ON FROBENIUS INCIDENCE VARIETIES OF LINEAR
SUBSPACES OVER FINITE FIELDS

I. SHIMADA

ABSTRACT. We define Frobenius incidence varieties by means of the incidence
relation of Frobenius images of linear subspaces in a fixed vector space over
a finite field, and investigate their properties such as supersingularity, Betti
numbers and unirationality. These varieties are variants of the Deligne-Lusztig
varieties. We then study the lattices associated with algebraic cycles on them.
We obtain a positive-definite lattice of rank 84 that yields a dense sphere
packing from a 4-dimensional Frobenius incidence variety in characteristic 2.

1. INTRODUCTION

Codes arising from the rational points of Deligne-Lusztig varieties have been
studied in several cases [14, 15, 20]. In this paper, we investigate lattices arising
from algebraic cycles on certain variants of Deligne-Lusztig varieties, which we call
Frobenius incidence varieties. We study basic properties of Frobenius incidence
varieties such as supersingularity, Betti numbers and unirationality. By means
of intersection pairing of algebraic cycles on a 4-dimensional Frobenius incidence
variety over [y, we obtain a positive-definite lattice of rank 84 that yields a dense
sphere packing.

1.1. An illustrating example. Before giving the general definition of Frobenius
incidence varieties in §1.2, we present the simplest example of Frobenius incidence
surfaces, hoping that it explains the motivation for the main results of this paper.

We fix a vector space V over F, of dimension 3 with coordinates (x1,z2,23),
and consider the projective plane P.(V) with the homogeneous coordinate system
(z1 : 22 : 3). Let F be an algebraic closure of F,,. An F-valued point (a; : as : as)
of P,(V) corresponds to the 1-dimensional linear subspace of V' ® F spanned by
(a1,az2,a3) € V® F. Let P*(V) denote the dual projective plane with homogeneous
coordinates (y; : yo : y3) dual to (z1 : x9 : 23). An F-valued point (by : by : b3)
of P*(V) corresponds to the 2-dimensional linear subspace of V @ F defined by
biz1 + baxa + bzxs = 0. The incidence variety is a hypersurface of P, (V) x P*(V)
defined by z1y1 + x2y2 + x3ys = 0, which parametrizes all the pairs (L, M) of a
1-dimensional linear subspace L and a 2-dimensional linear subspace M such that
LcCM.

Let ¢ be a power of p by a positive integer. The gth power Frobenius morphism
of V.® F is the morphism from V' ® F' to itself given by (x1, x2,z3) — (2, 23, 23).
For a linear subspace N of V ® F, we denote by N7 C V ® F' the image of N by the
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qth power Frobenius morphism, which is again a linear subspace of V' ® F.Ifa2
dimensional linear subspace M of V®F' corresponds to a point (by : by : b)) € P*(V),
the linear subspace MY corresponds to the point (b7 : b3 : bl).

We take two Frobenius twists of the incidence variety, and take their intersection.
Let r and s be powers of p by positive integers. The hypersurface of P.(V) x P*(V)
defined by

(1.1) iy + zoy2 + xhys =0

parametrizes the pairs (L, M) such that L™ C M, while the hypersurface of P, (V) x
P*(V) defined by

(1.2) T1Y] + T2ys + x3y3 =0

parametrizes the pairs (L, M) such that L C M?®. Using affine coordinates of
P.(V) x P*(V), we see that these two hypersurfaces (1.1) and (1.2) intersect trans-
versely. Let X be the intersection, which is a smooth surface parameterizing the
pairs (L, M) such that

L"CM and L C M?,

or equivalently

L"cMnM",
or equivalently

L+ L™ C M?*.

We put ¢q := rs, and count the Fg»-rational points of the surface X for positive
integers v, that is, we count the number of the pairs (L, M) of Fyv-rational linear
subspaces L and M that satify the above conditions. Consider the first projection
m : X — P, (V). Let P be an F,.-rational point of P.(V) corresponding to L C
V ® F. Then, if dim(L 4 L?) = 2, the fiber 71, '(P) consists of a single F»-rational
point corresponding to the Fg»-rational subspace M such that L+ LY = M?, while,
if dim(L+L9) = 1, it is isomorphic to an F,v-rational projective line parameterizing
subspaces M such that L+ L? C M*. Since dim(L + L?) = 1 holds if and only P is
an Fg-rational point of P, (V'), the number of the Fyv-rational points of X is equal

to
q3u_1 q3_1 N q2u_1 q3_1
-1 q-1 qv =1 g—1)"
N(t) = 2+ (@ +q+2)t+1,
then this number is equal to N(¢”). In particular, from the classical theorems on

the Weil conjecture (see, for example, [12, App. C]), we obtain the Betti numbers
bi(X) of the surface X. We have by(X) = bs(X) =1, b1(X) = b3(X) = 0 and

ba(X) =¢" +q+2.

Remark that, when r > 2 and s > 2, the canonical line bundle O(r — 2, s — 2) of
X is ample and has non-zero global sections. Hence, the complex algebraic surface
Xc defined by (1.1) and (1.2) in CP? x CP? cannot be unirational (see [12, Chap. V,
Remark 6.2.1]), and the second Betti cohomology group of X¢ cannot be spanned
by the classes of algebraic cycles because of the Hodge-theoretic reason (see [11,
p. 163)).

If we put
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However, the surface X has the so-called pathological properties of algebraic
varieties in positive characteristics, that is, X contradicts naive expectations from
the properties of X¢. Since the projection m : X — P, (V) gives rise to a purely
inseparable extension of the function fields, X is unirational. Moreover, since N (t)
is a polynomial in t, the eigenvalues of the gth power Frobenius endmorphism
acting on the l-adic cohomology ring of X is a power of ¢ by integers. According to
the Tate conjecture, the second l-adic cohomology group of X should be spanned
by the classes of algebraic curves on X defined over F,. This is indeed the case.
There are 2(b2(X) — 1) special rational curves defined over F, on X; the fibers
Yp of mp : X — P.(V) over the F,-rational points P of P.(V), and the fibers 3,
of my : X — P*(V) over the Fy-rational points @@ of P*(V'). By calculating the
intersection numbers between these curves (see [12, Chap. V, §1]), we see that the
numerical equivalence classes of Xp and Z’Q together with the classes of the line
bundles O(1,0) and O(0, 1) form a hyperbolic lattice N (X) of rank b2 (X ) under the
intersection pairing. Thus their classes span the second I-adic cohomology group of
X.

