ENRIQUES INVOLUTIONS ON SINGULAR K3 SURFACES OF SMALL DISCRIMINANTS: COMPUTATIONAL DATA

ICHIRO SHIMADA

1. INTRODUCTION

This note is an explanation of the computational data obtained in the second half of the paper [2] (joint work with Davide Cesare Veniani). The data are available from the author's webpage:

http://www.math.sci.hiroshima-u.ac.jp/~shimada/K3andEnriques.html

The data consists of 11 files, each of which contains a record of GAP [1] that describes a data of the singular K3 surface X with the transcendental lattice T_X :

m

$$\begin{array}{rclcrcrc} {\tt Xd3a2b1c2} & : & T_X = [2,1,2] \\ {\tt Xd4a2b0c2} & : & T_X = [2,0,2] \\ {\tt Xd7a2b1c4} & : & T_X = [2,1,4] \\ {\tt Xd8a2b0c4} & : & T_X = [2,0,4] \\ {\tt Xd12a2b0c6} & : & T_X = [2,0,6] \\ {\tt Xd12a4b2c4} & : & T_X = [4,2,4] \\ {\tt Xd15a2b1c8} & : & T_X = [4,2,4] \\ {\tt Xd16a4b0c4} & : & T_X = [4,0,4] \\ {\tt Xd20a4b2c6} & : & T_X = [4,2,6] \\ {\tt Xd24a2b0c12} & : & T_X = [2,0,12] \\ {\tt Xd36a6b0c6} & : & T_X = [6,0,6] \end{array}$$

Each of these records is written in the txt file with the same name.

In the file NKrecs.txt, we give a list of 7 records NKrec, each of which describes the nef-chamber of an Enriques surface with finite automorphism group.

Every lattice L is equipped with a basis, which is fixed during the whole calculation. The dual lattice L^{\vee} is regarded as a submodule of $L \otimes \mathbb{Q}$, and hence its elements are given by a vector with rational components.

The discriminant form q(L) of an even lattice L is described by a record, whose components are explained in Section 3. In particular, the natural projection $L^{\vee} \rightarrow$ L^{\vee}/L and the automorphism group O(q(L)) are given in this record, and the natural homomorphism $O(L) \to O(q(L))$ is calculated by means of this record.

Supported by JSPS KAKENHI Grant Number 15H05738, 16H03926, and 16K13749.

ICHIRO SHIMADA

2. XREC

Let Xrec be one of the records in (1.1). Then Xrec has the following components:

- Xrec.GramTX: The Gram matrix of T_X .
- Xrec.GramSX: The Gram matrix of S_X .
- Xrec.GramHX: The Gram matrix of $H^2(X,\mathbb{Z})$.
- Xrec.GramL: The Gram matrix of L_{26} .
- Xrec.GramR: The Gram matrix of the orthogonal complement $R := [\iota_X]^{\perp}$ of the image of $\iota_X : S_X \hookrightarrow L_{26}$.
- Xrec.m2R: The list of (-2)-vectors of R.
- Xrec.embTXHX: The embedding of T_X into $H^2(X, \mathbb{Z})$.
- Xrec.embSXHX: The embedding of S_X into $H^2(X, \mathbb{Z})$.
- Xrec.embSXL: The embedding of S_X into L_{26} .
- Xrec.embRL: The embedding of R into L_{26} .
- Xrec.projHXTX: The othogonal projection $H^2(X, \mathbb{Q}) \to T_X \otimes \mathbb{Q}$.
- Xrec.projHXSX: The othogonal projection $H^2(X, \mathbb{Q}) \to S_X \otimes \mathbb{Q}$.
- Xrec.projLSX: The othogonal projection $L_{26} \otimes \mathbb{Q} \to S_X \otimes \mathbb{Q}$.
- Xrec.projLR:The othogonal projection $L_{26} \otimes \mathbb{Q} \to R \otimes \mathbb{Q}$.
- Xrec.OTX: The elements of the group $O(T_X)$.
- Xrec.OR: The elements of the group O(R).
- Xrec.qTX: The record of $q(T_X)$ (see Section 3).
- Xrec.qSX: The record of $q(S_X)$ (see Section 3).
- Xrec.qR: The record of q(R) (see Section 3).
- Xrec.kerOTXOqTX: The elements of the kernel of the natural homomorphism $O(T_X) \rightarrow O(q(T_X))$.
- Xrec.imageOTXOqTX: The elements of the image of the natural homomorphism $O(T_X) \rightarrow O(q(T_X))$.
- Xrec.imageOROqR: The elements of the image of the natural homomorphism $O(R) \rightarrow O(q(R))$.
- Xrec.isomqSXqTX: The isomorphism $q(S_X) \to -q(T_X)$ induced by $H^2(X, \mathbb{Z})$.
- Xrec.isomqTXqSX: The inverse of Xrec.isomqSXqTX.
- Xrec.isomqSXqR: The isomorphism $q(S_X) \to -q(R)$ induced by L_{26} .
- Xrec.isomqRqSX: The inverse of Xrec.isomqSXqTR.
- Xrec.OTXomega: The elements of $O(T_X, \omega)$.
- Xrec.OqTXomega: The elements of $O(q(T_X), \omega)$.
- Xrec.OqSXomega: The elements of $O(q(S_X), \omega)$.
- Xrec.OqRomega: The image of $O(q(S_X), \omega)$ by the isomorphism $O(q(S_X)) \to O(q(R))$ induced by L_{26} .
- Xrec.weyl: The Weyl vector \mathbf{w} for the Conway chamber inducing D_0 .
- Xrec.weylS: The image of the Weyl vector \mathbf{w} by the orthogonal projection $L_{26} \rightarrow S_X$.

