
ON FROBENIUS INCIDENCE VARIETIES OF LINEAR
SUBSPACES OVER FINITE FIELDS

I. SHIMADA

Abstract. We define Frobenius incidence varieties by means of the incidence
relation of Frobenius images of linear subspaces in a fixed vector space over

a finite field, and investigate their properties such as supersingularity, Betti
numbers and unirationality. These varieties are variants of the Deligne-Lusztig
varieties. We then study the lattices associated with algebraic cycles on them.

We obtain a positive-definite lattice of rank 84 that yields a dense sphere
packing from a 4-dimensional Frobenius incidence variety in characteristic 2.

1. Introduction

Codes arising from the rational points of Deligne-Lusztig varieties have been
studied in several cases [14, 15, 20]. In this paper, we investigate lattices arising
from algebraic cycles on certain variants of Deligne-Lusztig varieties, which we call
Frobenius incidence varieties. We study basic properties of Frobenius incidence
varieties such as supersingularity, Betti numbers and unirationality. By means
of intersection pairing of algebraic cycles on a 4-dimensional Frobenius incidence
variety over F2, we obtain a positive-definite lattice of rank 84 that yields a dense
sphere packing.

1.1. An illustrating example. Before giving the general definition of Frobenius
incidence varieties in §1.2, we present the simplest example of Frobenius incidence
surfaces, hoping that it explains the motivation for the main results of this paper.

We fix a vector space V over Fp of dimension 3 with coordinates (x1, x2, x3),
and consider the projective plane P∗(V ) with the homogeneous coordinate system
(x1 : x2 : x3). Let F̄ be an algebraic closure of Fp. An F̄ -valued point (a1 : a2 : a3)
of P∗(V ) corresponds to the 1-dimensional linear subspace of V ⊗ F̄ spanned by
(a1, a2, a3) ∈ V ⊗ F̄ . Let P∗(V ) denote the dual projective plane with homogeneous
coordinates (y1 : y2 : y3) dual to (x1 : x2 : x3). An F̄ -valued point (b1 : b2 : b3)
of P∗(V ) corresponds to the 2-dimensional linear subspace of V ⊗ F̄ defined by
b1x1 + b2x2 + b3x3 = 0. The incidence variety is a hypersurface of P∗(V ) × P∗(V )
defined by x1y1 + x2y2 + x3y3 = 0, which parametrizes all the pairs (L,M) of a
1-dimensional linear subspace L and a 2-dimensional linear subspace M such that
L ⊂ M .

Let q be a power of p by a positive integer. The qth power Frobenius morphism
of V ⊗ F̄ is the morphism from V ⊗ F̄ to itself given by (x1, x2, x3) 7→ (xq

1, x
q
2, x

q
3).

For a linear subspace N of V ⊗ F̄ , we denote by Nq ⊂ V ⊗ F̄ the image of N by the
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2 I. SHIMADA

qth power Frobenius morphism, which is again a linear subspace of V ⊗ F̄ . If a 2-
dimensional linear subspace M of V ⊗F̄ corresponds to a point (b1 : b2 : b3) ∈ P∗(V ),
the linear subspace Mq corresponds to the point (bq

1 : bq
2 : bq

3).

We take two Frobenius twists of the incidence variety, and take their intersection.
Let r and s be powers of p by positive integers. The hypersurface of P∗(V )×P∗(V )
defined by

(1.1) xr
1y1 + xr

2y2 + xr
3y3 = 0

parametrizes the pairs (L,M) such that Lr ⊂ M , while the hypersurface of P∗(V )×
P∗(V ) defined by

(1.2) x1y
s
1 + x2y

s
2 + x3y

s
3 = 0

parametrizes the pairs (L,M) such that L ⊂ Ms. Using affine coordinates of
P∗(V )×P∗(V ), we see that these two hypersurfaces (1.1) and (1.2) intersect trans-
versely. Let X be the intersection, which is a smooth surface parameterizing the
pairs (L,M) such that

Lr ⊂ M and L ⊂ Ms,

or equivalently
Lr ⊂ M ∩ Mrs,

or equivalently
L + Lrs ⊂ Ms.

We put q := rs, and count the Fqν -rational points of the surface X for positive
integers ν, that is, we count the number of the pairs (L,M) of Fqν -rational linear
subspaces L and M that satify the above conditions. Consider the first projection
π1 : X → P∗(V ). Let P be an Fqν -rational point of P∗(V ) corresponding to L ⊂
V ⊗ F̄ . Then, if dim(L+Lq) = 2, the fiber π−1

1 (P ) consists of a single Fqν -rational
point corresponding to the Fqν -rational subspace M such that L+Lq = Ms, while,
if dim(L+Lq) = 1, it is isomorphic to an Fqν -rational projective line parameterizing
subspaces M such that L+Lq ⊂ Ms. Since dim(L+Lq) = 1 holds if and only P is
an Fq-rational point of P∗(V ), the number of the Fqν -rational points of X is equal
to (

q3ν − 1
qν − 1

− q3 − 1
q − 1

)
+

(
q2ν − 1
qν − 1

)
·
(

q3 − 1
q − 1

)
.

If we put
N(t) := t2 + (q2 + q + 2)t + 1,

then this number is equal to N(qν). In particular, from the classical theorems on
the Weil conjecture (see, for example, [12, App. C]), we obtain the Betti numbers
bi(X) of the surface X. We have b0(X) = b4(X) = 1, b1(X) = b3(X) = 0 and

b2(X) = q2 + q + 2.

Remark that, when r > 2 and s > 2, the canonical line bundle O(r − 2, s− 2) of
X is ample and has non-zero global sections. Hence, the complex algebraic surface
XC defined by (1.1) and (1.2) in CP2×CP2 cannot be unirational (see [12, Chap. V,
Remark 6.2.1]), and the second Betti cohomology group of XC cannot be spanned
by the classes of algebraic cycles because of the Hodge-theoretic reason (see [11,
p. 163]).
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However, the surface X has the so-called pathological properties of algebraic
varieties in positive characteristics, that is, X contradicts naive expectations from
the properties of XC. Since the projection π1 : X → P∗(V ) gives rise to a purely
inseparable extension of the function fields, X is unirational. Moreover, since N(t)
is a polynomial in t, the eigenvalues of the qth power Frobenius endmorphism
acting on the l-adic cohomology ring of X is a power of q by integers. According to
the Tate conjecture, the second l-adic cohomology group of X should be spanned
by the classes of algebraic curves on X defined over Fq. This is indeed the case.
There are 2(b2(X) − 1) special rational curves defined over Fq on X; the fibers
ΣP of π1 : X → P∗(V ) over the Fq-rational points P of P∗(V ), and the fibers Σ′

Q

of π2 : X → P∗(V ) over the Fq-rational points Q of P∗(V ). By calculating the
intersection numbers between these curves (see [12, Chap. V, §1]), we see that the
numerical equivalence classes of ΣP and Σ′

Q together with the classes of the line
bundles O(1, 0) and O(0, 1) form a hyperbolic lattice N (X) of rank b2(X) under the
intersection pairing. Thus their classes span the second l-adic cohomology group of
X.

When p = r = s = 2, the surface X is a supersingular K3 surface in character-
istic 2 with |discN (X)| = 4. The defining equations (1.1) and (1.2), which were
discovered by Mukai, and the configuration of the 21 + 21 rational curves ΣP and
Σ′

Q played an important role in the study of the automorphism group of this K3
surface in Dolgachev-Kondo [6].

Looking at this example, we expect that the lattice N (X) possesses interesting
properties. In particular, its primitive part can yield a dense sphere packing.

1.2. Definitions and the main results. We give the definition of Frobenius
incidence varieties, and state the main results of this paper.

Let p be a prime, and let q := pν be a power of p by a positive integer ν. For a
field F of characteristic p with an algebraic closure F̄ , we put

F q := {xq | x ∈ F} and F 1/q := {x ∈ F̄ | xq ∈ F}.

For a scheme Y defined over a subfield of F , we denote by Y (F ) the set of F -valued
points of Y .

We fix an n-dimensional linear space V over Fp with n ≥ 3, and denote by Gn,l =
Gn−l

n or by GV,l = Gn−l
V the Grassmannian variety of l-dimensional subspaces of

V . To ease the notation, we use the same letter L to denote an F -valued point
L ∈ Gn,l(F ) of Gn,l and the corresponding linear subspace L ⊂ VF := V ⊗ F .
Moreover, for an extension field F ′ of F , we write L for the linear subspace L⊗F F ′

of VF ′ . Let φ denote the p th power Frobenius morphism of Gn,l ⊗ F̄p over F̄p, and
let φ(q) be the ν-fold iteration of φ. Then φ(q) induces a bijection from Gn,l(F )
to Gn,l(F q). We denote by Lq ∈ Gn,l(F q) the image of L ∈ Gn,l(F ) by φ(q), and
by L1/q ∈ Gn,l(F 1/q) the point that is mapped to L by φ(q). Let (x1, . . . , xn) be
Fp-rational coordinates of V . If L is defined in VF by linear equations

∑
j aijxj = 0

(i = 1, . . . , n−l) with aij ∈ F , then Lq is defined by the linear equations
∑

j aq
ijxj =

0 (i = 1, . . . , n − l).