When p = r = s = 2, the surface X is a supersingular K3 surface in character-
istic 2 with |disc N (X)| = 4. The defining equations (1.1) and (1.2), which were
discovered by Mukai, and the configuration of the 21 + 21 rational curves Xp and
E’Q played an important role in the study of the automorphism group of this K3
surface in Dolgachev-Kondo [6].

Looking at this example, we expect that the lattice N(X) possesses interesting
properties. In particular, its primitive part can yield a dense sphere packing.

1.2. Definitions and the main results. We give the definition of Frobenius
incidence varieties, and state the main results of this paper.

Let p be a prime, and let g := p” be a power of p by a positive integer v. For a
field F of characteristic p with an algebraic closure F', we put

Ft:.={2% |z € F} and Fl/q::{m€F|xq€F}.

For a scheme Y defined over a subfield of F', we denote by Y (F) the set of F-valued
points of Y.

We fix an n-dimensional linear space V over ), with n > 3, and denote by G,,; =
G lorby Gy, = GT(/_I the Grassmannian variety of l-dimensional subspaces of
V. To ease the notation, we use the same letter L to denote an F-valued point
L € Gn (F) of G, and the corresponding linear subspace L C Vp := V ® F.
Moreover, for an extension field F’ of F', we write L for the linear subspace L @ p F’
of Vpr. Let ¢ denote the pth power Frobenius morphism of G, ; ® pr over ]Fp, and
let ¢(@ be the v-fold iteration of ¢. Then ¢(? induces a bijection from G (F)
to G, 1 (F?). We denote by LY € Gy, ;(F?) the image of L € G,,;(F) by #@, and
by LY e Gn,l(Fl/q) the point that is mapped to L by ¢?. Let (x1,...,x,) be
[F,-rational coordinates of V. If L is defined in V¢ by linear equations Zj a;jry =0
(i=1,...,n—1) with a;; € F', then L7 is defined by the linear equations aj;v; =
0G@E=1,...,n=1).

Let [ and ¢ be positive integers such that [4+c¢ < n. We denote by Z the incidence
subvariety of G,; x GY,. By definition, 7 is the reduced subscheme of G, ; x G,
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such that, for any field F' of characteristic p, we have
I(F) ={ (L, M) € Gny(F) x GL(F) | LC M }.

Let r and s be powers of p by non-negative integers such that » > 1 or s > 1
holds. We define the Frobenius incidence variety X|r, s to be the scheme-theoretic
intersection of the pull-backs (¢(™) x id)*Z and (id x ¢{*))* T of Z, where id and
#M) denote the identity map:

X[r,s]f := (¢ xid)*Z N (id x ¢())* T.
For simplicity, we write X or X|[r,s] or X[ for X[r, s]{ if there is no possibility of
confusion. The scheme X is defined over F,, and, for any field F' over F,, we have
(1.3) XF)={(L,M)eGn(F)xG,(F) | L"CM and L C M?®}.
We have the following;:
Proposition 1.1. The projective scheme X is smooth and geometrically irreducible
of dimension (n —1—c)(l + ¢).

Example 1.2. Let (1 : -+ : xy,) and (y1 : -+ : yn) be homogeneous coordinates
of Gy,1 = P,(V) and G}, = P*(V), respectively, that are dual to each other. Then
the incidence subvariety Z is defined by > z;y; = 0 in P, (V) x P*(V), and hence
X[r, s]} is defined by

Tyl 4y =0,
Therefore X|[r,s]} is of general type when r and s are sufficiently large.

We show that the Frobenius incidence varieties, which are of non-negative Ko-
daira dimension in general, have two pathological features of algebraic geometry in
positive characteristics; namely, supersingularity and unirationality.

Our first main result is as follows:

Theorem 1.3. There exists a polynomial N(t) with integer coefficients such that
the number of F(,.z)v -rational points of X is equal to N((rs)") for any v € Zq.

In other words, X is supersingular over F,.; in the sense that the eigenvalues of
the rsth power Frobenius endomorphism acting on the l-adic cohomology ring of
X ®F,; are powers of s by integers.

We also give in Theorem 2.2 a recursive formula for the polynomial N(t). We
see that the odd Betti numbers of X are zero, and can calculate the even Betti
numbers bo; (X) of X via the formula

dim X
(1.5) N(t)= Y bu(X)t.
i=0
Example 1.4. The Betti numbers of X|r, s]i in Example 1.2 are

N B i1 ifi<n-—2,
2t — Y2(n—2)-2i — n_2+(<rs>”—1)/(’r8—1) ifi=n-2.
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The number of rational points of the Deligne-Lusztig varieties has been studied
by means of the representation theory of algebraic groups over finite fields. See,
for example, [27] and [2]. Our proof of Theorems 1.3 and 2.2 does not use the
representation theory, and is entirely elementary.

Our next result is on the unirationality of the Frobenius incidence varieties. A
variety Y defined over IF, is said to be purely-inseparably unirational over F, if there
exists a purely inseparable dominant rational map PV --— Y defined over F,.

Theorem 1.5. The Frobenius incidence variety X is purely-inseparably unirational
over IF,,.

The relation of supersingularity to unirationality has been observed in various
cases. See Shioda [24] for the supersingularity of unirational surfaces, and see
Shioda-Katsura [26] and Shimada [22] for the unirationality of supersingular Fermat
varieties.

From the defining equations (1.4) of X|[r, s]}, we see that X|r, s] is a complete

intersection of two varieties of unseparated flags [13], or more specifically, of two
unseparated incidence varieties [17, §2]. Varieties of unseparated flags are classified
in [28] and [13]. Their pathological property with respect to Kodaira vanishing
theorem was studied in [16].

Next we investigate algebraic cycles on the Frobenius incidence varieties. Let A
be an F,¢-rational linear subspace of Vg := V ® F,.s such that [ < dimA <n —c.
We define a subvariety ¥4 of G, ; x G¢ by

(16) EA = GAJ X G;F/A(T)'
Then X, is defined over F,. and, for any field F over F,s, we have
IAF)={(L,M)e G (F)xG,(F) | LCA and A" C M }.

It follows from A™ = A that X, is contained in X. In Theorem 4.1, we calculate
the intersection of these algebraic cycles X4 in the Chow ring A(X) of X. (See [12,
App. A] or [10] for the definition of Chow rings.)