ENRIQUES SURFACES

- Xrec.autXD0: The elements of the group $aut(X, D_0)$.
- Xrec.DOwallorbitrecs: The list of records orbrec that describe orbits of the walls of D_0 under the action of $\operatorname{aut}(X, D_0)$. Each orbrec has the following components. Let w be a representative of the orbit o described by orbrec.
 - orbrec.definingv: The primitive vector v of S_X^{\vee} that defines the representative w of o.
 - orbrec.definingvs: The list of primitive vectors of S_X^{\vee} that define the walls in o.
 - orbrec.n: $n = \langle v, v \rangle$.
 - orbrec.a: $a = \langle \mathbf{w}_S, v \rangle$.
 - orbrec.size: The size |o| of orbrec.definingvs.
 - orbrec.innout: If w is inner, then "inner", whereas if w is outer, then "outer".

If w is inner, then orbrec has the following components. If w is outer, then the components below are the string "not defined".

- orbrec.type: The type (no.) of the orbit of inner-walls given in Tables of [2].
- orbrec.roots: The list of (-2)-vectors r of L_{26} such that $\langle \mathbf{w}, r \rangle = 1$ and that $(r)^{\perp}$ passes through $\iota_X(w) \subset \mathcal{P}_{26}$.
- orbrec.adetype: The ADE-type of a fundamental root system orbrec.roots, which is a list of strings "A1", "A2", ..., "E8".
- orbrec.adjwey1: The Weyl vector \mathbf{w}' corresponding to an Conway chamber C' that induces the $\iota_X^* \mathcal{R}_{26}^{\perp}$ -chamber D' adjacent to D_0 across the wall w.
- orbrec.adjweylS: The projection of $\mathbf{w}' \in L_{26}$ to S_X^{\vee} , which is the image of Xrec.weylS by an extra automorphism g_S associated with w
- orbrec.gL: An isometry $g_L \in O^+(L_{26})$ that maps C_0 to C', preserves S_X , and such that $g_L|S_X$ is an element of $\operatorname{aut}(X)$ that maps D_0 to D'.
- orbrec.gS: An isometry $g_S \in aut(X)$ that is an extra automorphism associated with w.
- orbrec.dg: The degree $\langle \mathbf{w}^{g_S}, \mathbf{w} \rangle$.
- Xrec.DOwallrecs: The list of records wallrec that describe the walls of D_0 . Each record wallrec has the following components.
 - wallrec.no: The number (index) of the wall, which will be used in facerec below.
 - wallrec.definingv: The primitive vector v of S_X^{\vee} that defines the wall w.
 - wallrec.innout: If w is inner, then "inner", whereas if w is outer, then "outer".

