A NOTE ON MIRANDA-MORRISON THEORY

ICHIRO SHIMADA

Let (X, f, s) be a complex elliptic K3 surface; that is, X is a complex K3 surface, $f: X \to \mathbb{P}^1$ is a fibration whose general fiber is a curve of genus 1, and $s: \mathbb{P}^1 \to X$ a section of f. As in [2], we consider the following objects:

- S_X is the Néron-Severi lattice of X, embedded primitively into the even unimodular lattice $H^2(X,\mathbb{Z})$ with the cup product.
- U_f is the sublattice of S_X generated by the class of a fiber of f and the class of the zero section $s(\mathbb{P}^1)$. Thus U_f is a hyperbolic plane.
- Φ_f is the set of classes of smooth rational curves on X that are mapped by f to a point and disjoint from $s(\mathbb{P}^1)$. It is well-known that Φ_f is a fundamental system of roots of type ADE.
- $L(\Phi_f)$ is the sublattice of S_X generated by Φ_f .
- M_f is the primitive closure of $L(\Phi_f)$ in S_X . It is obvious that $L(\Phi_f)$ is orthogonal to U_f in S_X , and hence the orthogonal direct sum $U_f \oplus M_f$ is embedded primitively into S_X .
- A_f is the finite abelian group $M_f/L(\Phi_f)$. It is well-known that A_f is isomorphic to the torsion part of the Mordell-Weil group of (X, f, s).
- T_f is the orthogonal complement of $U_f \oplus M_f$ in $H^2(X,\mathbb{Z})$. Then we have an isomorphism $q_{T_f} \cong -q_{M_f}$.
- $O(T_f) \to O(q_{T_f})$ is the natural homomorphism from the orthogonal group of T_f to the automorphism group of the discriminant form q_{T_f} of T_f .
- \mathcal{G}_{T_f} is the genus of lattices containing the isomorphism class of T_f .

Suppose that rank $T_f \geq 3$; that is, rank $L(\Phi_f) \leq 17$. Miranda-Morrison theory [1] enables us to put a structure of the abelian group on \mathcal{G}_{T_f} , and to calculate a group \mathcal{M}_{T_f} that fits in the exact sequence

$$0 \to \operatorname{Coker}(\operatorname{O}(T_f) \to \operatorname{O}(q_{T_f})) \to \mathcal{M}_{T_f} \to \mathcal{G}_{T_f} \to 0.$$

We have calculated this group \mathcal{M}_{T_f} for all elliptic K3 surface (X, f, s) by means of the computational tools developed in [2].

Theorem 1. Suppose that rank $T_f \geq 3$. Then the group \mathcal{G}_{T_f} is trivial.

Theorem 2. The list in the following page is the list of all the cases where rank $T_f \geq 3$ and \mathcal{M}_{T_f} is non-trivial.

Remark 3. In order to calculate the connected components of the moduli of elliptic K3 surfaces in [2], we have to take into account the positive sign structures of T_f , and the action of automorphisms of q_{T_f} coming from the automorphisms of the diagram Φ_f via the isomorphism $q_{T_f} \cong -q_{M_f}$. For this purpose, we presented a refinement of the Miranda-Morrison theory in Section 4.4 of [2]. The purpose of this note is to present a simple part of the calculation, for which we need not use the refinement of Miranda-Morrison theory.

1

 A_f

 $|\mathcal{M}_{T_f}|$.