Applying Theorem 4.1 to the case [ = ¢ = 1, we investigate the lattice generated
by the numerical equivalence classes of middle dimensional algebraic cycles of

X} = X[r,s]} € Gyi x Gy, =P (V) x P*(V).

Note that, when [ = ¢, we have 2dim ¥, = dim X|[r, s]! for any A. Let A"~2(X})
denote the Chow group of middle-dimensional algebraic cycles on X{ over F,. For
i=1,...,n—1, let h; be the intersection of X{ with P; x P,_; C P, (V) x P*(V),
where P; is a general j-dimensional projective linear subspace of P.(V') or P*(V).
Then h; is of middle-dimension on X{. We consider the submodule

N(X}) ¢ A"2(X))

generated by hq,...,h,_1 and X, associated with all IF,.;-rational linear subspaces
A of V ®F,s such that 1 < dim A < n — 1. Then we have the intersection pairing
on N'(X1). Let N(X{)+ denote the submodule of N'(X1) consisting of z € N(X1)
such that (z,y) = 0 holds for any y € N(X1). We set

N(X1) = N(X]) /N (X
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Then N (X7) is a finitely-generated free Z-module equipped with the non-degenerate
intersection pairing

N(XH x N(X]) — Z.

Thus N (X1) is a lattice. In Theorem 5.1, we describe the rank and the discriminant
of this lattice. As a corollary of Theorem 5.1, we obtain the following;:

Corollary 1.6. The l-adic cohomology ring of X1 @ F,, is generated by the coho-
mology classes of the algebraic cycles X5 and the image of the restriction homo-
morphism from the cohomology ring of P.(V) x P*(V).

In Theorem 5.1, it is shown that the discriminant of A/(X7) is a power of p. This
fact is an analogue of the theorem on the discriminant of the Néron-Severi lattice
of a supersingular K3 surface (in the sense of Shioda) proved by Artin [1] and
Rudakov-Shafarevich [21]. See also [23] for a similar result on the Fermat variety
of degree ¢ + 1.

For z € N(X}), let [z] € N(X]) denote the class of 2 modulo N(X})L. We
define the primitive part Npyim(X1) of N(X]) by

Nopim (X1) := { [2] e N(X1) | ([z],[hi]) =0 for i=1,...,n—1}.

For a lattice L, let [—1]”L denote the lattice obtained from L by multiplying the
symmetric bilinear form with (—1)”.

Theorem 1.7. The intersection pairing on Npim(X7{) is non-degenerate. The
lattice [—1]" Npwim (X1) is positive-definite of rank [P"~1(F,s)| — 1.

In the last section, our construction is applied to the sphere packing problem. We
investigate the case n = 4, and study the positive-definite lattice Nprim(X[2,2]})
of the 4-dimensional Frobenius incidence variety X|[2,2]}.

Theorem 1.8. Suppose that n = 4. The lattice Npyim(X[2,2]}) is an even positive-
definite lattice of rank 84, with discriminant 85 -2'6, and with minimal norm 8.

In particular, the normalized center density of Npum(X[2,2]1) is 231/4/85 =
230:795- "while the Minkowski-Hlawka bound at rank 84 is 217546 See §6 for the
definition of normalized center density and Minkowski-Hlawka bound.

In the proof of Theorem 1.8, we construct another positive-definite lattice M¢
of rank 85 associated with a code C over Z/8Z. The normalized center density
2325 of M is also larger than the Minkowski-Hlawka bound 28429 at rank 85.
See Theorem 6.1.

1.3. The plan of this paper. The proofs of these results are given as follows.
In §2, we show that the Frobenius incidence variety X is smooth in Proposition 2.1,
and give a recursive formula for the number of IF(,.-rational points of X in The-
orem 2.2. Proposition 1.1 and Theorem 1.3 follow from these results. In §3, we
show that X is purely-inseparably unirational. In §4, we give a formula for the
intersection of the algebraic cycles ¥ in the Chow ring of X. In §5, we study the
case where [ = ¢ = 1, and prove Corollary 1.6 and Theorem 1.7. In the last section,
we study the case n =4, =c=1, r = s = 2, and prove Theorem 1.8.
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2. NUMBER OF RATIONAL POINTS AND THE BETTI NUMBERS
In this section, we prove Proposition 1.1 and Theorem 1.3.

It is useful to note that the defining property (1.3) of the Frobenius incidence
variety X = X|[r, s|{ is rephrased as follows:

X(F) = {(L,M)€Gui(F)xGS(F) | L' C M and L C M*}
(2.1) = {(L,M) € G )(F)x GS(F) | L+L" C M*}
{(L,M) € G (F)x GS(F) | L" € MAM™ }.

We denote by
Spi— Gny and Q; — Gy,
the universal subbundle of V ® O — G,,; and the universal quotient bundle of
V® O — G, respectively. We consider the vector bundle
E = Hom(pr*(Sn1),pr*(Qy)) — G x G,

of rank [c, where pr denotes the projections Gy, ; x Gf, — Gy, and G,,; X G, — G¥.
Let v : G, x Gf, — & denote the section of £ corresponding to the canonical
homomorphism

pr(Sn1) =V ®Og, xgs — pr(Qy,).
We then put
(2.2) F= (") xid)*€ @ (id x ¢))*E,
which is a vector bundle over G,,; X G¢, of rank 2lc that has a canonical section
7= (8 xid)*y, (id x ¢9)*y) : Gpix Gy — F.
Since the incidence variety 7 is defined on G, ; x G¢, by v = 0, the subscheme X
of G, x G¢, is defined by 7 = 0.

Proposition 2.1. The section 7 intersects the zero section of F transversely in
the total space of F. In particular, the scheme X is smooth of dimension

dim(Gp, x Gy) —2lc=(I+c¢)(n—1—c¢).

Proof. Tt is enough to show that, for any field F' of characteristic p, the tangent
space to X at an arbitrary F-valued point of X is of dimension (I + ¢)(n —1 — ¢).

Let (L, M) be an F-valued point of Z. Then the tangent space to G,,; x G, at
(L, M) is canonically identified with the linear space

T(L,M) :=Hom(L,Vr/L) ® Hom(M, Vr /M),
and the tangent space to Z at (L, M) is identified with the linear subspace of
T(L,M) consisting of pairs («, ) € T(L, M) that make the following diagram
commutative:
L — M
(2.3) o | 18
VF/L - VF /Mv
where the horizontal arrows are the natural linear maps.