ICHIRO SHIMADA

- wallrec.type: If w is inner, then the type given in Tables of [2]. If w is outer, then "not defined".
- wallrec.extraaut: If w is inner, then an extra automorphism $g \in aut(X)$ associated with w. If w is outer, then "not defined".
- Xrec.facerecs: The list of records that describe the N_X -inner faces of D_0 . An $\operatorname{aut}(X)$ -equivalence class of N_X -inner faces of D_0 is described by a record facerec whose components are as follows. Let f be a representative of the $\operatorname{aut}(X)$ -equivalence class.
 - facerec.no: The number (index) of this aut(X)-equivalence class, which will be used in enrrec below.
 - facerec.dim: The dimension of f.

4

- facerec.basis: A basis of the vector subspace $\langle f \rangle$ of $S_X \otimes \mathbb{Q}$.
- facerec.passingwalls: The list of wallrec.no of walls of D_0 containing f.
- facerec.Gammaf: A list $\Gamma(f)$ of elements of $g \in \operatorname{aut}(X)$ such that $\{D_0^g | g \in \Gamma(f)\}$ is equal to $\mathcal{D}(f)$ and that, if $g \neq g' \in \Gamma(f)$, then $D_0^g \neq D_0^{g'}$.
- facerec.autXf: The list of elements of the group aut(X, f),
- facerec.orbrecs: The list of $\operatorname{aut}(X, D_0)$ -orbits contained in this $\operatorname{aut}(X)$ -equivalence class of N_X -inner faces of D_0 . Let o be an $\operatorname{aut}(X, D_0)$ -orbit in this $\operatorname{aut}(X)$ -equivalence class. Then o is described by the record orbrec with the following components. Let f' be a representative of o.
 - * orbrec.size: The size of o.
 - * orbrec.g: An element $g \in \operatorname{aut}(X)$ such that $f^g = f'$.
 - * orbrec.passingwalls: The list of wallrec.no of walls of D_0 containing f'.
 - * orbrec.passingwalltypes: The list of wallrec.type of walls containing f'.
- Xrec.Yrecs: The list of records that describe the Enriques involutions on X (see Section 4).

3. DISCREC

The discriminant form q(L) of an even lattice L of rank r with a fixed basis is described by a record **discrec**. We put

$$A(L) := L^{\vee}/L \cong \mathbb{Z}/a_1\mathbb{Z} \times \cdots \times \mathbb{Z}/a_l\mathbb{Z}$$

and fix, one and for all, a set of generators $\bar{v}_1, \ldots, \bar{v}_l$ of A(L), where \bar{v}_i is a generator of the *i*th component $\mathbb{Z}/a_i\mathbb{Z}$. Let $b(L): A(L) \times A(L) \to \mathbb{Q}/\mathbb{Z}$ be the bilinear form associated with the quadratic form $q(L): A(L) \to \mathbb{Q}/2\mathbb{Z}$. The record **discrec** has the following components.

ENRIQUES SURFACES

- discrec.discg: The list $[a_1, \ldots, a_l]$.
- discrec.discf: The Gram matrix of q(L), whose (i, j)-component is $q(L)(\bar{v}_i) \in \mathbb{Q}/2\mathbb{Z}$ if i = j and $b(L)(\bar{v}_i, \bar{v}_j) \in \mathbb{Q}/\mathbb{Z}$ if $i \neq j$.
- discrec.lifts: The list of vectors $v_1, \ldots, v_l \in L^{\vee}$, where $\bar{v}_i = v_i \mod L$.
- discrec.proj: The $r \times l$ matrix M such that $v \mapsto vM$ gives the natural projection $L^{\vee} \to A(L)$, where $v \in L^{\vee}$ is written as a vector of length r with rational components with respect to the basis of L.
- discrec.Oq: The list of elements of O(q(L)).

Note that, by this record, we can calculate the action $q(g) \in O(q(L))$ of a given isometry g of L on q(L).

4. Enrrec

An Enriques involution $\varepsilon \in \operatorname{aut}(X)$ on X is is described by a record enrrec whose components are as follows.

