H2(X,Z)), so as in [14] we can define
the maps

fM := f̃∗|M and fN := f̃∗|N
and let pN , pM (resp. µN , µM ) denote their characteristic (resp. minimal)
polynomials. Then, (see e.g. [14, §3]) we have

(2.2) pM ≡ pf mod 2 and (pM mod 2) | (pN mod 2).

As we already mentioned, fN is a map of finite order (see e.g. [22, Lemma 4.2]),
so pN is a product of cyclotomic polynomials.

Recall that (see [24, Prop 2.2], [15, Thm 1.1])

(2.3) N ∩NS(X) contains no vectors of square (−2).

Indeed, suppose to the contrary. By Riemann-Roch, a vector of square (−2)
in N ∩ NS(X) or its negative is the class of an effective divisor C ∈ NS(X)
such that 〈π∗(D), C〉 = 0 for every D ∈ NS(Y ). This is impossible by the
Nakai-Moishezon criterion, because we can choose D so that π∗(D) is ample.

For an automorphism f and an integer k ∈ N we define two lattices

(2.4) Nk := ker(Φk(fN )) and Mk := ker(Φk(fM )) .

where Φk(x) stands for the k-th cyclotomic polynomial. Finally, to simplify
our notation we put

Fk(x) := (Φk(x) mod 2) .

An automorphism f of an Enriques surface is called semi-symplectic, if it
acts trivially on the global sections H0(Y,K⊗2Y ) of the bi-canonical bundle.

This is the case if and only both lifts f̃ and f̃◦ε of f act on H0(X,Ω2
X) as ±1.

We denote by Auts(Y ) the subgroup of semi-symplectic automorphisms.

Lattice. Let R ∈ {Z,Zp} and K be the fraction field of R. An R-lattice is a
finitely generated free R-module equipped with a non-degenerate symmetric
K-valued bilinear form b. If the form is R valued, we call the lattice integral.
If further b(x, x) ∈ 2R for every x ∈ L, the lattice is called even. The dual
lattice of L is

L∨ = {x ∈ L | b(x, L) ⊆ R}.
If L is integral, then L ⊆ L∨ and we call the quotient L∨/L the discriminant
group of L. For r ∈ R, an R-lattice L is called r-modular if rL∨ = L. If
r = 1, we call the lattice unimodular. The Gram matrix G = (Gij) with
respect to an R-basis (e1, . . . en) of L is defined by Gij = b(ei, ej). The
determinant detL ∈ R/R×2 of L is the determinant of any Gram matrix.
For R = Z we have |L∨/L| = | detL|. The discriminant group carries the
discriminant bilinear form induced by b(x, y) mod R for x, y ∈ L∨. If L is an
even lattice, its discriminant group moreover carries a torsion quadratic form
induced by x 7→ b(x, x) mod 2R, called discriminant form. We say that two
R-lattices (L, b), (L′, b′) are isomorphic if there is an R-linear isomorphism
φ : L→ L′ such that b(x, x) = b′(φ(x), φ(x)). For r ∈ R we denote by L(r)
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the lattice with the same underlying free module as L but with bilinear form
rb.

Let L, L′, L′′ be lattices. The orthogonal direct sum of two lattices is
denoted by L⊕L′. A sublattice L′ ⊆ L is called primitive if L/L′ is torsion
free. This is equivalent to (L′ ⊗K) ∩ L = L′. We call

L′ ⊕ L′′ ⊆ L

a primitive extension if L′, L′′ are primitive sublattices of L and rankL′ +
rankL′′ = rankL. The finite group L′′/(L⊕ L′) is the glue of the primitive
extension. For any prime p dividing its order, we say that L and L′ are glued
above/over p. The signature (pair) (s+, s−) of a Z-lattice L is the signature
of L⊗R where s+ is the number of positive and s− is the number of negative
eigenvalues of a Gram matrix. We denote by U the even unimodular lattice
of signature (1, 1). By An (n ∈ N), Dn (n ≥ 4), E6, E7, E8 the positive
definite root lattice with the respective Dynkin diagram.

Genus. Two Z-lattices L and L′ are in the same genus if L⊗R ∼= L′⊗R and
for all prime numbers p we have L⊗Zp ∼= L′⊗Zp. The genus is an effectively
computable invariant and has a compact description in terms of the so called
genus symbols introduced by Conway and Sloane [8, Chapter 15]. In what
follows we give a short account.

Let p be an odd prime. A p-adic unimodular lattice L1 is determined
up to isometry by its rank n1 and the p-adic square class ε1 ∈ {±1} of its
determinant. This is denoted by the symbol 1ε1n1 . Let q = pk, and recall
that a lattice is q-modular if it is of the form L(q) for some unimodular L.
A q-modular p-adic lattice is given up to isomorphism by its scale q, its rank
nq and the square class of the unit part of its determinant εq(L(q)) := ε1(L).
This is denoted by the symbol qεqnq .

A p-adic lattice L admits a so called Jordan decomposition

L = L1 ⊕ Lp ⊕ · · · ⊕ Lpk

into pi-modular lattices Lpi . The latter are called the Jordan constituents.
The decomposition is not unique. Nevertheless we can compute the iso-
morphism class of L from it. It is uniquely determined by the collection of
(εq, nq)q for the q-modular lattices Lq as q runs through the powers of p.
This collection is called the p-adic symbol of L. We introduce the notation
for p-adic symbols with an example. The 3-adic symbol

123−2275

denotes a Z3-lattice

L = L1 ⊕ L3 ⊕ L27

such that L1 is unimodular of rank 2 and determinant a square, L3 is 3
modular of rank 2 and unit part of the determinant a non-square, that is
the determinant is 2 · 3 and the unit part is 2 which is a 3-adic non-square
unit, L27 is 27 modular of rank 5 and the unit part of its determinant is a
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square. We see that L is isomorphic to Z9
3 with diagonal Gram matrix given

by
diag(1, 1, 6, 3, 27, 27, 27, 27, 27).