We now let (L, M) be an F-valued point of X. Note that the Frobenius morphism
induces the zero map on the tangent space. Suppose that » > 1 and s > 1. Then
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the tangent space to X at (L, M) is identified with the linear subspace of T'(L, M)
consisting of pairs («, 4) that make both triangles

L — M L
(Ts) 0\ ls and (Ta) ol N O
VF/M VF/L — VF/MS

commutative. Suppose that » = 1 and s > 1 (resp. r > 1 and s = 1). Then the
tangent space to X at (L, M) is identified with the linear subspace of pairs (a, )
that make both of (2.3) and (T,) (resp. (2.3) and (T3)) commutative. In each case,
one easily checks that the dimension of the tangent space is (I +¢)(n —1—¢). O

Next we count the number of F(,,).-rational points of X. In order to state the
result, we need to introduce several polynomials.

For each integer [ with 0 < I < n, we define a polynomial g,, ;(x) = g7 ~!(x) € Z[x]
of degree I(n — 1) by
n— Hi;l (mn — mi)
gni(e) = gp~!(x) = SEF———-
[Tico(a! — %)
Note that g, ;(x) is monic if [(n — ) > 0, while g,, o(x) = gnn(z) = 1. We also put
n—I

gni(x) =gp (x):=0 for I <0 or I >n.

Then the number of Fyv-rational points of G,,; = GR~! is equal to g,(¢") =
" (¢"). Let = denote the lexicographic order on the set of pairs (I,d) of non-
negative integers [ and d:

(I,d)=(',d) < I>Uor(I=1andd>d).

By descending induction with respect to =, we define polynomials 7; 4(z,y) € Z[z, ]
as follows:

0 ifl>nord>I
2.4 JY) = ’
( ) led(x y) {gn,l(x) ifd=1 < n,

and, for d <1 < n, by

2l—d 1
(25)  mal@y) = Ta-au(®y) gui) — Y (2, y) - gn-2irei—a(y)-
u=l t=d+1
Finally, for positive integers [ and ¢ with [ + ¢ < n, we put
l
(2.6) Nf(x,y) o= mal@,y) g5 ora(y) € Zz,yl.
d=0

The main result of this section is as follows:

Theorem 2.2. The polynomial Nf(z,y) is monic of degree (I 4 ¢)(n — 1 — ¢) with
respect to the variable y, and the number of F () -rational points of X = X|[r, s|f
is equal to Nf(rs, (rs)).

Theorem 2.2 provides us with an algorithm to calculate the Betti numbers of X
by (1.5). From Proposition 2.1 and the fact that N7 (x,y) is monic with respect to
y, we obtain the following:

Corollary 2.3. The Frobenius incidence variety X is geometrically irreducible.
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Thus the proof of Proposition 1.1 and Theorem 1.3 will be completed by Theo-
rem 2.2.

For the proof of Theorem 2.2, we let ¢ be a power of p by a positive integer, and
define locally-closed reduced subvarieties 7} 4 of G}, ; over IF,, by the property that

(2.7) T1a(F)={LeG(F) | dm(LNLY)=d}
should hold for any field F' of characteristic p. First we prove the following:

Proposition 2.4. For any pair (I,d) of non-negative integers | and d, the number
of Fgv-rational points of Tj q is equal to 11 4(q,q").

Proof. We proceed by descending induction on (I,d) with respect to >. By defi-
nition, we have T} 4(F,v) = 0 for any v € Z~¢ if | > n or d > I. Since L = L9 is
equivalent to the condition that L be F -rational, we have

T1(Fyw) = G (F,) for all v € Zs,.

Thus |1;,4(Fgv)| = 7,4(q,¢”) holds for any (I,d) with I > n or d > I by (2.4).
Suppose that d < | < n and that |Ty @ (Fgr)| = 77,4 (q,¢”) holds for any (I',d’)
with (I',d") >= (I,d). We count the number of the elements of the finite set

Pird:= { (L,M) S Gn,l(Fqu) X Gn,2l—d(FqU) ‘ L+LicM }

in two ways. If (L, M) € P4, then we have d < dim(L N L) < 1. If L € T 4+(Fyv)
with d <t <, then dim(L+L?) = 2[—t holds and the number of M € G}, 21—a(Fgv)
containing L + L7 is equal to gn—_2i++,t—q(q”). Hence we have

l

(2.8) Pral = Z Th,e(Fgo)| - gn—2ttt,6—a(q”)-
t=d

On the other hand, a pair (L, M) € G, 1(Fyv) X Gy 01—q(Fyv) satisfies L+ L1 C M
if and only if L¢ € M NM?9, or equivalently, if and only if L € M NM'/2. Note that
M*'/4 s also Fv-rational. If LY C M N MY holds, then we have [ < dim(MNM?) <
2l —d. If dim(M NM9) = v with | <u < 2] —d, then the number of L € G, ;(Fyv)
contained in M N M'/9 is equal to g, (¢"). Hence we have

21—d

(2.9) Pral = > 1 Tor—auq)| - gus(g”).

u=l

Comparing (2.8) and (2.9), we obtain
|T1,a(Fg)| - gn—214d,0(¢")

2l—d l

- Z |T2l7d,u(}Fq”)‘ . gu,l(qy) - Z |ﬂ,t(Fq”)| : gn72l+t,t7d(qy)
u=l t=d+1

= 7,a(¢:4")

by the induction hypothesis and the defining equality (2.5). If n — 20+ d < 0, then
Gn—2i+d,0(x) = 0 and hence we have 7, 4(¢,¢”) = 0, while we have T} 4(Fv) = 0
because L € T} 4(F,») would imply dim(L + L?) > n. If n — 2l +d > 0, then we
have |T;.q(Fgv)| = 7.4(q,¢”) because gn—214+4,0(¢”) = 1. Therefore |T; 4(Fq)| =
T1.d4(q,q") is proved for any (I,d). a
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Next we put
6(l,d):=({l—-d)(n—1+4d),
and prove the following;:
Proposition 2.5. Consider the following condition:
C(l,d): max(0,2l —n) <d<Il<n.

If C(1,d) is false, then 7 4(x,y) = 0. If C(l,d) is true, then 1. 4(x,y) is non-zero
and of degree §(1, d) with respect toy. If C(l,d) is true and 6(1,d) > 0, then 1 q(x,y)
is monic with respect to y.