Let l and c be positive integers such that l+c < n. We denote by I the incidence
subvariety of Gn,l × Gc

n. By definition, I is the reduced subscheme of Gn,l × Gc
n
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such that, for any field F of characteristic p, we have

I(F ) = { (L,M) ∈ Gn,l(F ) × Gc
n(F ) | L ⊂ M }.

Let r and s be powers of p by non-negative integers such that r > 1 or s > 1
holds. We define the Frobenius incidence variety X[r, s]cl to be the scheme-theoretic
intersection of the pull-backs (φ(r) × id)∗ I and (id × φ(s))∗ I of I, where id and
φ(1) denote the identity map:

X[r, s]cl := (φ(r) × id)∗ I ∩ (id × φ(s))∗ I.

For simplicity, we write X or X[r, s] or Xc
l for X[r, s]cl if there is no possibility of

confusion. The scheme X is defined over Fp and, for any field F over Fp, we have

(1.3) X(F ) = { (L,M) ∈ Gn,l(F ) × Gc
n(F ) | Lr ⊂ M and L ⊂ Ms }.

We have the following:

Proposition 1.1. The projective scheme X is smooth and geometrically irreducible
of dimension (n − l − c)(l + c).

Example 1.2. Let (x1 : · · · : xn) and (y1 : · · · : yn) be homogeneous coordinates
of GV,1 = P∗(V ) and G1

V = P∗(V ), respectively, that are dual to each other. Then
the incidence subvariety I is defined by

∑
xiyi = 0 in P∗(V ) × P∗(V ), and hence

X[r, s]11 is defined by

(1.4)

{
xr

1 y1 + · · · + xr
n yn = 0,

x1 ys
1 + · · · + xn ys

n = 0.

Therefore X[r, s]11 is of general type when r and s are sufficiently large.

We show that the Frobenius incidence varieties, which are of non-negative Ko-
daira dimension in general, have two pathological features of algebraic geometry in
positive characteristics; namely, supersingularity and unirationality.

Our first main result is as follows:

Theorem 1.3. There exists a polynomial N(t) with integer coefficients such that
the number of F(rs)ν -rational points of X is equal to N((rs)ν) for any ν ∈ Z>0.

In other words, X is supersingular over Frs in the sense that the eigenvalues of
the rs th power Frobenius endomorphism acting on the l-adic cohomology ring of
X ⊗ F̄rs are powers of rs by integers.

We also give in Theorem 2.2 a recursive formula for the polynomial N(t). We
see that the odd Betti numbers of X are zero, and can calculate the even Betti
numbers b2i(X) of X via the formula

(1.5) N(t) =
dim X∑
i=0

b2i(X) ti.

Example 1.4. The Betti numbers of X[r, s]11 in Example 1.2 are

b2i = b2(n−2)−2i =

{
i + 1 if i < n − 2,
n − 2 + ((rs)n − 1)/(rs − 1) if i = n − 2.
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The number of rational points of the Deligne-Lusztig varieties has been studied
by means of the representation theory of algebraic groups over finite fields. See,
for example, [27] and [2]. Our proof of Theorems 1.3 and 2.2 does not use the
representation theory, and is entirely elementary.

Our next result is on the unirationality of the Frobenius incidence varieties. A
variety Y defined over Fq is said to be purely-inseparably unirational over Fq if there
exists a purely inseparable dominant rational map PN · ·→ Y defined over Fq.

Theorem 1.5. The Frobenius incidence variety X is purely-inseparably unirational
over Fp.

The relation of supersingularity to unirationality has been observed in various
cases. See Shioda [24] for the supersingularity of unirational surfaces, and see
Shioda-Katsura [26] and Shimada [22] for the unirationality of supersingular Fermat
varieties.

From the defining equations (1.4) of X[r, s]11, we see that X[r, s]11 is a complete
intersection of two varieties of unseparated flags [13], or more specifically, of two
unseparated incidence varieties [17, §2]. Varieties of unseparated flags are classified
in [28] and [13]. Their pathological property with respect to Kodaira vanishing
theorem was studied in [16].

Next we investigate algebraic cycles on the Frobenius incidence varieties. Let Λ
be an Frs-rational linear subspace of VF := V ⊗ Frs such that l ≤ dimΛ ≤ n − c.
We define a subvariety ΣΛ of Gn,l × Gc

n by

(1.6) ΣΛ := GΛ,l × Gc
VF/Λ(r) .

Then ΣΛ is defined over Frs and, for any field F over Frs, we have

ΣΛ(F ) = { (L, M) ∈ Gn,l(F ) × Gc
n(F ) | L ⊂ Λ and Λr ⊂ M }.

It follows from Λrs = Λ that ΣΛ is contained in X. In Theorem 4.1, we calculate
the intersection of these algebraic cycles ΣΛ in the Chow ring A(X) of X. (See [12,
App. A] or [10] for the definition of Chow rings.)

Applying Theorem 4.1 to the case l = c = 1, we investigate the lattice generated
by the numerical equivalence classes of middle dimensional algebraic cycles of

X1
1 = X[r, s]11 ⊂ GV,1 × G1

V = P∗(V ) × P∗(V ).

Note that, when l = c, we have 2 dimΣΛ = dimX[r, s]ll for any Λ. Let An−2(X1
1 )

denote the Chow group of middle-dimensional algebraic cycles on X1
1 over F̄p. For

i = 1, . . . , n − 1, let hi be the intersection of X1
1 with Pi × Pn−i ⊂ P∗(V ) × P∗(V ),

where Pj is a general j-dimensional projective linear subspace of P∗(V ) or P∗(V ).
Then hi is of middle-dimension on X1

1 . We consider the submodule

Ñ (X1
1 ) ⊂ An−2(X1

1 )

generated by h1, . . . , hn−1 and ΣΛ associated with all Frs-rational linear subspaces
Λ of V ⊗ Frs such that 1 ≤ dimΛ ≤ n − 1. Then we have the intersection pairing
on Ñ (X1

1 ). Let Ñ (X1
1 )⊥ denote the submodule of Ñ (X1

1 ) consisting of x ∈ Ñ (X1
1 )

such that (x, y) = 0 holds for any y ∈ Ñ (X1
1 ). We set

N (X1
1 ) := Ñ (X1

1 )/Ñ (X1
1 )⊥.
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Then N (X1
1 ) is a finitely-generated free Z-module equipped with the non-degenerate

intersection pairing

N (X1
1 ) × N (X1

1 ) → Z.

Thus N (X1
1 ) is a lattice. In Theorem 5.1, we describe the rank and the discriminant

of this lattice. As a corollary of Theorem 5.1, we obtain the following:

Corollary 1.6. The l-adic cohomology ring of X1
1 ⊗ F̄rs is generated by the coho-

mology classes of the algebraic cycles ΣΛ and the image of the restriction homo-
morphism from the cohomology ring of P∗(V ) × P∗(V ).

In Theorem 5.1, it is shown that the discriminant of N (X1
1 ) is a power of p. This

fact is an analogue of the theorem on the discriminant of the Néron-Severi lattice
of a supersingular K3 surface (in the sense of Shioda) proved by Artin [1] and
Rudakov-Shafarevich [21]. See also [23] for a similar result on the Fermat variety
of degree q + 1.

For x ∈ Ñ (X1
1 ), let [x] ∈ N (X1

1 ) denote the class of x modulo Ñ (X1
1 )⊥. We

define the primitive part Nprim(X1
1 ) of N (X1

1 ) by

Nprim(X1
1 ) := { [x] ∈ N (X1

1 ) | ([x], [hi]) = 0 for i = 1, . . . , n − 1 }.

For a lattice L, let [−1]νL denote the lattice obtained from L by multiplying the
symmetric bilinear form with (−1)ν .

Theorem 1.7. The intersection pairing on Nprim(X1
1 ) is non-degenerate. The

lattice [−1]nNprim(X1
1 ) is positive-definite of rank |Pn−1(Frs)| − 1.