An even unimodular 2-adic lattice L1 is determined by its rank n1 and
ε1 ∈ {±1} which is 1 if the determinant is congruent to 1 or 7 modulo 8
and −1 if it is congruent to 3 or 5. This is denoted by 1ε1n1 . As before we
obtain symbols for q-modular lattices and have a Jordan decomposition. A
Jordan constituent is called even if it is the twist of an even unimodular 2-
adic lattice. A 2-adic lattice all whose Jordan constituents are even is called
completely even. Two completely even lattices are isomorphic if and only if
they have the same invariants (εq, nq) for all powers q of 2. If the lattices
in question are not completely even, the classification involves an additional
quantity called the oddity. However, in this note all lattices considered are
completely even.

To describe a genus it is enough to give the signature pair and the local
symbols at primes dividing twice the determinant. This is collected in a
single symbol called the (Conway-Sloane) genus symbol. For example A2 is
even of rank 2 and has determinant 3. In particular it is 2-adically unimod-
ular and has the 2-adic symbol 1−2. To compute the 3-adic symbol, we note
that it is 3-adically equivalent to the lattice diag(2, 6) with 3-adic symbol
1−13−1. Together this gives

II(2,0)1
−13−1.

Here the II indicates that this lattice is even and the index (2, 0) that it
is positive definite of rank 2. Finally, the unimodular Jordan constituents
can be reconstructed from the determinant. Thus they are omitted and the
symbol is abbreviated to II(2,0)3

−1.
Note that Conway and Sloane give necessary and sufficient conditions on

when a collection of local symbols defines a non-empty genus [8, Thm 15.11
on p. 383].

Remark 2.1. The genus symbols and their relation with discriminant forms
are implemented in sageMath [26] by the first author. It is possible to
compute all classes in a genus using Kneser’s neighboring algorithm [27]
and Siegel’s mass formula. Similarly roots can be found using short vector
enumerators [6, §.2.7.3]. We used the implementation provided by PARI
[25] via sageMath.

In the following we relate the genus symbols with primitive extensions
and isometries.

Lemma 2.2. Let L and L′ be completely even p-adic lattices with symbols
(εq, nq)q respectively (ε′q, n

′
q)q then L⊕ L′ has symbol (εqε

′
q, nq + n′q).

Proof. If
⊕
Lq and

⊕
L′q are the respective Jordan decompositions, then⊕

(Lq ⊕L′q) is a Jordan decomposition of the sum. Finally the square class
is multiplicative and the rank is additive. �
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Lemma 2.3. Let L and L′ be completely even p-adic lattices with symbols
(εq, nq)q and (ε′q, n

′
q)q. Then there is a primitive extension L⊕L′ ⊆ L′′ with

L′′ unimodular if and only if for all q > 1 n′q = nq and ε′q = δnqεq where

δ =

{
1 for p ≡ 1, 2 mod 4

−1 for p ≡ 3 mod 4.

Proof. From [21, Cor. 1.6.2] we know that the existence of a unimodular
primitive extension is equivalent to existence of an anti isometry of the
discriminant forms of L and L′. Since the lattices are completely even,
this means precisely that the Jordan constituents of scale q > 1 are anti
isomorphic. If L is a q-modular lattice with symbol (nq, εq), then L(−1) has
determinant (−1)nq detL. Hence the symbol of L(−1) is (nq, δ

nqεq)q where
for p 6= 2, δ is 1 or −1 according to −1 being a p-adic square or not. If
p = 2, then δ = 1. �

In the sequel we will apply the following lemma.

Lemma 2.4. Let L be a Z-lattice and let g ∈ O(L) be an isometry with
minimal polynomial Φ3. Then L is completely even and the 2-adic symbols
of the genus of L are of the form

qεini
i where qi = 2i, ni is even and εi = (−1)ni/2.

Proof. This is a special case of [12, Prop. 2.17, Kor. 2.36]. �

In particular, when L is a rank-2 (resp. rank-4) lattice of discriminant
at most 4 (resp. 16) its 2-adic symbols are 1−2, 2−2 (resp. 14, 1−22−2, 24,
1−24−2)

Φn(x)-lattices. In the sequel we need the notion of a Φn(x)-lattice. The
reader can consult [10], [17, § 5] for a concise and more general exposition
of the facts we briefly sketch below.
Recall that a Φn(x)-lattice is defined to be a pair (L, f) where L is an integral
lattice and f ∈ O(L) is an isometry with characteristic polynomial Φn(x).
Let n > 2, the principal Φn(x)-lattice (L0, 〈·, ·〉0, f0) is defined as the Z-
module L0 := Z[ζn] equipped with the scalar product

〈g1, g2〉0 = Tr
Q[ζn]
Q

(
g1g2

r′n(ζn + ζn)

)
where Tr is the field trace of Q[ζn]/Q, rn ∈ Q[x] is the minimal polynomial
of ζn + ζ−1n , and r′n is its derivative. Finally, f0 : L0 → L0, x 7→ ζn · x, is
an isometry with minimal polynomial Φn. One can show that L0 is an even
lattice and

(2.5) det(L0) = |Φn(1)Φn(−1)|.

Given a pair (L, f) as above and an element a ∈ Z[f + f−1] ⊂ End(L) one
can define another inner product on L by the formula 〈g1, g2〉a := 〈ag1, g2〉0.
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We say that the resulting lattice is the twist of L by a and denote it by L(a).
Recall, that by [17, Thm 5.2]

(2.6) every Φn(x)-lattice is a twist of the principal lattice (L0, 〈·, ·〉0, f0).

The genus symbols of Φn-lattices are computed in [12, Satz 2.57].

Equivariant gluing. We note the following well known Lemma for later
use.

Lemma 2.5. If A⊕B ⊆ C is a primitive extension, then

detAdetB = [C : A⊕B]2 · detC

and

detA | [C : A⊕B] · detC.

Moreover, if p is a prime such that p - [C : A⊕B], then

C ⊗ Zp = (A⊗ Zp)⊕ (B ⊗ Zp).

Let a ∈ O(A), b ∈ O(B), c ∈ O(C) be isometries. We call (A, a)⊕(B, b) ⊆
(C, c) an equivariant primitive extension if the restriction c|A⊕B = a⊕ b.

Lemma 2.6. Let (A, a) ⊕ (B, b) ↪→ (C, c) be an equivariant primitive ex-
tension with characteristic polynomials pA, pB. Then any prime dividing the
index [C : A⊕B] divides the resultant res(pA, pB).