Proof. First remark that, if a(x,y) € Z[x,y| satisfies a(q,¢”) = 0 for any prime
powers ¢ and any positive integers v, then we have a(z,y) = 0.

If C(I,d) is false, then T} 4 is an empty variety for any ¢ by definition, and hence
T1.d(x,y) = 0 by Proposition 2.4.

We prove the assertion

S(L,d) C(l,d) = ma(w,y) #0 and deg, 71.4(z,y) = 0(l,d),
’ C(l,d) and 6(1,d) >0 = 7 4(x,y) is monic with respect to y,

by descending induction on (I, d) with respect to the order >. If C(I,d) is false,
then S(I, d) holds vacuously. Hence we can assume that S(I’, d’) holds for any (I',d")
with (I,d") > (I,d), and that C(I,d) is true. If d = I, then S(I,d) holds because
T11(x,y) = gn(x) is a non-zero constant with respect to y. We assume that d < [.
Note that now we have n —l+d > [ > d and §(I,d) > 0. First we study the second
summation of (2.5). For ¢t with d + 1 <t <, we have

0(l,t) + deg gn—aitt1—aly) = d(1,d) —t(t — d) < (1, d).

Hence, by the induction hypothesis, every term in the second summation is non-zero
of degree < 6(I,d) with respect to y. Next we study the first summation of (2.5).
Note that the condition C(2] — d,u) on wu is

max(0,4] —2d —n) <wu < 2l —d.
From the induction hypothesis, the non-zero terms in the first summation are
Sy = Tol—du(T,Y) - Gui(y) with max(l,4] —2d —n) <u <2l —d.
By the equality
520 — d,u) + deg gui(y) = (1, d) — (u—1) (v — 4 + 2d + n),

every non-zero term in the first summation is of degree < §(l, d) with respect to y.
Moreover there exists one and only one term of degree equal to §(I, d), which is

(2.10) s1=To—a1(z,y) - 91.1(y) ifl >4l —2d—n,
S41—2d—n = Tol—d al—2d—n(T,Y) - gai—2da—n1(y) if I <4l —2d—n.

It remains to show that this term is monic with respect to y. In the case where
! > 4l — 2d — n, the term s; is monic with respect to y, because g;;(y) = 1 and
0(2l —d,l) = 6(l,d) > 0. We consider the case | < 4l — 2d — n. Note that

1 =002 —d, 4l —2d —n) = (n— 21+ d)(2l — d) > 0,
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and that 6; = 0 holds if and only if n — 2] + d = 0, because we have 2l —d > [ > 0.
Suppose that 6; > 0. Then 7o;_g4.4;—24—n(x,y) is monic of degree d; with respect
to y by the induction hypothesis. If §; = 0, then we have

T2lfd,4l72dfn(337y) = Tn,n($>y) = gn,n(x) =1
On the other hand, ga;—24—n,(y) is monic of degree > 0 for [ < 4l—2d—n. Therefore

the term s4,_24—p, in the second case of (2.10) is also monic with respect to y. Thus
the statement S(I, d) holds. O

Proof of Theorem 2.2. We show that N/ (z,y) is monic of degree

0l,e):=(IU+c)n—-1-¢)
with respect to y. We put
ta = T11.4(2,Y) * Gn-2u4a(y)

so that N/ (z,y) = 22:0 tq. If d < 2l —n +c, then t4 = 0 because g, _o;, 4(y) = 0.
Suppose that d > 0 satisfies d > 2]l — n 4+ ¢. Then we have

(1, d) + deg g& oy, 4(y) = 0(l,¢) —d(d — 2l +n — ¢) < (1, c).

Hence every non-zero term ¢4 is of degree < & (I, ¢) with respect to y, and there are
at most two terms that are of degree equal to 6(I, ¢); namely,

to = Tz,o(fU, Y) Gn—2(y) and lol—n+tc = Tl,2l—n+c(95, Y) 95(1/)

If 2l — n+ ¢ < 0, then t9;,_, . does not appear in the summation Z;zo tq, and
to is non-zero and monic with respect to y because C(I,0) holds, 4(/,0) > 0 and
deg gl o/ (y) > 0. If 20 —n + ¢ = 0, then ty_py. = o is non-zero and monic
with respect to y because C(I,0) holds, §(,0) > 0 and ¢5_5,(y) = ¢5(y) = L.
If 2l —n+4c¢ > 0, then ¢, = 0 because g5_,,(y) = 0, and the term to_p4e =
Tl 2l—n+c(Z,y), which appears in the summation since 2l — n + ¢ < [, is non-zero
and monic with respect to y because C(I,2] —n + ¢) holds and §(1,2] —n+c¢) > 0.
Thus, in each case, there exists one and only one term that is non-zero of degree

d(1,¢), and this term is monic with respect to y. Hence the assertion is proved.

Finally we prove that the number of F(,,)-rational points of X = X|r,s]{ is
equal to Nf(rs, (rs)”). For simplicity, we put ¢ := rs. By the property (2.1) of X,
it is enough to show that the number of the pairs (L, M) € Gy (Fqv) X GS(Fgv)
satisfying L + L? C M? is equal to Nf(q,¢”). Note that G, ;(Fq) is the disjoint
union of the finite sets T} 4(Fgv) over d with 0 < d < [. If L € G, (Fg) is
contained in 7j q(Fyv), then L + L7 is of dimension 2/ — d and hence the number of
M’ € Gy, (Fgv) containing L 4 L7 is g5 _ o, 4(¢”). Because M — M? is a bijection
from G¢(Fgv) to itself, the number of the pairs is equal to the sum of 7 4(q,q") -
95 _9144(q”) over d with 0 < d < I by Proposition 2.5. Thus we have |X(F, )| =
Ny (g,¢”) by the definition (2.6). O

The following is useful in the computation of Nf(xz,y):
Corollary 2.6. We have 7,4(%,y) = Tn—in—2+4(2,y) for any (1,d).