In the last section, our construction is applied to the sphere packing problem. We
investigate the case n = 4, and study the positive-definite lattice Nprim(X[2, 2]11)
of the 4-dimensional Frobenius incidence variety X[2, 2]11.

Theorem 1.8. Suppose that n = 4. The lattice Nprim(X[2, 2]11) is an even positive-
definite lattice of rank 84, with discriminant 85 · 216, and with minimal norm 8.

In particular, the normalized center density of Nprim(X[2, 2]11) is 234/
√

85 =
230.795..., while the Minkowski-Hlawka bound at rank 84 is 217.546.... See §6 for the
definition of normalized center density and Minkowski-Hlawka bound.

In the proof of Theorem 1.8, we construct another positive-definite lattice MC
of rank 85 associated with a code C over Z/8Z. The normalized center density
232.5 of MC is also larger than the Minkowski-Hlawka bound 218.429... at rank 85.
See Theorem 6.1.

1.3. The plan of this paper. The proofs of these results are given as follows.
In §2, we show that the Frobenius incidence variety X is smooth in Proposition 2.1,
and give a recursive formula for the number of F(rs)ν -rational points of X in The-
orem 2.2. Proposition 1.1 and Theorem 1.3 follow from these results. In §3, we
show that X is purely-inseparably unirational. In §4, we give a formula for the
intersection of the algebraic cycles ΣΛ in the Chow ring of X. In §5, we study the
case where l = c = 1, and prove Corollary 1.6 and Theorem 1.7. In the last section,
we study the case n = 4, l = c = 1, r = s = 2, and prove Theorem 1.8.
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2. Number of rational points and the Betti numbers

In this section, we prove Proposition 1.1 and Theorem 1.3.

It is useful to note that the defining property (1.3) of the Frobenius incidence
variety X = X[r, s]cl is rephrased as follows:

(2.1)
X(F ) = { (L,M) ∈ Gn,l(F ) × Gc

n(F ) | Lr ⊂ M and L ⊂ Ms }
= { (L,M) ∈ Gn,l(F ) × Gc

n(F ) | L + Lrs ⊂ Ms }
= { (L,M) ∈ Gn,l(F ) × Gc

n(F ) | Lr ⊂ M ∩ Mrs }.

We denote by
Sn,l → Gn,l and Qc

n → Gc
n

the universal subbundle of V ⊗ O → Gn,l and the universal quotient bundle of
V ⊗O → Gc

n, respectively. We consider the vector bundle

E := Hom(pr∗(Sn,l), pr∗(Qc
n)) → Gn,l × Gc

n

of rank lc, where pr denotes the projections Gn,l×Gc
n → Gn,l and Gn,l×Gc

n → Gc
n.

Let γ : Gn,l × Gc
n → E denote the section of E corresponding to the canonical

homomorphism
pr∗(Sn,l) ↪→ V ⊗OGn,l×Gc

n
→→ pr∗(Qc

n).
We then put

(2.2) F := (φ(r) × id)∗E ⊕ (id × φ(s))∗E ,

which is a vector bundle over Gn,l × Gc
n of rank 2lc that has a canonical section

γ̃ := ( (φ(r) × id)∗γ, (id × φ(s))∗γ ) : Gn,l × Gc
n → F .

Since the incidence variety I is defined on Gn,l × Gc
n by γ = 0, the subscheme X

of Gn,l × Gc
n is defined by γ̃ = 0.

Proposition 2.1. The section γ̃ intersects the zero section of F transversely in
the total space of F . In particular, the scheme X is smooth of dimension

dim(Gn,l × Gc
n) − 2lc = (l + c)(n − l − c).

Proof. It is enough to show that, for any field F of characteristic p, the tangent
space to X at an arbitrary F -valued point of X is of dimension (l + c)(n − l − c).

Let (L,M) be an F -valued point of I. Then the tangent space to Gn,l × Gc
n at

(L,M) is canonically identified with the linear space

T (L,M) := Hom(L, VF /L) ⊕ Hom(M,VF /M),

and the tangent space to I at (L,M) is identified with the linear subspace of
T (L,M) consisting of pairs (α, β) ∈ T (L,M) that make the following diagram
commutative:

(2.3)
L ↪→ M

α ↓ ↓ β

VF /L →→ VF /M,

where the horizontal arrows are the natural linear maps.
We now let (L, M) be an F -valued point of X. Note that the Frobenius morphism

induces the zero map on the tangent space. Suppose that r > 1 and s > 1. Then
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the tangent space to X at (L,M) is identified with the linear subspace of T (L, M)
consisting of pairs (α, β) that make both triangles

(Tβ)
Lr ↪→ M

0 ↘ ↓ β

VF /M

and (Tα)
L

α ↓ ↘ 0

VF /L →→ VF /Ms

commutative. Suppose that r = 1 and s > 1 (resp. r > 1 and s = 1). Then the
tangent space to X at (L,M) is identified with the linear subspace of pairs (α, β)
that make both of (2.3) and (Tα) (resp. (2.3) and (Tβ)) commutative. In each case,
one easily checks that the dimension of the tangent space is (l + c)(n − l − c). ¤

Next we count the number of F(rs)ν -rational points of X. In order to state the
result, we need to introduce several polynomials.

For each integer l with 0 ≤ l ≤ n, we define a polynomial gn,l(x) = gn−l
n (x) ∈ Z[x]

of degree l(n − l) by

gn,l(x) = gn−l
n (x) :=

∏l−1
i=0(x

n − xi)∏l−1
i=0(xl − xi)

.

Note that gn,l(x) is monic if l(n− l) > 0, while gn,0(x) = gn,n(x) = 1. We also put

gn,l(x) = gn−l
n (x) := 0 for l < 0 or l > n.

Then the number of Fqν -rational points of Gn,l = Gn−l
n is equal to gn,l(qν) =

gn−l
n (qν). Let ≻ denote the lexicographic order on the set of pairs (l, d) of non-

negative integers l and d:

(l, d) ≻ (l′, d′) ⇐⇒ l > l′ or (l = l′ and d > d′).

By descending induction with respect to ≻, we define polynomials τl,d(x, y) ∈ Z[x, y]
as follows:

(2.4) τl,d(x, y) :=

{
0 if l > n or d > l,
gn,l(x) if d = l ≤ n,

and, for d < l ≤ n, by

(2.5) τl,d(x, y) :=
2l−d∑
u=l

τ2l−d,u(x, y) · gu,l(y) −
l∑

t=d+1

τl,t(x, y) · gn−2l+t,t−d(y).

Finally, for positive integers l and c with l + c < n, we put

(2.6) N c
l (x, y) :=

l∑
d=0

τl,d(x, y) · gc
n−2l+d(y) ∈ Z[x, y].

The main result of this section is as follows:

Theorem 2.2. The polynomial N c
l (x, y) is monic of degree (l + c)(n − l − c) with

respect to the variable y, and the number of F(rs)ν -rational points of X = X[r, s]cl
is equal to N c

l (rs, (rs)ν).

Theorem 2.2 provides us with an algorithm to calculate the Betti numbers of X
by (1.5). From Proposition 2.1 and the fact that N c

l (x, y) is monic with respect to
y, we obtain the following:

Corollary 2.3. The Frobenius incidence variety X is geometrically irreducible.
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Thus the proof of Proposition 1.1 and Theorem 1.3 will be completed by Theo-
rem 2.2.

For the proof of Theorem 2.2, we let q be a power of p by a positive integer, and
define locally-closed reduced subvarieties Tl,d of Gn,l over Fp by the property that

(2.7) Tl,d(F ) = { L ∈ Gn,l(F ) | dim(L ∩ Lq) = d }

should hold for any field F of characteristic p. First we prove the following:

Proposition 2.4. For any pair (l, d) of non-negative integers l and d, the number
of Fqν -rational points of Tl,d is equal to τl,d(q, qν).

Proof. We proceed by descending induction on (l, d) with respect to ≻. By defi-
nition, we have Tl,d(Fqν ) = ∅ for any ν ∈ Z>0 if l > n or d > l. Since L = Lq is
equivalent to the condition that L be Fq-rational, we have

Tl,l(Fqν ) = Gn,l(Fq) for all ν ∈ Z>0.

Thus |Tl,d(Fqν )| = τl,d(q, qν) holds for any (l, d) with l > n or d ≥ l by (2.4).
Suppose that d < l ≤ n and that |Tl′,d′(Fqν )| = τl′,d′(q, qν) holds for any (l′, d′)
with (l′, d′) ≻ (l, d). We count the number of the elements of the finite set

Pl,d := { (L,M) ∈ Gn,l(Fqν ) × Gn,2l−d(Fqν ) | L + Lq ⊂ M }

in two ways. If (L,M) ∈ Pl,d, then we have d ≤ dim(L ∩ Lq) ≤ l. If L ∈ Tl,t(Fqν )
with d ≤ t ≤ l, then dim(L+Lq) = 2l−t holds and the number of M ∈ Gn,2l−d(Fqν )
containing L + Lq is equal to gn−2l+t,t−d(qν). Hence we have

(2.8) |Pl,d| =
l∑

t=d

|Tl,t(Fqν )| · gn−2l+t,t−d(qν).