Proof. Apply [17, Prop. 4.2] to G = C/(A⊕B). �

Lemma 2.7. Let (A, a)⊕ (B, b) ↪→ (C, c) be an equivariant primitive exten-
sion. Suppose that the characteristic polynomial pa of a is Φn(x). Then the
glue G = C/(A⊕B) satisfies

|G| | res(Φn, µ)

where µ = µb is the minimal polynomial of b.

Proof. Let GA denote the orthogonal projection of G to A∨/A and a the
automorphism on GA induced by a. Since GA is a finite Z[ζn]-module gen-
erated by one element, we have GA = Z[ζn]/I where I is the kernel of the
map Z[ζn] 7→ EndGA that sends the root of unity ζn to a. This yields:

µ(a) = 0 thus µ(ζn) ∈ I

and

|G| = |GA| = |OK/I| = N(I) | N(µ(ζn)) =
∏

(k,n)=1

µ(ζkn) = res(φn, µb)

where N(I) is the norm of the ideal I. �
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3. Ruling out the factor F15

The main aim of this section is to prove the following proposition.

Proposition 3.1. Let f be an automorphism of an Enriques surface Y and
let pf be the minimal polynomial of the map f∗ : Num(Y )→ Num(Y ). Then
the modulo-2 reduction (pf (x) mod 2) is never divisible by the polynomial

F15 = x8 + x7 + x5 + x4 + x3 + x+ 1

i.e. by the modulo-2 reduction of the cyclotomic polynomial Φ15(x) ∈ Z[x].

Recall (see e.g. [5]) that pf is a product of cyclotomic polynomials and
at most one Salem factor. Since pf is reciprocal, (pf (x) mod 2) is divisible
by an irreducible factor of F15 if and only if it is divisible by the whole F15

(c.f. [14]).

Proof of Prop. 3.1 Assume that F15 | (pf mod 2). Combined with [14,
Remark 2.4], this implies that

(3.1) (pM mod 2) = F15 · F 2
1 and (F15 · F 2

1 ) | (pN mod 2).

By [14, Lemma 2.1] and [14, Lemma 2.5] the charateristic polynomial pN
is a product of cyclotomic polynomials of degree at most 8. Computing
modulo-2 reductions of all such cyclotomic polynomials, one infers that ei-
ther Φ15 | pN or Φ30 | pN . Replacing f̃ by a power coprime to 15 we can
assume that pN is a product of the Φk for k ∈ {1, 3, 5, 15}. Together with
(3.1) this leaves us with the two possibilities

(3.2) pN = Φ15 · Φ4
1 or pN = Φ15 · Φ3 · Φ2

1.

We consider the (primitive) fN -invariant sublattice N15 (see (2.4)) and
denote its orthogonal complement in N by N⊥15. Since Φ15(x) has no real
roots, the signature of N15 is of the form (2k, 2(4− k)) with k ∈ {1, 2, 3, 4}.
Recall that N is of signature (2, 10) and contains N15. Thus the signature
of N15 is either (0, 8) or (2, 6).

By definition
N15 ⊕N⊥15 ⊂ N

is a primitive extension. Let G = N/(N15 ⊕N⊥15) be the glue between N15

and N⊥15. Then by Lemma 2.7 we have

|G| | res(Φ15, µf |
N⊥15

)

But we have

(3.3) res(Φ15,Φ1) = 1 and res(Φ15,Φ3) = 25 .

In particular, if |G| > 1 then

(3.4) pN = Φ15 · Φ3 · Φ2
1.

In what follows we treat the cases whether G is trivial or not separately.
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The case when G is trivial. Assume that the glue G is trivial, i.e.

(3.5) N15 ⊕N⊥15 = N ∈ II(2,10)2
10.

Let (εq, nq) be the 2-adic genus symbol of N15 and (ε′q, n
′
q) the symbol of N⊥15.

From Lemma 2.2 we infer that 10 = n2+n′2. Further n′2 ≤ rankN⊥15 = 4 and
n2 ≤ rankN15 = 8. Thus we obtain 6 ≤ n2 ≤ 8. Since N15 is a Φ15-lattice,
we can calculate all Φ15-lattices matching this condition. There is exactly
one such lattice up to isometry:

(3.6) N15
∼= E8(−2) ∈ II(0,8)2

8.

Using Lemma 2.2 once more, we calculate the genus symbol of N⊥15 from
those of N and N15 and see that

(3.7) N⊥15
∼= U ⊕ U(2) ∈ II(2,2)2

2

is the unique class in its genus. From (3.6), (3.7) and [23, Lemma 7.7]
we infer that the spectral radius of fM is one (i.e. f has trivial entropy).
Thus pM is not divisible by a Salem polynomial and must be a product of
cyclotomic polynomials. A direct computation of modulo-2 reductions of all
cyclotomic polynomials of degree at most 8 shows that either Φ30 or Φ15

divides pM . By replacing f̃ with its iteration (i.e. by f̃2 or f̃4) we can
assume that

pM = Φ15 · Φ2
1 .

We consider the rank 2 lattice M1 and the rank 8 lattice M15 (see (2.4)).
Because Φ15 has no real roots, M15 has signature (2k, 2(4−k)). But M is of
signature (1, 9), so the lattice M15 is negative-definite. Since the resultant
res(Φ15,Φ1) is trival, there is no glue between M1 and M15 which leaves us
with M15

∼= E8(−2) and M1
∼= U(2). We observe that

H15 := ker Φ15(f̃
∗) = M15 ⊕N15

is the primitive closure of M15 ⊕ N15 in H2(X,Z). Since the resultant
res(Φ15,Φ1Φ3) = 25 is odd, there is no glue over 2 between H15 and H⊥15. As
further det(M15⊕N15) and hence det(H15) is not divisible by 3, there is no
glue above 3 either. Thus H15 is a direct summand of the unimodular lattice
H2(X,Z). In particular, it is an even negative-definite, unimodular lattice
of rank 16. Such a lattice is either the direct sum of two copies of E8(−1) or
it is the even negative-definite, unimodular lattice Γ16 whose root sublattice
is D16(−1) (see e.g. [7, Table 1]). Each of those lattices has roots, so we
can find a root in NS(X) ⊇ H15. By Riemann-Roch such a root defines an
effective divisor C ∈ NS(X) such that

C + f̃∗C + . . .+ (f̃∗)14C = 0 ∈ H2(X,Z)

and we arrive at a contradiction because NS(X) contains an ample class (c.f.
[17, §2]). Hence the glue G cannot be trivial.
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The case when G is non trivial. Assume that the glue G is non-trivial.
In particular, the characteristic polynomial pN satisfies (3.4).
By Lemma 2.7 and (3.3) we have either |G| = 5 or |G| = 25. Thus Lemma
2.5 with [3, Prop. 5.1] implies that |G| = 25 and

det(N15) · det(N⊥15) = det(N) · |G|2 = 210 · 54

Observe that det(N15) = 28kr for some k, r ∈ N, so we have

(3.8) det(N15) = 28 · 52.