Proof. We choose an inner product V x V — F, defined over F,, and denote by
L+ C Vg the orthogonal complement of a linear subspace L C Vp. Then L +— L+
induces an isomorphism Gy; = Gy.,,—;. Since (L9)+ = (L+)? and L+ N (L) =
(L+ L)+, this isomorphism induces a bijection from 7} 4(Fgv) to Ty n—21+a(Fgv)-
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Thus the equality follows from Proposition 2.4 and the remark at the beginning of
the proof of Proposition 2.5. O
Example 2.7. We have
N1 (2,9) = 90,1 () - 9n2(¥) + 9n1 (@) - (9n-1(y) = gn2(¥));
and hence the Betti numbers of X|r, s]{ in Example 1.4 are obtained.
Example 2.8. We have
21(2,y) = To-2p-3(2,y)

gmn—l(y) - gn,n—l(x) + gn,n—l(x) : gn—17n—2(y) - gn,n—2(x) : 92,1(y)7

and hence

N3(zy) = gn(W)-9n_s(y) + 95(y) - 9n_5(y) + gn(w) g1 (W) - g5 _3(y)
—9n¥) - 9n—a(y) — gn(x) - g1 (y) - g _a() + ga(x) - gi 5 (y)
—ga(®) - 92(y) - 95_5(y) — 9a(2) - 95 _5(y) + gi (=) - 92(y) - gn_a(y)
—gn(@) - gr_4(y) + gn(x) - g5 4y )

For instance, consider the case where n = 7. Then the Betti numbers of the 12-
dimensional Frobenius incidence variety X|r, s]3 are as follows, where g := rs:

bo=0bas: 1,
b2 = 622 . 2,
b4 = bQO . 5,

bo=bis: ¢+ ++E+P+q+38,

bs=bis: 2P+ +¢*+@P+¢ +q) +12

bo=bia: 3+ +¢*+¢+¢*+q) + 14,

by : g0+ +2¢+2¢"+6¢°+6¢°+6¢*+5¢°+5¢>+4q+ 16.

Remark 2.9. The fact that N(z,y) should be palindromic with respect to y helps
us in checking the computation of N7 (z,y).

As a simple corollary of Propositions 2.4 and 2.5, we obtain the following. Let
% denote the function field of X. By the generic point of X, we mean the pair
(Ly, M,)) of k-rational linear subspaces corresponding to

Speck — X — Gn;xGy,
where Spec k — X is the canonical morphism.

Proposition 2.10. Let (L, M) be the generic point of X.

(1) If2l+c > n, then Ly+L;* = Mp. If 2l+c < n, then the projection X — G,
is surjective and hence L, + Ly® is of dimension 2.

(2) Ifl+2¢ > n, then My NM}® = Ly. Ifl+2c < n, then the projection X — G,
is surjective and hence My, N M}*® is of dimension n — 2c.

Proof. We put ¢ := rs again. The function dy, : (L, M) — dim(L + L?) is lower
semi-continuous and bounded by n — ¢ from above on X. If 2] + ¢ > n, then
C(l,2l = n+¢) is true and §(1,2l —n + ¢) > 0. Therefore the set T} o—ptc(Fgv)
is non-empty for a sufficiently large v. Hence dj attains n — ¢ on X, and thus
dim(L, + L}) = n — c. Therefore we have L, + L} = M,. Let s, denote the
function field of G,, ;. If 21 + ¢ < n, then the generic point L, € G,, (k) satisfies
dim(L, + Lg) = 2l < n — c. There exists a k,-valued point N, € Gy, (k) such
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that L., + L C N, and hence (L, NA}/S) is a n#/s—valued point of X. Thus the
assertion (1) is proved.
The assertion (2) is proved in the dual way. O

3. UNIRATIONALITY

In this section, we prove Theorem 1.5.
Note that the purely inseparable morphisms
qS(S) xid : Gy x Gy, — Gy; x Gy, and id x qb(r) Gy x Gy — Gy x Gy
induce purely inseparable surjective morphisms
X[rs,1] — X[r,s] and X[1,rs] — X[r,s]

defined over F,. Hence it is enough to prove that X|[g¢, 1] is purely-inseparably
unirational over IF,, for any power ¢ of p. We prove this fact by induction on 2[4+ c.

Suppose that 2/ + ¢ < n. We show that X[g, 1] is rational over F,,, and hence, a
fortiori, purely-inseparably unirational over F,. For the generic point (L,, M) of
X[g, 1], we have dim(L,, + L) = 2l by Proposition 2.10(1). We fix an F,-rational
linear subspace K C V of dimension 2[. Then there exist a non-empty open subset
U of Gy, and a morphism

a:U — GL(V)
defined over F,, such that, for any field F' of characteristic p and any F-valued point
L e U(F), we have dim(L 4+ L9) = 2 and (L) € GL(VF) induces an isomorphism
from K®F to L+L9. Let M/K — M denote the natural embedding G@/K — Gy .
Then the morphism
U x G%//K — GVJ X Gg/

given by (L, M/K) — (L,a(L)(M)) is a birational map defined over F,, from the
rational variety U x GY, /K to X]g, 1], with the inverse rational map being given by

(L, M) = (L,a(L) " (M)/K).
Suppose that 2] 4+ ¢ > n. We put
I':'=2l+c—n and ¢ :=n-—I.
Then we have I’ > 0, ¢ > 0 and I'+¢’ < n. We show that X := X|[g, 1]{ is birational

over I, to X' := X1, q]f,'. We denote by x and ' the function fields of X and X’,
respectively. Note that

X(F) = {(L,M)eGn(F)xG(F) | L+L*C M},
X'(F) = {(L';M") € Gnatsen(F)xGn (F) | L' c M nM?}.
By Proposition 2.10(1), the generic point (L, M) of X satisfies L, + L = M,,
and hence dim(L, N L{) = 2l + ¢ — n. Therefore we have (L, N LY, L,) € X'(x),
and hence
(L, M) — (LA L9, 1)
defines a rational map p : X --— X’ defined over F,,. On the other hand, we have
'+2d =n+c>n.

By Proposition 2.10(2), the generic point (L;, M) of X' satisfies M; N M7 = L;,
and hence
dim(M; + M) =2(n—¢') =1'=n—c.



14 I. SHIMADA

Therefore we have (M;, M, + M,;?) € X ('), and hence
(L', M) > (M, M + M)
defines a rational map p’ : X’ .- — X defined over F,,. Note that p'(p(L,, M,)) is

defined and equal to (L,, M,). Note also that p(p’(L;, M,)) is defined and equal
to (Ly,M,). Hence X and X' are birational over [F,,. Since

A +d =2l+c—(n—1—-c)<2l+c

the induction hypothesis implies that X’ is purely-inseparably unirational over F,,.
Therefore X is also purely-inseparably unirational over F,,. O

Remark 3.1. We have established the facts that X[g,1]{ is rational over F, for
2l + ¢ < n, and that X[1, ¢]f is rational over F, for [ 4+ 2¢ < n.