On the other hand, a pair (L,M) ∈ Gn,l(Fqν )×Gn,2l−d(Fqν ) satisfies L + Lq ⊂ M

if and only if Lq ⊂ M ∩Mq, or equivalently, if and only if L ⊂ M ∩M1/q. Note that
M1/q is also Fqν -rational. If Lq ⊂ M ∩Mq holds, then we have l ≤ dim(M ∩Mq) ≤
2l− d. If dim(M ∩Mq) = u with l ≤ u ≤ 2l− d, then the number of L ∈ Gn,l(Fqν )
contained in M ∩ M1/q is equal to gu,l(qν). Hence we have

(2.9) |Pl,d| =
2l−d∑
u=l

|T2l−d,u(Fqν )| · gu,l(qν).

Comparing (2.8) and (2.9), we obtain

|Tl,d(Fqν )| · gn−2l+d,0(qν)

=
2l−d∑
u=l

|T2l−d,u(Fqν )| · gu,l(qν) −
l∑

t=d+1

|Tl,t(Fqν )| · gn−2l+t,t−d(qν)

= τl,d(q, qν)

by the induction hypothesis and the defining equality (2.5). If n− 2l + d < 0, then
gn−2l+d,0(x) = 0 and hence we have τl,d(q, qν) = 0, while we have Tl,d(Fqν ) = ∅
because L ∈ Tl,d(Fqν ) would imply dim(L + Lq) > n. If n − 2l + d ≥ 0, then we
have |Tl,d(Fqν )| = τl,d(q, qν) because gn−2l+d,0(qν) = 1. Therefore |Tl,d(Fqν )| =
τl,d(q, qν) is proved for any (l, d). ¤



10 I. SHIMADA

Next we put
δ(l, d) := (l − d)(n − l + d),

and prove the following:

Proposition 2.5. Consider the following condition:

C(l, d) : max(0, 2l − n) ≤ d ≤ l ≤ n.

If C(l, d) is false, then τl,d(x, y) = 0. If C(l, d) is true, then τl,d(x, y) is non-zero
and of degree δ(l, d) with respect to y. If C(l, d) is true and δ(l, d) > 0, then τl,d(x, y)
is monic with respect to y.

Proof. First remark that, if a(x, y) ∈ Z[x, y] satisfies a(q, qν) = 0 for any prime
powers q and any positive integers ν, then we have a(x, y) = 0.

If C(l, d) is false, then Tl,d is an empty variety for any q by definition, and hence
τl,d(x, y) = 0 by Proposition 2.4.

We prove the assertion

S(l, d)

{
C(l, d) ⇒ τl,d(x, y) ̸= 0 and degy τl,d(x, y) = δ(l, d),
C(l, d) and δ(l, d) > 0 ⇒ τl,d(x, y) is monic with respect to y,

by descending induction on (l, d) with respect to the order ≻. If C(l, d) is false,
then S(l, d) holds vacuously. Hence we can assume that S(l′, d′) holds for any (l′, d′)
with (l′, d′) ≻ (l, d), and that C(l, d) is true. If d = l, then S(l, d) holds because
τl,l(x, y) = gn,l(x) is a non-zero constant with respect to y. We assume that d < l.
Note that now we have n− l + d ≥ l > d and δ(l, d) > 0. First we study the second
summation of (2.5). For t with d + 1 ≤ t ≤ l, we have

δ(l, t) + deg gn−2l+t,t−d(y) = δ(l, d) − t(t − d) < δ(l, d).

Hence, by the induction hypothesis, every term in the second summation is non-zero
of degree < δ(l, d) with respect to y. Next we study the first summation of (2.5).
Note that the condition C(2l − d, u) on u is

max(0, 4l − 2d − n) ≤ u ≤ 2l − d.

From the induction hypothesis, the non-zero terms in the first summation are

su := τ2l−d,u(x, y) · gu,l(y) with max(l, 4l − 2d − n) ≤ u ≤ 2l − d.

By the equality

δ(2l − d, u) + deg gu,l(y) = δ(l, d) − (u − l)(u − 4l + 2d + n),

every non-zero term in the first summation is of degree ≤ δ(l, d) with respect to y.
Moreover there exists one and only one term of degree equal to δ(l, d), which is

(2.10)

{
sl = τ2l−d,l(x, y) · gl,l(y) if l ≥ 4l − 2d − n,
s4l−2d−n = τ2l−d,4l−2d−n(x, y) · g4l−2d−n,l(y) if l < 4l − 2d − n.

It remains to show that this term is monic with respect to y. In the case where
l ≥ 4l − 2d − n, the term sl is monic with respect to y, because gl,l(y) = 1 and
δ(2l − d, l) = δ(l, d) > 0. We consider the case l < 4l − 2d − n. Note that

δ1 := δ(2l − d, 4l − 2d − n) = (n − 2l + d)(2l − d) ≥ 0,
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and that δ1 = 0 holds if and only if n− 2l + d = 0, because we have 2l − d > l ≥ 0.
Suppose that δ1 > 0. Then τ2l−d,4l−2d−n(x, y) is monic of degree δ1 with respect
to y by the induction hypothesis. If δ1 = 0, then we have

τ2l−d,4l−2d−n(x, y) = τn,n(x, y) = gn,n(x) = 1.

On the other hand, g4l−2d−n,l(y) is monic of degree > 0 for l < 4l−2d−n. Therefore
the term s4l−2d−n in the second case of (2.10) is also monic with respect to y. Thus
the statement S(l, d) holds. ¤
Proof of Theorem 2.2. We show that N c

l (x, y) is monic of degree

δ̃(l, c) := (l + c)(n − l − c)

with respect to y. We put

td := τl,d(x, y) · gc
n−2l+d(y),

so that N c
l (x, y) =

∑l
d=0 td. If d < 2l − n + c, then td = 0 because gc

n−2l+d(y) = 0.
Suppose that d ≥ 0 satisfies d ≥ 2l − n + c. Then we have

δ(l, d) + deg gc
n−2l+d(y) = δ̃(l, c) − d(d − 2l + n − c) ≤ δ̃(l, c).

Hence every non-zero term td is of degree ≤ δ̃(l, c) with respect to y, and there are
at most two terms that are of degree equal to δ̃(l, c); namely,

t0 = τl,0(x, y) · gc
n−2l(y) and t2l−n+c = τl,2l−n+c(x, y) · gc

c(y).

If 2l − n + c < 0, then t2l−n+c does not appear in the summation
∑l

d=0 td, and
t0 is non-zero and monic with respect to y because C(l, 0) holds, δ(l, 0) > 0 and
deg gc

n−2l(y) > 0. If 2l − n + c = 0, then t2l−n+c = t0 is non-zero and monic
with respect to y because C(l, 0) holds, δ(l, 0) > 0 and gc

n−2l(y) = gc
c(y) = 1.

If 2l − n + c > 0, then t0 = 0 because gc
n−2l(y) = 0, and the term t2l−n+c =

τl,2l−n+c(x, y), which appears in the summation since 2l − n + c < l, is non-zero
and monic with respect to y because C(l, 2l − n + c) holds and δ(l, 2l − n + c) > 0.
Thus, in each case, there exists one and only one term that is non-zero of degree
δ̃(l, c), and this term is monic with respect to y. Hence the assertion is proved.

Finally we prove that the number of F(rs)ν -rational points of X = X[r, s]cl is
equal to N c

l (rs, (rs)ν). For simplicity, we put q := rs. By the property (2.1) of X,
it is enough to show that the number of the pairs (L,M) ∈ Gn,l(Fqν ) × Gc

n(Fqν )
satisfying L + Lq ⊂ Ms is equal to N c

l (q, qν). Note that Gn,l(Fqν ) is the disjoint
union of the finite sets Tl,d(Fqν ) over d with 0 ≤ d ≤ l. If L ∈ Gn,l(Fqν ) is
contained in Tl,d(Fqν ), then L + Lq is of dimension 2l− d and hence the number of
M ′ ∈ Gc

n(Fqν ) containing L + Lq is gc
n−2l+d(q

ν). Because M 7→ Ms is a bijection
from Gc

n(Fqν ) to itself, the number of the pairs is equal to the sum of τl,d(q, qν) ·
gc

n−2l+d(q
ν) over d with 0 ≤ d ≤ l by Proposition 2.5. Thus we have |X(Fqν )| =

N c
l (q, qν) by the definition (2.6). ¤
The following is useful in the computation of N c

l (x, y):

Corollary 2.6. We have τl,d(x, y) = τn−l,n−2l+d(x, y) for any (l, d).