One computes that the genus of a Φ15-lattice with this determinant and
signature either (2, 6) or (0, 8) is unique. It is given by

N15 ∈ II(2,6)2
85−2 and thus N⊥15 ∈ II(0,4)2

25−2

(using Lemmas 2.2 and 2.3). Since res(Φ3,Φ1) = 3 is odd, we know that

N⊥15 ⊗ Z2 = (N1 ⊗ Z2)⊕ (N3 ⊗ Z2).

The rank of N3 is 2, so by Lemma 2.4 the 2-adic symbol of N3 is q−2 for
q = 2i. The 2-adic symbol of N⊥15 is 1222. By Lemma 2.2, i ≤ 1, and if
i = 0, 1, then the sign is wrong. Hence N3⊗Z2 cannot be a direct summand
of N⊥15 ⊗ Z2 which is a contradiction. �

4. The factor F9

In this section we maintain the notation of previous sections and prove
Theorems 1.1, 1.2. We assume that f ∈ Aut(Y ) satisfies the condition

(4.1) F9 | (pf mod 2) .

After replacing f̃ by some power co-prime to 3 we may assume that fN is
of order 9. Since F9F

2
1 divides pN , we can rule out pN = Φ2

9. This leaves us
with the three possibilities

(4.2) pN = Φ9Φ
k
3Φ6−2k

1 k ∈ {0, 1, 2}.

As usual we set N9 := ker(Φ9(fN )) and denote by N⊥9 the orthogonal com-
plement of N9 in N ∈ II(2,10)2

10. By Lemma 2.7 detN9 | 26 res(Φ9,Φ3Φ1) =

26 · 33. Using the description of N9 as Φ9-lattice, we enumerate the possibil-
ities for N9. This yields 4 cases and with Lemmas 2.2 and 2.3 we calculate
the corresponding genus of N⊥9 .

(4.3) N9 ∈ II(0,6)2
−631 and N⊥9 ∈ II(2,4)2

−43−1

(4.4) N9 ∈ II(0,6)2
−63−3 and N⊥9 ∈ II(2,4)2

−433

(4.5) N9 ∈ II(2,4)2
−63−1 and N⊥9 ∈ II(0,6)2

−431

(4.6) N9 ∈ II(2,4)2
−633 and N⊥9 ∈ II(0,6)2

−43−3
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We can rule out the cases (4.5) and (4.6) since in each case the genus of N⊥9
consists of a single class (see Remark 2.1) which contains roots. We continue
by determining the characteristic polynomial.

Lemma 4.1. Let g ∈ O(N) be an isometry of order 9, then the characteristic
polynomial pN of g is not of the form

pN = Φ9Φ
2
3Φ

2
1.

Proof. Suppose that pN = Φ9Φ
2
3Φ

2
1. Recall that by Lemmas 2.5 and 2.6.

N ⊗ Z2 = (N9 ⊗ Z2)⊕ (N3 ⊗ Z2)⊕ (N1 ⊗ Z2).

We see that N3 ⊗ Z2 is of rank 4 and has maximal scale of a 2-adic Jordan
component equal to 2. By Lemma 2.4 the possible 2-adic symbols of N3 are
14, 1−22−2 and 24.
In all cases (4.3) - (4.6) the 2-adic symbol of N⊥9 is 122−4. Therefore N3⊗Z2

cannot be a direct summand of N⊥9 ⊗ Z2. Indeed, in the first case 14 the
unimodular part is too big. In the second case 1−22−2 the unimodular part
has the wrong determinant, and finally in the last case 24 the 2-modular
part has wrong determinant. This contradiction completes the proof. �

If pN = Φ9Φ
6
1, then we must be in case (4.3) and N⊥9 = N1. Since the

signature of N1 is (2, 4), it contains the transcendental lattice. In particular,
f is semi-symplectic. Choosing the covering K3 surface general enough, we
may assume that N1 is its transcendental lattice. This situation is analyzed
in the next

Proposition 4.2. Let Y be an Enriques surface such that its covering K3
surface X has transcendental lattice

T (X) ∼= U ⊕ U(2)⊕A2(−2) ∈ II(2,4)2
−43−1

and satisfies the condition

N ∩NS(X) ∼= E6(−2) ∈ II(0,6)2
−631.

Then the image of Auts(Y )→ O(Num(Y ))⊗ F2 generates a group isomor-
phic to S5.

Proof. The image of Auts(Y ) → O(Num(Y )) can be calculated with Algo-
rithm 6.6. It is generated by 64 explicit matrices (see [31]). Their mod 2
reductions generate a group isomorphic to S5. The latter can be checked
with help of [11]. �

Since S5 does not contain an element of order 9, we are left with

pN = Φ9Φ3Φ
4
1.

We derive further restrictions.

Lemma 4.3. Let g ∈ O(N) be an isometry with characteristic polynomial

pN = Φ9Φ
1
3Φ

4
1.

Then N3 = A2(n) with n ∈ {±2,±6}.
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Proof. One can easily see that A2 is the principal Φ3-lattice. By (2.6) N3 =
A2(n) for some n ∈ Z. In the following we show that n ∈ {±2,±6} by
bounding the determinant of N3. By Lemma 2.7 we have

detN3 | 22 res(Φ3,Φ9Φ1) = 2233.