4. INTERSECTION PAIRING

In this section, we calculate the intersections of the subvarieties ¥, defined
by (1.6) in the Chow ring of X = X|r, s]f.

For a smooth projective variety Y of dimension m, we denote by A*(Y) =
Apm—r(Y) the Chow group of rational equivalence classes of algebraic cycles on
Y with codimension k defined over an algebraic closure of the base field, and by
A(Y) = @ A*(Y) the Chow ring of Y.

In order to state our main result, we need to define a homomorphism 1[) Let W
be a w-dimensional linear space, and let

Sw,i — Gw, = Guy

denote the universal subbundle of W ® O over Gw,;. Let z1,...,2; be the formal
Chern roots of the total Chern class ¢(Sy;;) of the dual vector bundle Sy, ;:
c(Swy) = (L+a1) - (1+a).

Then we have a natural homomorphism

Yy ¢ Zlxe,. .. ,27]]% — A(Gwy)

from the ring of symmetric power series in variables 1, ..., x; with Z-coeflicients
to the Chow ring A(Gw,) of Gw,. Let U be a u-dimensional linear space, and let
Q) — G =G

denote the universal quotient bundle of U®O over G§;. Let y1,. .., y. be the formal
Chern roots of the total Chern class ¢(Q§):

Q) =1 +y1) - (I+ye)
Then we have a natural homomorphism
w'ﬁ, : Z[[y17 ) yC]]GC - A(G?])
Composing v,,; ® 15 and the natural homomorphism
A(GWJ) ® A(ij) — A(Gw,l X GZ),
we obtain a homomorphism
1/; : Z[[l’l, e T YLy - 7yc]]61><60 - A(Gw,l X G;)

from the ring of &; x &.-symmetric power series to A(Guw, x GS)).
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Let A and A’ be F,.;-rational linear subspaces of Vg := V @ F,.,. We consider the
intersection of the subvarieties ¥ and X,/ of X in A(X). We put

m:=dim(ANA) and k:=n—dim(A+A).
Then we have
e:=dim¥) +dim¥y —dimX = —¢)(c =1+ m — k),
and the intersection of 35 and ¥+ in A(X) is an element of A.(X). We put
T:=ANA and ©:=TVs/(A+A)".

Since ¥p = Gy X G?/F/AT and Y = Gy X G@F/A,T, the scheme-theoretic inter-
section of ¥ 5 and X/ is the smooth subscheme

=Gy, xG§ = Gn, xGj.
Then the intersection of ¥4 and X,/ in A.(X) is localized in A.(T') = A%(T"), where

d:=dimI — e =kl + mc — 2lc.
The following is the main result of this section:

Theorem 4.1. Let A and A’ be as above. Then the intersection of Xp and Xp: in
A(X) is equal to the image of the codimension d part of

¥(f) € A(T)

by the push-forward homomorphism A.(I') — A.(X), where f is the &; x &,-
symmetric power series

l c m
[T, (U +2)  TT_ (1 +y)
l c ’
[Lici [T (T 4+ res + y5) (1 + @ + sy;)
and v is the homomorphism to A(T) = A(Gpy x GS) defined above.
Proof. We denote by 7(Y) — Y the tangent bundle of a smooth variety Y. Note
that the tangent bundle of a Grassmannian variety is the tensor product of the dual
of the universal subbundle and the universal quotient bundle.
Let W and W' be linear subspaces of Vg with dimension w and w’, respectively,

such that W c W', and let i : Gy, — G, denote the natural embedding. For
the universal subbundles Sy,; — Gw, and Sw; — Gw;, we have

(41) Z.*SI\/Q/’,I = S‘\/‘//,l'

We denote by Q}j{,‘l — Gw, and Q}j{,/,_l — Gw, the universal quotient bundles.
Then we have an exact sequence

0 — Qul — QU - W/Weo0 — 0
of vector bundles over Gyy,;. Therefore we have the following equality in A(Gw,):
(4.2) Fe(T(Gwr)) = (T (Gwy)) - (S .

Let Vg — U = V§/K and Vg — U’ = Vg/K' be linear quotient spaces of VF such
that K’ ¢ K. We put u :=dimU and «’ :=dimU’. Let j : G§, — G§;, denote the
natural embedding. For the universal quotient bundles Qf, — G, and Qf, — G§/,
we have

(4.3) J"Qu = Qp-
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By the argument dual to the above, we obtain the following equality in A(GY,):
(44) JelT(Gy)) = «(T(G)) - (@)

We consider the vector bundle
v Tk
T(XA)Ir +T(En)Ir
of rank d over I'. By the excess intersection formula [10, p. 102], the intersection
of ¥5 and ¥p/ in A(X) is equal to the image of the top Chern class ¢4(X) €
AUT) = A.(T) of X by the push-forward homomorphism A.(I') — A.(X). Hence
it is enough to show that the total Chern class ¢(X) € A(T') of X is equal to t(f).
From the exact sequence

0 — T(F) — T(EA”F@T(EA/”F — T(EA)|F+T(ZA/)|F — 0

and Proposition 2.1, we have
__ dT(Gva x GY)lr) - (T ()
o(Flr) - e(T(Ea)Ir) - (T (Zar)Ir)

()
We put
A:=dimA and X :=dimA’.
By (4.1)-(4.4), we have the following equalities in A(T):
o(T(Gva x GY)lr) = e(T(I))- (e(SY )" ®c(Qe)" "),
(T(E)le) = o(TI)- (e(Sy )™ @ (@) ),
ATE)l) = oT(0)- (e(S%)N ™™ @ e(@e) ).