- enrrec.no: The number of ε in Table (Enriques involutions) of [2].
- enrrec.fenr: The number facerec.no of the $\operatorname{aut}(X)$ -equivalence class of N_X -inner faces containing f_{ε} .
- enrrec.invol: The matrix representation of $\varepsilon \in O^+(S_X)$.
- enrrec.GramSY: The Gram matrix of S_Y .
- enrrec.GramP: The Gram matrix of the orthogonal complement P of the image of $\pi^* \colon S_Y(2) \hookrightarrow S_X$.
- enrrec.embSY2SX: The embedding $\pi^* \colon S_Y(2) \hookrightarrow S_X$.
- enrrec.embPSX: The embedding $P \hookrightarrow S_X$.
- enrrec.projSXSY2: The orthogonal projection $S_X \otimes \mathbb{Q} \to S_Y(2) \otimes \mathbb{Q}$.
- enrrec.projSXP: The orthogonal projection $S_X \otimes \mathbb{Q} \to P \otimes \mathbb{Q}$.
- enrrec.m4P: The list of (-4)-vectors of P.
- enrrec.autXenrfenr: The list of elements of $\operatorname{aut}(X, \varepsilon, f_{\varepsilon})$.
- enrrec.kerres: The list of elements of the kernel of the restriction homomorphism $\operatorname{aut}(X, \varepsilon, f_{\varepsilon}) \to \operatorname{aut}(Y, E_0)$. The quotient of enrrec.kerres by $\langle \varepsilon \rangle$ is identified with the kernel of ρ_Y : $\operatorname{Aut}(Y) \to \operatorname{aut}(Y)$.
- enrrec.autYE0: The list of elements of $aut(Y, E_0)$.
- enrrec.EONKtype: The Nikulin-Kondo type of the walls of E_0 . For the Enriques involution No. 24 in Table (Enriques involutions) of [2], this data is "not defined".
- enrrec.EOwalls: The list of walls of defining (-2)-vectors of the walls of E_0 .
- enrrec.EOwallrecs: The list of records EOwallrec, each of which describes a wall w of E_0 . The components of the record EOwallrec are as follows.

ICHIRO SHIMADA

- EOwallrec.no: The number of the wall. Except for the Enriques involution No. 24, the walls are numbered according to the corresponding Nikulin-Kondo configuration recorded in NKrecs (see Section 5), and hence this numbering coincides with the figures of Nikulin-Kondo configurations in [2].
- EOwallrec.definingv: The (-2)-vector $r \in \mathcal{R}_Y$ of S_Y that defines the wall w of E_0 .
- wallrec.innout: If w is inner, then "inner", whereas if w is outer, then "outer".
- EOwallrec.embwSX: A basis of the minimal linear subspace of $S_X \otimes \mathbb{Q}$ containing $\pi^*(w) \subset \mathcal{P}_X$.
- EOwallrec.passingwalls: The list of wallrec.no of walls of D_0 passing through $\pi^*(w) \subset \mathcal{P}_X$.
- EOwallrec.fenrw: If w is inner, then the facerec.no of the aut(X)equivalence class of N_X -inner faces containing $f_{\varepsilon}(w)$. If w is outer,
 then "not defined".
- EOwallrec.extraaut: If w is inner, then an extra automorphism $g \in aut(X, \varepsilon)$ associated with w. If w is outer, then "not defined".
- EOwallrec.extraautY: If w is inner, then the automorphism $g|S_Y \in aut(Y)$, where $g \in aut(X, \varepsilon)$ is EOwallrec.extraaut. If w is outer, then "not defined".
- enrrec.autXenrgenerators: A generating set of $\operatorname{aut}(X, \varepsilon)$.
- enrrec.autYgenerators: A generating set of aut(Y).

5. NKrec

In the file NKrecs.txt, we give a list of 7 records NKrec, each of which describes the nef-chamber of an Enriques surface Y with finite automorphism group. The components of NKrec are as follows.

- NKrec.type: The Nikulin-Kondo type of Y (a number between 1 and 7).
- NKrec.configmat: The adjacency matrix of the dual graph of the smooth rational curves on Y.

In the figures of Nikulin-Kondo configurations in [2], the nodes are numbered according to this record.

References

- The GAP Group. GAP Groups, Algorithms, and Programming. Version 4.8.6; 2016 (http://www.gap-system.org).
- [2] Ichiro Shimada and Davide Cesare Veniani. Enriques surfaces covered by singular k3 surfaces of small discriminants, 2018. Preprint.

ENRIQUES SURFACES

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, HIROSHIMA UNIVERSITY, 1-3-1 KAGAMIYAMA, HIGASHI-HIROSHIMA, 739-8526 JAPAN *Email address*: ichiro-shimada@hiroshima-u.ac.jp