By Lemma 2.4 the 2-adic symbol of N3 is either 1−2 or 2−2. The first one
is not a direct summand of N⊥9 ⊗ Z2 (see Lemma 2.2), so we are left with
the second. Hence |n| 6= 1. �

Lemma 4.4. Let f ∈ Aut(Y ) be an automorphism of an Enriques surface
such that pN = Φ9Φ

1
3Φ

4
1 and (4.3) holds. Then N3

∼= A2(−2) and N1
∼=

U(2)⊕ U .

Proof. By assumption (4.3) detN⊥9 = 243, and Lemma 2.7 yields detN3 |
229. Thus by Lemma 4.3, we are left with N3 = A2(±2). We see that
detN1 | 2232. Suppose that N3 = A2(2) ∈ II(2,0)2

−231. There is a single

genus of signature (0, 4), 2-adic symbol 1222 and determinant dividing 2232,
namely N1 ∈ II(0,4)2

232. It consists of a single class which has roots. Thus

N3
∼= A2(−2). We calculate the possible genus symbols of N1 as II(2,2)2

2

and II(2,2)2
29±1. In the second case N1 and N3 must be glued non-trivially

over 3. This is impossible, as the only possibility for the glue groups are
(N∨3 /N3)3 whose discriminant form is non-degenerate and 3(N∨1 /N1)3 whose
discriminant form is degenerate. Thus N1 ∈ II(2,2)2

2 which implies N1
∼=

U(2)⊕ U since it is unique in this genus. �

If the transcendental lattice is U ⊕ U(2), then as before we see that the

spectral radius of f̃ is one. Since M1 is of rank 2 and fM |M1 has spectral
radius zero, it is of finite order. Since M⊥1 is definite fM is of finite order

there as well. Thus f̃ is an automorphism of order 9 on a complex Enriques
surface. However no such isomorphism exists (cf. [19]). We are left with
case (4.4) and pN = Φ9Φ3Φ

4
1.

Lemma 4.5. Let f ∈ Aut(Y ) be an automorphism of an Enriques surface
such that pN = Φ9Φ

1
3Φ

4
1 and (4.4) holds. Then N3

∼= A2(−6) and N1 ∈
II(2,2)2

−291. Moreover N⊥1
∼= A8(−2).

Proof. Recall that ζ9 · x := g(x) defines a Z[ζ9]-module structure on N9 and
its discriminant group. Thus N∨9 /N9

∼= Z[ζ9]/I for some ideal I. Since
we are in case (4.4), I is of norm detN9 = 2633. There is only one such
ideal, namely 2(1− ζ9)3. We see that the action of g on the 3-primary part
(N∨9 /N9)3 ∼= Z[ζ9]/(1 − ζ9)3 has minimal polynomial (x − 1)3 = x3 − 1. In
particular it has order 3. Thus the order of g on(

N⊥∨9 /N⊥9

)
3

∼= (N∨9 /N9)3

is 3 as well. This is only possible if the order of g on (N∨3 /N3)3
∼= Z[ζ3]/(1−

ζ3)
i is 3 (this group is a subquotient of (N3 ⊕ N1)

∨/(N3 ⊕ N1) ). This
implies that i ≥ 2, i.e. that detN3 is divisible by 9. From Lemma 4.3 we
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see that N3 = A2(±6). Now that we know the determinant of N3 and N⊥9 ,
we can estimate that of N1 to be a divisor of 2232. Since N3 has a 3-adic
Jordan component of scale 9 and N⊥9 not, N3 cannot be a direct summand
of N⊥9 . Thus N3 and N1 are glued non-trivially over 3. Consequently the
determinant of N1 is 2232.

Suppose that N3
∼= A2(6), then the signature of N1 is (0, 4). There is only

one genus with 2-adic genus symbol 1222, signature (0, 4) and determinant
2232: II(0,4)2

232 it consists of a single class which has roots.
Suppose now that N3

∼= A2(−6). Then we obtain 3 possibilities for the
genus of N1:

(1) II(2,2)2
23−2; There is only one possibility to glue N3 and N1 equivari-

antly over 3 (up to isomorphism). It results in II(2,4)2
−43191 which

is not what we need;
(2) II(2,2)2

29−1; the full 3-adic symbol is 1−39−1. But that has the wrong
sign at scale 1.

(3) II(2,2)2
291 indeed there is a unique possibility to glue N3 and N1

equivariantly over 3. It yields the correct result.

�

Corollary 4.6. If F9 divides (pf mod 2), then F 2
1F3F9 divides (pf mod 2).

Proof. By the previous proposition (N∨3 /N3)2 ∼= F2
2. Hence F3 divides pN

mod 2. Since pf mod 2 | pN mod 2 = F9F3F
4
1 , the corollary is proven. �

We have determined the Néron-Severi lattice of the K3 cover of a generic
Enriques surface admitting an automorphism with F9 dividing pf mod 2.
This allows us to compute the semi-symplectic part of the automorphism
group and locate f in there.

Proposition 4.7. Let Y be an Enriques surface such that its K3 cover X
satisfies the condition

NS(X) ∩N ∼= A8(−2) ∈ II(0,8)2
891

and has the transcendental lattice given by

N1 ∈ II(2,2)2
−291.

Then, the image of Auts(Y )→ O(Num(Y )⊗F2) generates a group isomor-
phic to S9.
In particular, the polynomials F7 and F9 do appear as factors of modulo-2
reductions of characteristic polynomials of isometries induced by some au-
tomorphisms of the Enriques surface Y .

Proof. The proof is a direct computation with the help of Algorithm 6.6 (c.f.
proof of Prop. 4.2). The existence of the factors F7 and F9 follows since the
symmetric group S9 has elements of order 7 and 9. �
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Finally we can give the proofs of the main results of this note.

Proof of Theorem 1.1 a) One can repeat verbatim the proof of [14, The-
orem 1.2] to see that the modulo-2 reduction (pN (x) mod 2) is the product
of some of the polynomials F1, F3, F5, F7, F9, F15. By (2.2) the same holds
for (pf (x) mod 2). The claim follows from Prop. 3.1.
b) follows from Prop. 4.7. �

Proof of Theorem 1.2 If the order of fN is 90, 45, 72, then F9 divides
pN mod 2. Hence, by the previous corollary, pN mod 2 is divisible by
F 2
1F3F9. In particular, pN (of degree 12) cannot be divided by Φ5 as well.