Proof. We choose an inner product V × V → Fp defined over Fp, and denote by
L⊥ ⊂ VF the orthogonal complement of a linear subspace L ⊂ VF . Then L 7→ L⊥

induces an isomorphism GV,l →∼ GV,n−l. Since (Lq)⊥ = (L⊥)q and L⊥ ∩ (L⊥)q =
(L+Lq)⊥, this isomorphism induces a bijection from Tl,d(Fqν ) to Tn−l,n−2l+d(Fqν ).
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Thus the equality follows from Proposition 2.4 and the remark at the beginning of
the proof of Proposition 2.5. ¤

Example 2.7. We have

N1
1 (x, y) = gn,1(y) · g1

n−2(y) + gn,1(x) · (g1
n−1(y) − g1

n−2(y)),

and hence the Betti numbers of X[r, s]11 in Example 1.4 are obtained.

Example 2.8. We have

τ2,1(x, y) = τn−2,n−3(x, y)
= gn,n−1(y) − gn,n−1(x) + gn,n−1(x) · gn−1,n−2(y) − gn,n−2(x) · g2,1(y),

and hence

N2
2 (x, y) = g2

n(y) · g2
n−4(y) + g1

n(y) · g2
n−3(y) + g1

n(x) · g1
n−1(y) · g2

n−3(y)

− g1
n(y) · g2

n−4(y) − g1
n(x) · g1

n−1(y) · g2
n−4(y) + g2

n(x) · g2
n−2(y)

− g2
n(x) · g1

2(y) · g2
n−3(y) − g1

n(x) · g2
n−3(y) + g2

n(x) · g1
2(y) · g2

n−4(y)

− g2
n(x) · g2

n−4(y) + g1
n(x) · g2

n−4(y).

For instance, consider the case where n = 7. Then the Betti numbers of the 12-
dimensional Frobenius incidence variety X[r, s]22 are as follows, where q := rs:

b0 = b24 : 1,
b2 = b22 : 2,
b4 = b20 : 5,
b6 = b18 : q6 + q5 + q4 + q3 + q2 + q + 8,
b8 = b16 : 2 (q6 + q5 + q4 + q3 + q2 + q) + 12,
b10 = b14 : 3 (q6 + q5 + q4 + q3 + q2 + q) + 14,
b12 : q10 + q9 + 2 q8 + 2 q7 + 6 q6 + 6 q5 + 6 q4 + 5 q3 + 5 q2 + 4 q + 16.

Remark 2.9. The fact that N c
l (x, y) should be palindromic with respect to y helps

us in checking the computation of N c
l (x, y).

As a simple corollary of Propositions 2.4 and 2.5, we obtain the following. Let
κ denote the function field of X. By the generic point of X, we mean the pair
(Lη,Mη) of κ-rational linear subspaces corresponding to

Spec κ → X ↪→ Gn,l × Gc
n,

where Spec κ → X is the canonical morphism.

Proposition 2.10. Let (Lη,Mη) be the generic point of X.
(1) If 2l+c ≥ n, then Lη+Lrs

η = Ms
η . If 2l+c ≤ n, then the projection X → Gn,l

is surjective and hence Lη + Lrs
η is of dimension 2l.

(2) If l+2c ≥ n, then Mη∩Mrs
η = Lr

η. If l+2c ≤ n, then the projection X → Gc
n

is surjective and hence Mη ∩ Mrs
η is of dimension n − 2c.

Proof. We put q := rs again. The function dL : (L,M) 7→ dim(L + Lq) is lower
semi-continuous and bounded by n − c from above on X. If 2l + c ≥ n, then
C(l, 2l − n + c) is true and δ(l, 2l − n + c) > 0. Therefore the set Tl,2l−n+c(Fqν )
is non-empty for a sufficiently large ν. Hence dL attains n − c on X, and thus
dim(Lη + Lq

η) = n − c. Therefore we have Lη + Lq
η = Ms

η . Let κγ denote the
function field of Gn,l. If 2l + c ≤ n, then the generic point Lγ ∈ Gn,l(κγ) satisfies
dim(Lγ + Lq

γ) = 2l ≤ n − c. There exists a κγ-valued point Nγ ∈ Gc
n(κγ) such
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that Lγ + Lq
γ ⊂ Nγ , and hence (Lγ , N

1/s
γ ) is a κ

1/s
γ -valued point of X. Thus the

assertion (1) is proved.
The assertion (2) is proved in the dual way. ¤

3. Unirationality

In this section, we prove Theorem 1.5.

Note that the purely inseparable morphisms

φ(s) × id : GV,l × Gc
V → GV,l × Gc

V and id × φ(r) : GV,l × Gc
V → GV,l × Gc

V

induce purely inseparable surjective morphisms

X[rs, 1] → X[r, s] and X[1, rs] → X[r, s]

defined over Fp. Hence it is enough to prove that X[q, 1] is purely-inseparably
unirational over Fp for any power q of p. We prove this fact by induction on 2l + c.

Suppose that 2l + c ≤ n. We show that X[q, 1] is rational over Fp, and hence, a
fortiori, purely-inseparably unirational over Fp. For the generic point (Lη,Mη) of
X[q, 1], we have dim(Lη + Lq

η) = 2l by Proposition 2.10(1). We fix an Fp-rational
linear subspace K ⊂ V of dimension 2l. Then there exist a non-empty open subset
U of GV,l and a morphism

α : U → GL(V )
defined over Fp such that, for any field F of characteristic p and any F -valued point
L ∈ U(F ), we have dim(L + Lq) = 2l and α(L) ∈ GL(VF ) induces an isomorphism
from K⊗F to L+Lq. Let M/K 7→ M denote the natural embedding Gc

V/K ↪→ Gc
V .

Then the morphism
U × Gc

V/K → GV,l × Gc
V

given by (L, M/K) 7→ (L,α(L)(M)) is a birational map defined over Fp from the
rational variety U ×Gc

V/K to X[q, 1], with the inverse rational map being given by

(L, M) 7→ (L,α(L)−1(M)/K).

Suppose that 2l + c > n. We put

l′ := 2l + c − n and c′ := n − l.

Then we have l′ > 0, c′ > 0 and l′+c′ < n. We show that X := X[q, 1]cl is birational
over Fp to X ′ := X[1, q]c

′

l′ . We denote by κ and κ′ the function fields of X and X ′,
respectively. Note that

X(F ) = { (L,M) ∈ Gn,l(F ) × Gc
n(F ) | L + Lq ⊂ M },

X ′(F ) = { (L′,M ′) ∈ Gn,2l+c−n(F ) × Gn,l(F ) | L′ ⊂ M ′ ∩ M ′q }.
By Proposition 2.10(1), the generic point (Lη,Mη) of X satisfies Lη + Lq

η = Mη,
and hence dim(Lη ∩ Lq

η) = 2l + c − n. Therefore we have (Lη ∩ Lq
η, Lη) ∈ X ′(κ),

and hence
(L,M) 7→ (L ∩ Lq, L)

defines a rational map ρ : X · ·→ X ′ defined over Fp. On the other hand, we have

l′ + 2c′ = n + c > n.

By Proposition 2.10(2), the generic point (L′
η,M ′

η) of X ′ satisfies M ′
η ∩ M ′q

η = L′
η,

and hence
dim(M ′

η + M ′q
η ) = 2(n − c′) − l′ = n − c.
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Therefore we have (M ′
η,M ′

η + M ′q
η ) ∈ X(κ′), and hence

(L′, M ′) 7→ (M ′,M ′ + M ′q)

defines a rational map ρ′ : X ′ · ·→ X defined over Fp. Note that ρ′(ρ(Lη,Mη)) is
defined and equal to (Lη,Mη). Note also that ρ(ρ′(L′

η,M ′
η)) is defined and equal

to (L′
η,M ′

η). Hence X and X ′ are birational over Fp. Since

2l′ + c′ = 2l + c − (n − l − c) < 2l + c,

the induction hypothesis implies that X ′ is purely-inseparably unirational over Fp.
Therefore X is also purely-inseparably unirational over Fp. ¤
Remark 3.1. We have established the facts that X[q, 1]cl is rational over Fp for
2l + c ≤ n, and that X[1, q]cl is rational over Fp for l + 2c ≤ n.