the ADE type of Φ_f

The contents of the following table are

 $\operatorname{rank} L(\Phi_f)$

```
16 [ "D4", "D4", "A2", "A2", "A2", "A2"] [ 1 ] 2
16 [ "A4", "A4", "A4", "A4" ] [ 1 ] 2
16 [ "A4", "A4", "A4", "A3", "A1" ] [ 1 ] 2
16 [ "A4", "A4", "A4", "A2", "A1", "A1" ] [ 1 ] 2
17 [ "E8", "A4", "A4", "A1" ] [ 1 ] 2
17 [ "E7", "A4", "A4", "A1", "A1" ] [ 1 ] 2
17 [ "E6", "A7", "A2", "A1", "A1" ] [ 1 ] 2 17 [ "E6", "A4", "A4", "A3" ] [ 1 ] 2
17 [ "E6", "A4", "A4", "A2", "A1" ] [ 1 ] ^2
17 [ "D8", "A4", "A4", "A1" ] [ 1 ] 2 \,
17 [ "D8", "A4", "A4", "A1 ] [ 1 ] 2
17 [ "D8", "A3", "A2", "A2", "A2"] [ 1 ] 2
17 [ "D7", "D4", "A2", "A2", "A2"] [ 1 ] 2
17 [ "D7", "A4", "A4", "A2"] [ 1 ] 2
17 [ "D7", "A3", "A3", "A2", "A2"] [ 1 ] 2
17 [ "D6", "A7", "A2", "A2"] [ 1 ] 2
17 [ "D5", "D4", "A4", "A4"] [ 1 ] 2
17 [ "D5", "A4", "A4", "A4" ] [ 1 ] 2
17 [ "D5", "A4", "A4", "A3", "A1" ] [ 1 ] 2
17 [ "D5", "A4", "A4", "A2", "A1", "A1" ] [ 1 ] 2
17 [ "D5", "A3", "A3", "A2", "A2", "A2"] [ 1 ] 4
17 [ "D4", "A7", "A2", "A2", "A1", "A1" ] [ 2 ] 2
17 [ "D4", "A4", "A4", "A2", "A2", "A1" ] [ 1 ] 2
17 [ "D4", "A3", "A3", "A2", "A2"] [ 2 ] 2
17 [ "A9", "A4", "A4" ] [ 1 ] 2
17 [ "A9", "A4", "A3", "A1" ] [ 2 ] 2
17 [ "A9", "A4", "A3", "A1" ] [ 1 ] 2
17 [ "A9", "A4", "A2", "A1", "A1" ] [ 1 ] 2
17 [ "A8", "A4", "A4", "A1" ] [ 1 ] 2
17 [ "A7", "A5", "A5" ] [ 1 ] 2
17 [ "A7", "A5", "A2", "A1", "A1", "A1" ] [ 2 ] 2 17 [ "A7", "A4", "A4", "A1", "A1" ] [ 1 ] 2
17 [ "A7", "A4", "A4", "A1", "A1"] [ 1 ] 2
17 [ "A7", "A4", "A2", "A2", "A1", "A1"] [ 1 ] 2
17 [ "A7", "A3", "A3", "A2", "A2"] [ 1 ] 2
17 [ "A6", "A6", "A2", "A2", "A1"] [ 1 ] 2
17 [ "A6", "A4", "A4", "A3"] [ 1 ] 2
17 [ "A6", "A4", "A4", "A2", "A1"] [ 1 ] 2
17 [ "A5", "A5", "A3", "A2", "A1"] [ 2 ] 2
17 [ "A5", "A4", "A4", "A4" ] [ 1 ] 2
17 [ "A5", "A4", "A4", "A3", "A1" ] [ 1 ] 2
17 [ "A5", "A4", "A4", "A2", "A2" ] [ 1 ] 2
17 [ "A5", "A4", "A4", "A2", "A1", "A1" ] [ 1 ] 2
17 [ "A5", "A3", "A3", "A2", "A1" ] [ 2 ] 2
17 [ "A4", "A4", "A4", "A1" ] [ 5 ] 2
17 [ "A4", "A4", "A4", "A3", "A1", "A1" ] [ 1 ] 2
17 [ "A4", "A4", "A4", "A2", "A1", "A1", "A1" ] [ 1 ] ^2
17 [ "A4", "A4", "A3", "A2", "A2", "A2"] [ 1 ] ^2
17 [ "A4", "A3", "A3", "A3", "A2", "A2"] [ 1 ] 2
```

Acknowledgement. Thanks are due to Professor Klaus Hulek and Professor Michael Lönne for their interests in my work.

References

- [1] Rick Miranda and David R. Morrison. *Embeddings of integral quadratic forms*. electronic, 2009, http://web.math.ucsb.edu/ drm/manuscripts/eiqf.pdf .
- [2] Ichiro Shimada. Connected components of the moduli of elliptic K3 surfaces, 2016. arXiv:1610.04706

Department of Mathematics, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526 JAPAN

 $E ext{-}mail\ address: shimada@math.sci.hiroshima-u.ac.jp}$