This excludes orders 45 and 90. If the order is 72, then the characteristic
polynomial must be divisible by Φ8 and by one of Φ3aΦ9b with a, b ∈ {1, 2}.
From the previous considerations we know that N8 ∈ II(2,2)2

−291. This is
impossible, as can be seen using the description of N8 as a twist of the
principal Φ8-lattice. �

5. The factor F7

The main aim of this section is to study Enriques surfaces Y with an
automorphism f ∈ Aut(Y ) such that

(5.1) F7 | (pf mod 2) .

The existence of such surfaces follows from Prop. 4.7. Here we derive a
lattice-theoretic constraint given by (5.1) and show that it indeed defines
Enriques surfaces with the desired property. We maintain the notation of
the previous sections. Recall (see (2.1)) that

N ∈ II(2,10)2
10.

In the sequel we will need the following lemma.

Lemma 5.1. Let g ∈ O(N) be an isometry such that its characteristic
polynomial is the product Φ7(x)Φ1(x)6. Then there are two possibilities for
the genera of the lattices N7 := ker Φ7(g) and N1 := ker Φ1(g); either

N7 ∈ II(2,4)2
67−1 and N1 ∈ II(0,6)2

471

or

N7 ∈ II(0,6)2
671 and N1 ∈ II(2,4)2

47−1.

In either case the genus of N1 contains a single class. In the first case the
class of N1 has roots.

Proof. Since res(Φ1,Φ7) = 7, Lemma 2.7 implies that the index [N : N7⊕N1]
divides 7. But in any case 7 = |Φ7(1)Φ7(−1)| divides detN7 (see (2.5) and
(2.6)). Thus we obtain

[N : N7 ⊕N1] = 7.

Consequently, for all p 6= 7, N ⊗ Zp = (N7 ⊗ Zp)⊕ (N1 ⊗ Zp). In particular
for p = 2. Using the description of N7 as a twist of the principal Φ7-lattice
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we compute the two possibilities for the genus of N7 (see Remark 2.1).
It remains to determine the genus of N1. Since we have

N ⊗ Z2 = (N7 ⊗ Z2)⊕ (N1 ⊗ Z2) ,

the 2-adic symbol of N1 must be 24. To compute the 7-adic symbol note
that N⊗Z7 is unimodular, thus Lemma 2.3 applies. As (−1) is a non-square
in Z7 this means that the signs ε7 of the 7-modular Jordan constituents of
N7 and N1 must be different. The claim that N1 is unique in its genus in
the first case is checked with a computer algebra system (see Remark 2.1).
In the second case N1 is indefinite and we can use [8, Thm.15.19]. �

Recall that X (resp. f̃ ∈ Aut(X)) stands for the K3-cover of an Enriques
surface Y (resp. for a lift of an automorphism f ∈ Aut(Y )).

Proposition 5.2. Let Y be an Enriques surfaces with an automorphism
f ∈ Aut(Y ) such that (5.1) holds. Then NS(X) contains a primitive f̃∗-
invariant sublattice which belongs to the genus II(1,15)2

471 and N ∩ NS(X)

contains the f̃∗-invariant sublattice A6(−2) ∼= N7 ∈ II(0,6)2
671 primitively.

Proof. Since F7 divides pf , (2.2) implies that the characteristic polynomial
pN is divisible by the cyclotomic polynomial Φ7. Moreover, after replacing
f by fk with k ∈ N coprime to 7, we may assume that

pN = Φ7(x)Φ1(x)6.

Now we can apply Lemma 5.1. The first case is impossible as then N1 is
contained in NS(X) ∩ N and contains roots (see (2.3)). Thus we are left
with the second case. Since N1 ⊆ N is of signature (2, 4) it must contain
the transcendental lattice (and f is semi-symplectic). Thus the orthogonal

complement of N1 in H2(X,Z) is the sought for f̃∗ invariant sublattice of
NS(X). �

Finally, we apply Algorithm 6.6 to check that the condition of Prop. 5.2
indeed gives Enriques surfaces such that (5.1) holds.

Proposition 5.3. If the K3 cover X of an Enriques surface Y satisfies the
following conditions:

(a) NS(X) ∈ II(1,15)2
471 and

(b) N ∩NS(X) ∼= A6(−2) ∈ II(0,6)2
671.

then the image of Auts(Y )→ O(Num(Y ))⊗F2 generates a group isomorphic
to S7. In particular, the Enriques surface Y admits an automorphism f ∈
Aut(Y ) such that the modulo-2 reduction (pf (x) mod 2) is divisible by the
polynomial F7.

Proof. Apply Algorithm 6.6 and [11] as in the proof of Prop. 4.2. �
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6. Appendix: an algorithm to calculate generators

In this appendix, we present an algorithm to calculate a finite generating
set of the image of the natural homomorphism from the automorphism group
of an Enriques surface to the orthogonal group of the numerical Néron-
Severi lattice of the Enriques surface. Our algorithm is based on Borcherds’
method [1, 2] with the result in [4].

6.1. Borcherds’ method. We use the notation and terminologies in [4].
In particular, we denote by Y an Enriques surface, π : X → Y the universal
covering of Y , and SX and SY the numerical Néron-Severi lattices of X and
of Y , respectively (that is, SX = NS(X) and SY = Num(Y ) in the notation
of previous sections.) Let PX (resp. PY ) be the positive cone of SX ⊗ R
(resp. SY ⊗ R) containing an ample class. Let NX (resp. NY ) be the cone
consisting of all x ∈ PX (resp. all x ∈ PY ) such that 〈x, [Γ]〉 ≥ 0 for any
curve Γ on X (resp. on Y ). We let the orthogonal group O(L) of a Z-lattice
L act on the lattice from the right. Suppose that L is even. A vector r ∈ L
is a (−2)-vector if 〈r, r〉 = −2. Let W (L) denote the subgroup of O(L)
generated by the reflections sr : x 7→ x+ 〈x, r〉r with respect to (−2)-vectors
r of L. For a subset A of L⊗R, we denote by Ag the image of A under the
action of g ∈ O(L) (not the fixed locus of g in A), and put

O(L,A) := { g ∈ O(L) | A = Ag }.

