A NOTE ON MIRANDA-MORRISON THEORY

ICHIRO SHIMADA

Let (X, f, s) be a complex elliptic K3 surface; that is, X is a complex K3 surface,
f: X — P! is a fibration whose general fiber is a curve of genus 1, and s: P! — X
a section of f. As in [2], we consider the following objects:

e Sx is the Néron-Severi lattice of X, embedded primitively into the even
unimodular lattice H?(X,Z) with the cup product.

e Uy is the sublattice of Sx generated by the class of a fiber of f and the
class of the zero section s(P'). Thus Uy is a hyperbolic plane.

o &, is the set of classes of smooth rational curves on X that are mapped
by f to a point and disjoint from s(P'). It is well-known that ®; is a
fundamental system of roots of type ADE.

o L(®y) is the sublattice of Sx generated by ®;.

e My is the primitive closure of L(®y) in Sx. It is obvious that L(®y) is
orthogonal to Uy in Sx, and hence the orthogonal direct sum Uy @ My is
embedded primitively into Sx.

e Ay is the finite abelian group My/L(®¢). It is well-known that Ay is
isomorphic to the torsion part of the Mordell-Weil group of (X, f, s).

e Ty is the orthogonal complement of Uy & My in H*(X,Z). Then we have
an isomorphism g7, = —quy,.

e O(Ty) — O(qr,) is the natural homomorphism from the orthogonal group
of Ty to the automorphism group of the discriminant form qr, of Ty.

e Gr, is the genus of lattices containing the isomorphism class of 7.
Suppose that rank Ty > 3; that is, rank L(® ;) < 17. Miranda-Morrison theory [1]
enables us to put a structure of the abelian group on Gr,, and to calculate a group
Mr, that fits in the exact sequence

0 — Coker(O(Ty) — O(qr;)) — Mz, — G, — 0.

We have calculated this group M, for all elliptic K3 surface (X, f, s) by means of
the computational tools developed in [2].

Theorem 1. Suppose that rank Ty > 3. Then the group Gr, is trivial.

Theorem 2. The list in the following page is the list of all the cases where rank Ty >
3 and Mr, is non-trivial.

Remark 3. In order to calculate the connected components of the moduli of elliptic
K3 surfaces in [2], we have to take into account the positive sign structures of T,
and the action of automorphisms of g7, coming from the automorphisms of the
diagram @y via the isomorphism gqr, = —qns,. For this purpose, we presented a
refinement of the Miranda-Morrison theory in Section 4.4 of [2]. The purpose of
this note is to present a simple part of the calculation, for which we need not use
the refinement of Miranda-Morrison theory.
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The contents of the following table are
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"D4",
"Ag",
"Ad",
"Ad",
"E8",
"ET",
"E6",
"E6",
"E6",
"Dg",
"D8",
"D7",
"D7",
"D7",
"D6"
"D5",
"D5",
"D5",
"D5",
"D5",
"D4",
"D4",
"D4",
"A9",
"A9",
"A9",
"A9",
"A8",
"AT",
"AT",
"AT",
"AT",
"AT",
"A6",
"A6",
"A6",
"AS",
"AS",
"AS",
"AS",
"AB",
"AS",
"A4",
"Ad",
"Ad",
"A4",
"A4",

rank L(® )

"D4",
a4,
A4,
"aq",
a4,
"a4n,
AT,
a4,
"A4",
"aq",
"A3",
"D4",
"aq",
"A3",
"AT",
"D4",
a4,
"a4n,
"aq",
"A3",
"AT",
"a4",
"A3",
"A4",
"aqn,
a4,
"A4",
"aqn,
"AS",
IIA5lI s
"aqn,
a4,
IIABII s
"A6",
a4,
"A4",
"AB",
A4,
"a4",
"aqn,
A4,
"A3",
"aqn,
A4,
"aq",
"aqn,
"A3",

the ADE type of ®¢

"A2M, "A2", "A2",
"A4", "A4" ] [ 1
"A4", "A3", "A1"
"A4M, “"A2", "A1",
"A4", "A1" ] [ 1
"A4", "A1", “AL"
"A2M, "A1M, “AL"
"A4", "A3" ] [ 1
"A4", "A2", "A1"
"A4", "A1" ] [ 1
"A2M, "A2", "A2"
"A2M, "A2", "A2"
"A4", "A2" 1 [ 1
"A3", "A2", "A2"
"A2", "A2" 1 [ 1
"A4", "A4" ] [ 1
"A4", "A4" ] [ 1
"A4", "A3", "A1"
"A4, “"A2", "A1",
"A3", "A2", "A2",
"A2", "A2", "A1",
"A4M, "A2", "A2",
"A3", "A3", "A2",
"Ad" 1 [11]2

"A3", "A1" ] [ 2
"A3", "A1" ] [ 1
"A2M, "A1", “AL"
"A4", "A1" ] [ 1
"A" 1 [ 1] 2

"A2", "A1M, “A1",
"A4M, "A1M, “ALM
"A2", "A2", "A1",
"A3", "A2", "A2"
"A2M, MA2", “ALM
"A4", "A3" ] [ 1
"A4", "A2", "A1"
"A3", "A2", "A1",
"A4", "A4" 1 [ 1
"A4", "A3", "A1"
"A4M, "A2M, "A2M
"A4", "A2", "A1",
"A3", "A3", "A2",
"A4M, "A4M, “ALM
"A4", "A3", "A1",
"A4M, "A2", “A1",
"A3", "A2", "A2",
"A3", "A3", "A2",
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