4. Intersection pairing

In this section, we calculate the intersections of the subvarieties ΣΛ defined
by (1.6) in the Chow ring of X = X[r, s]cl .

For a smooth projective variety Y of dimension m, we denote by Ak(Y ) =
Am−k(Y ) the Chow group of rational equivalence classes of algebraic cycles on
Y with codimension k defined over an algebraic closure of the base field, and by
A(Y ) =

⊕
Ak(Y ) the Chow ring of Y .

In order to state our main result, we need to define a homomorphism ψ̃. Let W
be a w-dimensional linear space, and let

SW,l → GW,l = Gw,l

denote the universal subbundle of W ⊗ O over GW,l. Let x1, . . . , xl be the formal
Chern roots of the total Chern class c(S∨

W,l) of the dual vector bundle S∨
W,l:

c(S∨
W,l) = (1 + x1) · · · · · (1 + xl).

Then we have a natural homomorphism

ψw,l : Z[[x1, . . . , xl]]Sl → A(GW,l)

from the ring of symmetric power series in variables x1, . . . , xl with Z-coefficients
to the Chow ring A(GW,l) of GW,l. Let U be a u-dimensional linear space, and let

Qc
U → Gc

U = Gc
u

denote the universal quotient bundle of U⊗O over Gc
U . Let y1, . . . , yc be the formal

Chern roots of the total Chern class c(Qc
U ):

c(Qc
U ) = (1 + y1) · · · · · (1 + yc).

Then we have a natural homomorphism

ψc
u : Z[[y1, . . . , yc]]Sc → A(Gc

U ).

Composing ψw,l ⊗ ψc
u and the natural homomorphism

A(GW,l) ⊗ A(Gc
U ) → A(Gw,l × Gc

u),

we obtain a homomorphism

ψ̃ : Z[[x1, . . . , xl, y1, . . . , yc]]Sl×Sc → A(Gw,l × Gc
u)

from the ring of Sl × Sc-symmetric power series to A(Gw,l × Gc
u).
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Let Λ and Λ′ be Frs-rational linear subspaces of VF := V ⊗Frs. We consider the
intersection of the subvarieties ΣΛ and ΣΛ′ of X in A(X). We put

m := dim(Λ ∩ Λ′) and k := n − dim(Λ + Λ′).

Then we have

e := dimΣΛ + dimΣΛ′ − dimX = (l − c)(c − l + m − k),

and the intersection of ΣΛ and ΣΛ′ in A(X) is an element of Ae(X). We put

Υ := Λ ∩ Λ′ and Θ := VF/(Λ + Λ′)r.

Since ΣΛ = GΛ,l × Gc
VF/Λr and ΣΛ′ = GΛ′,l × Gc

VF/Λ′r , the scheme-theoretic inter-
section of ΣΛ and ΣΛ′ is the smooth subscheme

Γ := GΥ,l × Gc
Θ

∼= Gm,l × Gc
k.

Then the intersection of ΣΛ and ΣΛ′ in Ae(X) is localized in Ae(Γ) = Ad(Γ), where

d := dimΓ − e = kl + mc − 2lc.

The following is the main result of this section:

Theorem 4.1. Let Λ and Λ′ be as above. Then the intersection of ΣΛ and ΣΛ′ in
A(X) is equal to the image of the codimension d part of

ψ̃(f) ∈ A(Γ)

by the push-forward homomorphism Ae(Γ) → Ae(X), where f is the Sl × Sc-
symmetric power series ∏l

i=1(1 + xi)k ·
∏c

j=1(1 + yj)m∏l
i=1

∏c
j=1(1 + rxi + yj)(1 + xi + syj)

,

and ψ̃ is the homomorphism to A(Γ) = A(Gm,l × Gc
k) defined above.

Proof. We denote by T (Y ) → Y the tangent bundle of a smooth variety Y . Note
that the tangent bundle of a Grassmannian variety is the tensor product of the dual
of the universal subbundle and the universal quotient bundle.

Let W and W ′ be linear subspaces of VF with dimension w and w′, respectively,
such that W ⊂ W ′, and let i : GW,l ↪→ GW ′,l denote the natural embedding. For
the universal subbundles SW,l → GW,l and SW ′,l → GW ′,l, we have

(4.1) i∗S∨
W ′,l = S∨

W,l.

We denote by Qw−l
W → GW,l and Qw′−l

W ′ → GW ′,l the universal quotient bundles.
Then we have an exact sequence

0 → Qw−l
W → i∗Qw′−l

W ′ → W ′/W ⊗O → 0

of vector bundles over GW,l. Therefore we have the following equality in A(GW,l):

(4.2) i∗c(T (GW ′,l)) = c(T (GW,l)) · c(S∨
W,l)

w′−w.

Let VF → U = VF/K and VF → U ′ = VF/K ′ be linear quotient spaces of VF such
that K ′ ⊂ K. We put u := dim U and u′ := dimU ′. Let j : Gc

U ↪→ Gc
U ′ denote the

natural embedding. For the universal quotient bundles Qc
U → Gc

U and Qc
U ′ → Gc

U ′ ,
we have

(4.3) j∗Qc
U ′ = Qc

U .
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By the argument dual to the above, we obtain the following equality in A(Gc
U ):

(4.4) j∗c(T (Gc
U ′)) = c(T (Gc

U )) · c(Qc
U )u′−u.

We consider the vector bundle

X :=
T (X)|Γ

T (ΣΛ)|Γ + T (ΣΛ′)|Γ
of rank d over Γ. By the excess intersection formula [10, p. 102], the intersection
of ΣΛ and ΣΛ′ in A(X) is equal to the image of the top Chern class cd(X ) ∈
Ad(Γ) = Ae(Γ) of X by the push-forward homomorphism Ae(Γ) → Ae(X). Hence
it is enough to show that the total Chern class c(X ) ∈ A(Γ) of X is equal to ψ̃(f).
From the exact sequence

0 → T (Γ) → T (ΣΛ)|Γ ⊕ T (ΣΛ′)|Γ → T (ΣΛ)|Γ + T (ΣΛ′)|Γ → 0

and Proposition 2.1, we have

c(X ) =
c(T (GV,l × Gc

V )|Γ) · c(T (Γ))
c(F|Γ) · c(T (ΣΛ)|Γ) · c(T (ΣΛ′)|Γ)

.

We put
λ := dimΛ and λ′ := dimΛ′.

By (4.1)-(4.4), we have the following equalities in A(Γ):

c(T (GV,l × Gc
V )|Γ) = c(T (Γ)) ·

(
c(S∨

Υ,l)
n−m ⊗ c(Qc

Θ)n−k
)
,

c(T (ΣΛ)|Γ) = c(T (Γ)) ·
(
c(S∨

Υ,l)
λ−m ⊗ c(Qc

Θ)n−k−λ
)
,

c(T (ΣΛ′)|Γ) = c(T (Γ)) ·
(
c(S∨

Υ,l)
λ′−m ⊗ c(Qc

Θ)n−k−λ′
)

.

Here c(S∨
Υ,l)

µ ⊗ c(Qc
Θ)ν ∈ A(GΥ,l) ⊗ A(Gc

Θ) is identified with its image in A(Γ) =
A(GΥ,l × Gc

Θ). Since λ + λ′ = m + n − k, we have

c(X ) = c(F|Γ)−1 ·
(
c(S∨

Υ,l)
k ⊗ c(Qc

Θ)m
)
.

By the definition (2.2) of F and (4.1) and (4.3), we have

F|Γ = (φ(r) ∗S∨
Υ,l ⊗ Qc

Θ) ⊕ (S∨
Υ,l ⊗ φ(s) ∗Qc

Θ),

where pr∗ is omitted. Note that

c(φ(r) ∗S∨
Υ,l) =

l∏
i=1

(1+rxi) in A(GΥ,l) and c(φ(s) ∗Qc
Θ) =

c∏
j=1

(1+syj) in A(Gc
Θ).

Hence c(F|Γ) ∈ A(Γ) is the image of
l∏

i=1

c∏
j=1

(1 + rxi + yj)(1 + xi + syj) ∈ Z[[x1, . . . , xl, y1, . . . , yc]]Sl×Sc

by the homomorphism ψ̃. Therefore we have c(X ) = ψ̃(f) in A(Γ). ¤

When l = c, the intersection number of ΣΛ and ΣΛ′ in X[r, s]ll is defined and
equal to the degree of the A0-component of ψ̃(f) ∈ A(Γ). When l = c = 1, we have
S∨

Υ,1 = O(1) on GΥ,1
∼= Pm−1 and Q1

Θ = O(1) on G1
Θ
∼= Pk−1. Therefore we obtain

the following:
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Corollary 4.2. Suppose that l = c = 1, and let Λ and Λ′ be as above. Then the
intersection number of ΣΛ and ΣΛ′ in X[r, s]11 is equal to the coefficient of xm−1yk−1

in the power series

(1 + rx + y)−1(1 + x + sy)−1(1 + x)k(1 + y)m ∈ Z[[x, y]].