We have natural homomorphisms

Aut(X)→ O(SX ,PX), Aut(Y )→ O(SY ,PY ).

We denote by aut(X) and aut(Y ) the images of these homomorphisms.
Recall that Auts(Y ) consists of the semi-symplectic automorphisms, i.e.
those that act trivially on H0(Y, ω⊗2Y ). We denote by Auts(X) the subgroup
consisting of those automorphisms acting as ±1 on H0(X,Ω2

X) ∼= H2,0(X).
The subgroups auts(X) ⊆ aut(X) and auts(Y ) ⊆ aut(Y ) are defined as the
respective images. Our goal is to calculate a finite generating set of auts(Y ).

Remark 6.1. We note that Auts(Y ) is of finite index in Aut(Y ). This
index is one if the only isometries of TX that preserve H2,0(X) ⊂ TX ⊗ C
are ±1, where TX is the transcendental lattice of X.

We have the primitive embedding

π∗ : SY (2) ↪→ SX ,

which induces PY ↪→ PX . We regard SY as a submodule of SX and PY as
a subspace of PX by π∗. Then we have

(6.1) NY = NX ∩ PY .

If α ∈ SY is ample on Y , then π∗(α) is ample on X. Hence we have N◦Y =
N◦X ∩ PY , where N◦Y and N◦X are the interiors of NY and NX , respectively.
Let Q denote the orthogonal complement of the sublattice SY (2) in SX .
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Since Q is negative-definite, the group O(Q) is finite. We consider the
following assumptions for an element g of O(SY ,PY ):

(i) There exists an isometry h ∈ O(Q) such that the action of g ⊕ h on
SY (2)⊕Q preserves the overlattice SX of SY (2)⊕Q and the action
of (g ⊕ h)|SX on the discriminant group S∨X/SX of SX is ±1.

(ii-a) There exists an ample class α ∈ SY of Y such that there exist
no vectors r ∈ SX with 〈r, r〉 = −2 satisfying 〈π∗(α), r〉 > 0 and
〈π∗(αg), r〉 < 0.

(ii-b) For an arbitrary ample class α ∈ SY of Y , there exist no vectors
r ∈ SX with 〈r, r〉 = −2 satisfying 〈π∗(α), r〉 > 0 and 〈π∗(αg), r〉 < 0.

Proposition 6.2. Let g be an element of O(SY ,PY ). Then g is in auts(Y )
if (i) and (ii-a) hold. If g is in auts(Y ), then (i) and (ii-b) hold.

Proof. An element g of O(SY ,PY ) is in auts(Y ) if and only if there exists
an element g̃ ∈ auts(X) that preserves SY ⊂ SX and satisfies g̃|SY =
g. By the Torelli theorem, we see that an element g̃′ of O(SX ,PX) is in
auts(X) if and only if the action of g̃′ on S∨X/SX is ±1 and g̃′ preserves NX .
Since NX is a standard fundamental domain of the action of W (SX) on PX
(see Example 1.5 of [4]), we have

N◦X ∩Nh
X 6= ∅ =⇒ NX = Nh

X

for any h ∈ O(SX ,PX). Therefore both of (ii-a) and (ii-b) are equivalent

to the condition that N g̃
X = NX for any g̃ ∈ O(SX ,PX) satisfying S g̃Y = SY

and g̃|SY = g. �

Suppose that we have a primitive embedding

ιX : SX ↪→ L26,

where L26 is an even unimodular hyperbolic lattice of rank 26, which is
unique up to isomorphism. (A more standard notation is II1,25.) Composing
π∗ and ιX , we obtain a primitive embedding

ιY : SY (2) ↪→ L26.

Let P26 be the positive cone of L26 into which PY is mapped. We regard
SY as a primitive submodule of L26, and PY as a subspace of P26 by ιY .
Recall from [4] that a Conway chamber is a standard fundamental domain of
the action of W (L26) on P26. The tessellation of P26 by Conway chambers
induces a tessellation of PY by induced chambers.

Proposition 6.3. The action of auts(Y ) on PY preserves the tessellation
of PY by induced chambers.

Proof. Let g be an element of auts(Y ). By the proof of Proposition 6.2,

there exists an isometry g̃ ∈ O(SX ,PX) such that S g̃Y = SY , g̃|SY = g
and the action of g̃ on S∨X/SX is ±1. By the last condition, we see that g̃
further extends to an isometry g26 ∈ O(L26,P26). Since the action of g26 on
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P26 preserves the tessellation by Conway chambers, the action of g on PY
preserves the tessellation by induced chambers. �

Let L10 be an even unimodular hyperbolic lattice of rank 10, which is
unique up to isomorphism. In [4], we have classified all primitive embeddings
of SY (2) ∼= L10(2) into L26, and studied the tessellation of PY by induced
chambers. It turns out that, up to the action of O(L10) and O(L26), there
exist exactly 17 primitive embeddings L10(2) ↪→ L26, and except for one
primitive embedding named as “infty”, the associated tessellation of PY by
induced chambers has the following properties:

• Each induced chamber D is bounded by a finite number of walls,
and each wall is defined by a (−2)-vector.
• If a (−2)-vector r defines a wall w = D∩(r)⊥ of an induced chamber
D, then the reflection sr : x 7→ x+ 〈x, r〉r into the mirror (r)⊥ maps
D to the induced chamber adjacent to D across the wall w.

In particular, the tessellation of PY by induced chambers is simple in the
sense of [30].

6.2. Main Algorithm. Suppose that the primitive embedding ιY is not of
type “infty”. Suppose also that we have calculated the walls of an induced
chamber D0 ⊂ PY contained in NY .

Before starting the main algorithm, we calculate the finite groups O(Q)
and O(SY , D0). We also fix an ample class α that is contained in the interior
of D0. In the following, an induced chamber D is expressed by an element
τD ∈ O(SY ,PY ) such that D = D0

τD . Note that τD is uniquely determined
by D up to left multiplications of elements of O(SY , D0).

Then we have the following auxiliary algorithms.

Algorithm 6.4. Given an induced chamber D, we can determine whether
D ⊂ NY or not. Indeed, by (6.1), we have D ⊂ NY if and only if there
exist no (−2)-vectors r of SX such that 〈π∗(α), r〉 > 0 and 〈π∗(ατD), r〉 < 0.
The set of such (−2)-vectors can be calculated by the algorithm in Sec-
tion 3.3 of [29].

Suppose that D ⊂ NY . A wall D ∩ (r)⊥ of D is said to be inner if the
induced chamber Dsr adjacent to D across D ∩ (r)⊥ is contained in NY .
Otherwise, we say that D ∩ (r)⊥ is outer.

Algorithm 6.5.

Input: An embedding SY (2) ↪→ SX ↪→ L26, the groups O(SY , D0), O(Q)
and two induced chambers D,D′ ⊂ NY represented by τD, τD′ .
Output: The set {γ ∈ auts(Y ) | D′ = Dγ}.

1: Compute Isom(D,D′) := τ−1D O(SY , D0)τD′ .
This is the set of all isometries g ∈ O(SY ,PY ) that satisfy D′ = Dg.

2: Initialize I := {}
3: for g ∈ Isom(D,D′) do

Use O(Q) and Proposition 6.2 to check
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4: if g ∈ auts(Y ) then
5: add g to I.

6: Return I.

Note that since both D and D′ are contained in NY , condition (ii-a) of
Proposition 6.2 is always satisfied in line 4. For D = D′, Algorithm 6.5
calculates the group

auts(Y,D) := O(SY , D) ∩ auts(Y ).

Two induced chambers D and D′ in NY are said to be auts(Y )-equivalent
if there exists an element γ ∈ auts(Y ) such that D′ = Dγ .

Algorithm 6.6.

Input: An embedding SY (2) ↪→ SX ↪→ L26

and an induced chamber D0 ⊂ NY .
Output: A list R of representatives of auts(Y )-equivalence classes of in-
duced chambers contained in NY and a generating set G of auts(Y ).

1: Initialize R := [D0], G := {} and i := 0.
2: while i ≤ |R| do
3: Let Di be the (i+ 1)st element of R.
4: Replace G by G ∪ auts(Y,Di).
5: Let W be the set of walls of Di.
6: Compute orbit representatives of W under the action of auts(Y,Di).
7: for each representative wall w of W/auts(Y,Di) do
8: Let r be the (−2)-vector of SY defining the wall w = D ∩ (r)⊥.
9: Let sr be the reflection x 7→ x+ 〈x, r〉r.

10: Let Dw = Dsr
i be the induced chamber adjacent to Di across w.

11: Set τDw := τDisr.
12: if Dw 6⊂ NY then
13: continue with the next representative wall.

14: Set f := true.
15: for each D ∈ R do
16: if D is auts(Y )-equivalent to Dw then
17: Let γ ∈ auts(Y ) be an element such that Dw = Dγ .
18: Add γ to G.
19: Replace f by false.
20: Break the for loop.

21: if f = true then
22: Add Dw to R.

23: Increment i.
24: Return R and G.

Proof. This Algorithm is proved in the same way as the proof of Proposi-
tion 6.3 of [28]. �
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6.3. Examples. The details of the following computations are available
at [31].

6.3.1. The Enriques surface in Proposition 5.3. The Picard number of the
covering K3 surface is 16, and the orthogonal complement Q of SY (2) in
SX is A6(−2). Therefore O(Q) is of order 10080. The ADE-type of (−2)-
vectors in the orthogonal complement P of SY (2) in L26 is 8A1+2D4. Hence
the embedding ιY is of type 40B in the notation of [4]. The number |R| of
auts(Y )-equivalence classes of induced chambers in NY is 2. Let D0 and
D1 be the representatives of auts(Y )-equivalence classes. For i = 0, 1, the
group auts(Y,Di) is isomorphic to Z/2Z× Z/2Z and the 40 walls of Di are
decomposed into 10 orbits under the action of auts(Y,Di). Among the 40
walls, exactly 3 × 4 = 12 walls are outer walls. For each inner wall w, the
two induced chambers containing w are not auts(Y )-equivalent, that is, one
is auts(Y )-equivalent to D0 and the other is auts(Y )-equivalent to D1.

6.3.2. The Enriques surface in Proposition 4.2. The Picard number of the
covering K3 surface is 16, and the orthogonal complement Q of SY (2) in
SX is E6(−2). Therefore O(Q) is of order 103680. The ADE-type of (−2)-
vectors in the orthogonal complement P of SY (2) in L26 is D4 +D5. Hence
the embedding ιY is of type 20A, which means that D0 is bounded by walls
defined by (−2)-vectors that form the dual graph of Nikulin-Kondo’s type
V [13]. The number |R| of auts(Y )-equivalence classes of induced chambers
in NY is 20. They are decomposed into the following three types.

Type |auts(Y,D)| outer walls inner walls number
a 1 1× 7 1× 13 2
b 1 1× 5 1× 15 6
c 2 1× 2 + 2× 2 1× 2 + 2× 6 12.

For example, there exist twelve auts(Y )-equivalence classes of type c. If
D is an induced chamber of type c, then auts(Y,D) is Z/2Z, and D has 6
outer walls and 14 inner walls. Under the action of auts(Y,D), the 6 outer
walls are decomposed into 4 orbits of size 1, 1, 2, 2, and the 14 inner walls
are decomposed into 8 orbits of size 1, 1, 2, . . . , 2.

6.3.3. The Enriques surface in Proposition 4.7. The Picard number of the
covering K3 surface is 18, and the orthogonal complement Q of SY (2) in
SX is A8(−2). Therefore O(Q) is of order 725760. The ADE-type of (−2)-
vectors in the orthogonal complement P of SY (2) in L26 is A3 +A4. Hence
the embedding ιY is of type 20D, which means that D0 is bounded by walls
defined by (−2)-vectors that form the dual graph of Nikulin-Kondo’s type
VII [13]. The number |R| of auts(Y )-equivalence classes of induced chambers
in NY is 1. The group auts(Y,D0) is isomorphic to S3, and the 20 walls of
D0 are decomposed into 6 orbits, each of which consists of

6 outer, 3 outer, 3 outer, 3 inner, 3 inner, 2 inner.
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