5. The lattice N (X)

In this section, we treat the case l = c = 1. We put X := X[r, s]11 throughout
this section.

We denote by discN (X) the discriminant of N (X). We put

f(n) :=
(rs)n − 1
rs − 1

= |Pn−1(Frs)|.

Theorem 5.1. The rank of the lattice N (X) associated with X = X[r, s]11 is equal
to the middle Betti number b2(n−2)(X) of X. If n > 3, discN (X) is a divisor of
min(r, s)(n−2)(f(n)−1), while if n = 3, discN (X) is a divisor of min(r, s)f(3)+1.

For the proof of Theorem 5.1, we fix notation. We write [ΣΛ] ∈ N (X) and
[hi] ∈ N (X) for the rational equivalence classes of the algebraic cycles ΣΛ and hi

modulo Ñ (X)⊥.

Let P0 denote the set of Frs-rational points of P∗(V ), whose cardinality is f(n).
For a positive integer k < n, let Lk denote the set of k-dimensional Frs-rational lin-
ear subspaces of VF := V ⊗Frs. For Λ ∈ Lk, we denote by P∗(Λ) the corresponding
(k − 1)-dimensional projective linear subspace of P∗(V ) over Frs, and put

S(Λ) := { P ∈ P0 | P ∈ P∗(Λ) }.

For P ∈ P0, let ℓ(P ) ∈ L1 denote the corresponding Frs-rational linear subspace of
dimension 1.

We calculate the intersection numbers of the classes [hi] and [ΣΛ] in N (X). By
Corollary 4.2, for P ∈ P0 and Λ ∈ Lk, we have

(5.1) ([ΣΛ], [Σℓ(P )]) =

{
(−s)n−k−1 if P ∈ S(Λ),
0 otherwise.

For Λ ∈ Lk, the subvariety ΣΛ is a Cartesian product of P∗(Λ) ⊂ P∗(V ) and
P∗(V/Λr) ⊂ P∗(V ) with dim P∗(Λ) = k − 1 and dim P∗(V/Λr) = n − 1 − k. Hence
we have

(5.2) ([hi], [ΣΛ]) =

{
1 if i + k = n,

0 otherwise.

Recall from Proposition 2.1 that X ⊂ P∗(V )×P∗(V ) is a subvariety of codimension
2 defined as the zero locus of the section γ̃ of the vector bundle O(r, 1)⊕O(1, s) of
rank 2. Hence the intersection numbers of the classes [hi] are

(5.3) ([hi], [hj ]) =


s if i + j = n − 1,

1 + rs if i + j = n,

r if i + j = n + 1,

0 otherwise.
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We fix a point B0 ∈ P0, and consider the following four submodules of N (X):

H := 〈 [h1], . . . , [hn−1] 〉,
M := 〈 [Σℓ(P )] | P ∈ P0 〉,
M0 := 〈 [Σℓ(P )] | P ∈ P0, P ̸= B0 〉,
MD := 〈 [Dℓ(P )] | P ∈ P0, P ̸= B0 〉, where [Dℓ(P )] := [Σℓ(P )] − [Σℓ(B0)].

Here 〈v1, . . . , vN 〉 denotes the submodule generated by v1, . . . , vN .

The following is elementary:

Lemma 5.2. Let m be an integer ≥ 3, and let u, v, t be indeterminants. Consider
the m × m matrix A(m, u, v, t) = (aij)1≤i,j≤m defined by

aij :=



u if i + j = m,

1 + uv if i + j = m + 1,

v if i + j = m + 2,

t if i = j = m,

0 otherwise.

Then we have

detA(m,u, v, t) = (−1)[m/2]

(
(uv)m+1 − 1

uv − 1
+ (−u)m−1t

)
,

where [m/2] denotes the integer part of m/2. ¤

Proof of Theorem 5.1. By the duality, we can assume that s ≤ r.
If the cohomology class of x ∈ Ñ (X) is zero, then x is obviously contained

Ñ (X)⊥. Hence, by Example 1.4, the rank of N (X) is at most

b := b2(n−2)(X) = n + f(n) − 2 = (n − 1) + (|P0| − 1).

First assume that n > 3. We show that N (X) is of rank b, and that its discrim-
inant divides s(n−2)(f(n)−1). Consider the submodule H + M0 of N (X) generated
by the b classes

(5.4) [h1], . . . , [hn−1], [Σℓ(P )] (P ∈ P0, P ̸= B0).

By (5.1), (5.2) and (5.3), the intersection matrix of these classes is

Ã :=



AH O
1 · · · 1

1

O
...

1

(−s)n−2I


,

where AH := A(n − 1, s, r, 0) is the intersection matrix of the classes [hi] and I is
the identity matrix of size f(n) − 1. By Lemma 5.2, we have

det Ã = det A(n − 1, s, r, t0) · det ((−s)n−2I)

= (−1)[(n−1)/2] · (−s)(n−2)(f(n)−1) ̸= 0,
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where t0 := −(f(n) − 1)/(−s)n−2. Thus H + M0 is a lattice of rank b with the
basis (5.4). Since rankN (X) ≤ b, we conclude that rankN (X) = b and that N (X)
contains H + M0 as a sublattice of finite index. Therefore discN (X) is a divisor
of disc(H + M0) = ±s(n−2)(f(n)−1).

For the case n = 3, we consider the submodule 〈[h1]〉 + M. The intersection
matrix of the generators [h1] and [Σℓ(P )] (P ∈ P0) of this submodule is the diagonal
matrix of size b = f(3) + 1 with diagonal components s,−s, . . . ,−s. Consequently,
〈[h1]〉 + M is a lattice of rank b with the discriminant ±sf(3)+1. Hence N (X) is a
lattice of rank b containing 〈[h1]〉+M as a sublattice of finite index, and discN (X)
is a divisor of sf(3)+1. ¤

Proof of Corollary 1.6. By Proposition 2.1, the subvariety X ⊂ P∗(V ) × P∗(V ) is
a smooth complete intersection of very ample divisors D1 ∈ |O(r, 1)| and D2 ∈
|O(1, s)|. Hence, by Lefschetz hyperplane section theorem of Deligne [5] (see
also [19]), the inclusion of X into P∗(V ) × P∗(V ) induces isomorphisms of l-adic
cohomology groups in degree < dim X. On the other hand, Theorem 5.1 implies
that the cycle map induces an isomorphism from N (X) ⊗ Ql to the middle l-adic
cohomology group of X. ¤

Remark 5.3. Theorem 5.1 implies that, if r = 1 or s = 1, then N (X[r, s]11) is
unimodular. Recall from Remark 3.1 that, if r = 1 or s = 1, then X[r, s]11 is a
rational variety.

Next we prove Theorem 1.7 on the primitive part Nprim(X) of N (X).

Proof of Theorem 1.7. We use the notation in the proof of Theorem 5.1. Since

detAH = det A(n − 1, s, r, 0) = ±f(n) ̸= 0,

the submodule H is a sublattice of N (X) with rank n − 1. Therefore Nprim(X) =
H⊥ is also a sublattice with

rankNprim(X) = b − (n − 1) = f(n) − 1.

By (5.2), the classes

(5.5) [ΣΛ] − [ΣΛ′ ] (Λ, Λ′ ∈ Lk, k = 1, . . . , n − 1)

are contained in Nprim(X). In particular, we have MD ⊂ Nprim(X). By (5.1), we
have

([Dℓ(P )], [Dℓ(P ′)]) =

{
2(−s)n−2 if P = P ′,
(−s)n−2 if P ̸= P ′.

Hence the intersection matrix AD of the classes [Dℓ(P )] (P ∈ P0, P ̸= B0) is non-
degenerate. Therefore MD is of rank f(n) − 1, and we have

(5.6) MD ⊗ Q = Nprim(X) ⊗ Q.

The symmetric matrix AD multiplied by (−1)n defines a positive-definite quadratic
form. Hence [−1]nNprim(X) is a positive-definite lattice. ¤
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6. Dense lattices

In this section, we investigate the case where n = 4, l = c = 1 and p = r = s = 2,
and prove Theorem 1.8. We put X := X[2, 2]11 throughout this section. Note that
X is of dimension 4.

The minimal norm Nmin(L) of a positive-definite lattice L of rank m is the
minimum of norms x2 of non-zero vectors x ∈ L, and the normalized center density
δ(L) of L is defined by

δ(L) := (disc L)−1/2 · (Nmin(L)/4)m/2,

where disc L is the discriminant of L. It is known that, for each m, there exists a
lattice L such that δ(L) exceeds the Minkowski-Hlawka bound

ζ(m) · 2−m+1 · V −1
m ,

where ζ is the Riemann zeta function and Vm is the volume of the m-dimensional
unit ball. (See [3, Chap. VI] or [4, Chap. 1] for the Minkowski-Hlawka theorem.)
However the proof is not constructive.

We recall the notion of dual lattices. Let L be a lattice. Then L⊗Q is equipped
with the Q-valued symmetric bilinear form that extends the Z-valued symmetric
bilinear form on L. We define the dual lattice L∨ of L by

L∨ := { x ∈ L ⊗ Q | (x, y) ∈ Z for any y ∈ L }.

Then L∨ is a Z-module containing L as a submodule of finite index. By definition,
if L1 and L2 are sublattices of a lattice L3 such that L1 ⊂ L2 ⊗ Q, then L1 is
contained in L∨

2 .

We use the notation of the previous section adapted to the present situation
n = 4 and p = r = s = 2. Note that M is a lattice of rank f(4) = |P0| = 85 with
the orthogonal basis [Σℓ(P )] (P ∈ P0). Let

NΣ(X) ⊂ Nprim(X)

be the submodule generated by the classes (5.5). Since MD ⊂ NΣ(X), we have

MD ⊗ Q = NΣ(X) ⊗ Q = Nprim(X) ⊗ Q

by (5.6). In particular, NΣ(X) is a lattice. Since MD ⊂ M, we have NΣ(X) ⊂
M ⊗ Q in N (X) ⊗ Q. We apply the above argument to L1 = NΣ(X), L2 = M,
L3 = N (X), and regard NΣ(X) as embedded in the dual lattice M∨.

Let eP (P ∈ P0) be the basis of M∨ dual to the orthogonal basis [Σℓ(P )] of M:

(6.1) M∨ :=
⊕

P∈P0

ZeP
∼= Z85.

We describe the submodule NΣ ⊂ M∨ in a combinatorial way using the projective
geometry of P0 = P3(F4). We put

Pk−1 := { S(Λ) | Λ ∈ Lk },

which is a subset of the power set 2P0 of P0. By (5.1), the vector [Σℓ(P )] ∈ M ⊂ M∨

is equal to sn−2 eP = 4ep, and hence we have M = sn−2 (M∨) = 4M∨. Moreover
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the Q-valued symmetric bilinear form on M∨ is given by

(eP , eP ′) =

{
1/sn−2 = 1/4 if P = P ′,
0 if P ̸= P ′.

For S ∈ 2P0 , we put
vS :=

∑
P∈S

eP ∈ M∨.

By (5.1), we see that NΣ is the submodule of M∨ generated by

(6.2) s3−k(vS − vS′) (S, S′ ∈ Pk−1, k = 1, . . . , 3).

Next we introduce a code C over

R := Z/sn−1Z = Z/8Z
and a lattice MC . The reduction homomorphism M∨ → M∨ ⊗ R is denoted by
v 7→ v̄. Let C ⊂ M∨ ⊗ R be the image of NΣ ⊂ M∨ by v 7→ v̄. Using (6.1), we
regard C as a submodule of Rf(4) = R85, and consider C as an R-code of length 85.
Let MC ⊂ M∨ denote the pull-back of C by the reduction homomorphism. Since

MC = (NΣ) + 8(M∨) = (NΣ) + 2(M),

the Q-valued symmetric bilinear form on M∨ takes values in Z on MC . Therefore
MC is a lattice.

Theorem 6.1. The lattice MC is an even positive-definite lattice of rank 85, with
discriminant 220, and of minimal norm 8.

Proof. Since MC is the submodule generated by the vectors (6.2) and 8eP (P ∈ P0)
in M∨, we can calculate the basis and the Gram matrix of MC by a computer,
and confirm that MC is even and of discriminant 220. For P ̸= P ′, the vector
4(eP − eP ′) ∈ MC in (6.2) with k = 1 has norm 8. Hence all we have to prove is
that every non-zero vector of MC is of norm ≥ 8. We assume that a non-zero vector
ws ∈ MC satisfies ws

2 < 8, and derive a contradiction. We express ws as a vector
in Zf(4) = Z85 by (6.1). Recall that w̄s ∈ C ⊂ R85 is the code word ws mod 8.

For ν = 0, 1, 2, 3, we put

Kν := Ker( C ↪→ M∨ ⊗ R → M∨ ⊗ Z/2νZ ),

where M∨ ⊗ R → M∨ ⊗ Z/2νZ is the reduction homomorphism. Then we have a
filtration

C = K0 ⊃ K1 ⊃ K2 ⊃ K3 = 0,

and each quotient
Γν := Kν/Kν+1

is naturally regarded as an F2-code of length 85.
We fix terminologies. Let Γ ⊂ FN

2 be an F2-code. The Hamming weight wt(ω)
of a code word ω ∈ Γ is the number of 1 that occurs in the components of ω. The
weight enumerator of Γ is the polynomial

∑
ω∈Γ xwt(ω).

We compute the weight enumerator of the F2-code

Γ0 = MC/(MC ∩ 2M∨) ⊂ M∨/2M∨ = M∨ ⊗ F2

of dimension 16 by a computer. The result is

1 + 3570 x32 + 38080 x40 + 23800 x48 + 85 x64.
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If the image of w̄s ∈ C by the projection C → Γ0 were non-zero, then ws would
have at least 32 odd components and hence ws

2 ≥ 8. Thus we have w̄s ∈ K1. The
F2-code

Γ1 = (MC ∩ 2M∨)/(MC ∩ 4M∨) ⊂ 2M∨/4M∨ ∼= M∨ ⊗ F2

is of dimension 60. The weight enumerator of Γ1 cannot be calculated directly,
because 260 is too large. However, the orthogonal complement Γ⊥

1 of Γ1 with
respect to the standard inner product on F85

2 is of dimension 25, and hence its
weight enumerator is calculated in a naive method. Via the MacWilliams Theorem
(see [18, Ch.5]), we see that the weight enumerator of Γ1 is

1 + 17850 x8 + 45696 x10+8020600x12 + 229785600x14 + 4668633585 x16 + · · ·
· · · + 1142400x74 + 23800 x76 + 357 x80.

In particular, every non-zero code word of Γ1 is of Hamming weight ≥ 8. There-
fore, if the image of w̄s ∈ K1 in Γ1 were non-zero, then ws would have at least 8
components that are congruent to 2 modulo 4, and hence ws

2 ≥ 8. Thus we have
w̄s ∈ K2. The F2-code

Γ2 = (MC ∩ 4M∨)/(MC ∩ 8M∨) ⊂ 4M∨/8M∨ ∼= M∨ ⊗ F2

is of dimension 84, and is defined in M∨ ⊗ F2 by an equation

x0 + · · · + x84 = 0.

Therefore, if the image of w̄s ∈ K2 in Γ2 were non-zero, then ws would have at least
2 components that are congruent to 4 modulo 8, and hence ws

2 ≥ 8. Thus we have
w̄s ∈ K3. Hence every component of ws is congruent to 0 modulo 8. Since ws is
non-zero, we have ws

2 ≥ 8, which contradicts the hypothesis. ¤

Proof of Theorem 1.8. Since NΣ(X) is generated by the vectors (6.2), we can cal-
culate the Gram matrix of NΣ(X), and show that discNΣ(X) = 85 · 216. On the
other hand, using (5.1), (5.2) and (5.3), we can realize H and N (X) as submodules
of (H + M0)∨ in terms of the dual basis of the basis (5.4) of H + M0, and com-
pute the Gram matrix of Nprim(X) = H⊥. It turns out that Nprim(X) is also of
discriminant 85 · 216. Hence we conclude that NΣ(X) = Nprim(X). It is easy to see
that the minimal norm of NΣ(X) is ≤ 8. Since NΣ(X) is embedded in the lattice
MC , we see that Nprim(X) is even and of minimal norm ≥ 8 by Theorem 6.1. ¤

Remark 6.2. The intersection pairing of algebraic cycles on an algebraic variety
in positive characteristic has been used to construct dense lattices. For example,
Elkies [7, 8, 9] and Shioda [25] constructed many lattices of high density as Mordell-
Weil lattices of elliptic surfaces in positive characteristics. See also [4, page xviii].

Remark 6.3. In [23], we have obtained a dense lattice of rank 86 from the Fermat
cubic 6-fold in characteristic 2. This lattice is also closely related to MC .
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