Here c(Sy )" @ c(Qg)” € A(Gy,1) ® A(GG) is identified with its image in A(T') =
A(Gy; x Gg). Since A+ N =m +n — k, we have

c(X) = e(Flr) ™ - (e(S7.)" ® c(Q6)™) -
By the definition (2.2) of F and (4.1) and (4.3), we have
Fle = (0787, © Q) & (57, ® ¢"Q8),
where pr* is omitted. Note that

(T (I)
(T (I)

l c

(¢ 8y ) = [[(1+ra;) in A(Gry) and (6 *Qg) = [J(1+sy;) in A(GS).
i=1 j=1
Hence ¢(F|r) € A(T) is the image of

l c

H H(l +Txi +y])(1 +IZ +Sy]) S Z[[Il, e X Y1, 7yC]]GZXGC
i=1j=1

by the homomorphism . Therefore we have ¢(X) = 1 (f) in A(T). O

When [ = ¢, the intersection number of X5 and X5: in X|r,s]! is defined and
equal to the degree of the Ag-component of 1/3(]"’) € A(T'). When ! = ¢ =1, we have
SY,1=0(1)on Gy =P" ' and Q4 = O(1) on G = P*=1. Therefore we obtain
the following;:
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Corollary 4.2. Suppose that | = ¢ =1, and let A and A’ be as above. Then the

intersection number of S and Y+ in X [r, s]1 is equal to the coefficient of x™ yF~1

in the power series

A+re+y) 'A+z+sy) ' A+2)" A +y)™ € Z[z,y].

5. THE LATTICE N (X)

In this section, we treat the case [ = ¢ = 1. We put X := X|[r, s]{ throughout
this section.

We denote by disc A (X) the discriminant of N (X). We put

(rs)" —1

= [P"}(F,)|.
2 P E)

f(n) =

Theorem 5.1. The rank of the lattice N'(X) associated with X = X|r, s]i is equal
to the middle Betti number by(,—2)(X) of X. If n > 3, disc N (X) is a divisor of
min(r, §)*DU =D “yhile if n = 3, disc N(X) is a divisor of min(r,s)7(3)+1,

For the proof of Theorem 5.1, we fix notation. We write [Z4] € N(X) and
[hi] € N(X) for the rational equivalence classes of the algebraic cycles X5 and h;
modulo NV(X)+.

Let Py denote the set of F,¢-rational points of P,(V'), whose cardinality is f(n).
For a positive integer k < n, let L denote the set of k-dimensional F,.s-rational lin-
ear subspaces of Vg := V ®F, ;. For A € L, we denote by P,(A) the corresponding
(k — 1)-dimensional projective linear subspace of P, (V') over F,4, and put

S(A):={PePy | PeP.(A)}.
For P € Py, let £(P) € L; denote the corresponding F,s-rational linear subspace of

dimension 1.

We calculate the intersection numbers of the classes [h;] and [£4] in M(X). By
Corollary 4.2, for P € Py and A € Ly, we have

(—s)"‘k_1 if P e S(A),
0 otherwise.

(5.1) ([2a], Zepy]) = {

For A € Ly, the subvariety ¥, is a Cartesian product of P,(A) C P.(V) and
P*(V/A") C P*(V) with dimP,(A) = k — 1 and dimP*(V/A") = n — 1 — k. Hence
we have
1 ifi+k=mn,

5.2 Bl [SA]) =

(5:2) (i), [2a) {O otherwise.
Recall from Proposition 2.1 that X C P.(V) xP*(V) is a subvariety of codimension
2 defined as the zero locus of the section 7 of the vector bundle O(r,1) & O(1, s) of
rank 2. Hence the intersection numbers of the classes [h;] are

S ifi4+j=n—-1,
1+rs ifi+j=mn,
5.3 hil, [hi]) =
(53 (p =4, T

0 otherwise.
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We fix a point By € Py, and consider the following four submodules of N (X):

H = ([M],..., [hn-1]),
M = ([Byp)] | P€Po),
Mo = ([EBp)] | PE€Po,P#Bo),
Mp = ([Dypy] | P€Po,P# By), where [Dyp|:=[Eyp)]— [EeBy)]-
Here (v1,...,vy) denotes the submodule generated by vy, ..., vN.

The following is elementary:

Lemma 5.2. Let m be an integer > 3, and let u,v,t be indeterminants. Consider
the m x m matrizc A(m,u,v,t) = (ai;)1<i j<m defined by

U ifi+j=m,

1+w ifi+j=m+1,
aij =4 v ifi+j=m+2,

t ifi=j=m,

0 otherwise.

Then we have
(UU)m+1 —1
uv — 1

+ (—u)’”‘lt) :

where [m/2] denotes the integer part of m/2. O

det A(m, u,v,t) = (=1)"/2 (

Proof of Theorem 5.1. By the duality, we can assume that s <.
If the cohomology class of x € N(X) is zero, then x is obviously contained
N(X)*. Hence, by Example 1.4, the rank of N'(X) is at most

b:=byp_o)(X)=n+f(n) —2=(n—1)+ (|Po] — 1).
First assume that n > 3. We show that A/(X) is of rank b, and that its discrim-

inant divides s(»~2{/(")=1) " Consider the submodule H + Mg of N'(X) generated
by the b classes

(5.4) (Pl ... [hn—1], [Bep)] (P € Po, P # Bo).
By (5.1), (5.2) and (5.3), the intersection matrix of these classes is

Ay 0

O | (=s)"2I

1

where Ay := A(n — 1,s,r,0) is the intersection matrix of the classes [h;] and I is
the identity matrix of size f(n) — 1. By Lemma 5.2, we have

det A = det A(n—1,s,r to) - det ((—s)" 2I)
— (L2 (Lm0 g
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where tg := —(f(n) —1)/(—s)""2. Thus H + My is a lattice of rank b with the
basis (5.4). Since rank M (X) < b, we conclude that rank N'(X) = b and that N (X)
contains H + M as a sublattice of finite index. Therefore disc V(X)) is a divisor
of disc(H + My) = +s(=2U (-1,

For the case n = 3, we consider the submodule ([h1]) + M. The intersection
matrix of the generators [h1] and [Xyp)] (P € Po) of this submodule is the diagonal
matrix of size b = f(3) + 1 with diagonal components s, —s, ..., —s. Consequently,
([h1]) + M is a lattice of rank b with the discriminant +s/®)*1. Hence N'(X) is a
lattice of rank b containing ([h;]) + M as a sublattice of finite index, and disc N'(X)
is a divisor of s/(3)+1, O

Proof of Corollary 1.6. By Proposition 2.1, the subvariety X C P.(V) x P*(V) is
a smooth complete intersection of very ample divisors Dy € |O(r,1)| and Dy €
|O(1,s)|. Hence, by Lefschetz hyperplane section theorem of Deligne [5] (see
also [19]), the inclusion of X into P,(V) x P*(V) induces isomorphisms of I-adic
cohomology groups in degree < dim X. On the other hand, Theorem 5.1 implies
that the cycle map induces an isomorphism from N (X) ® Q; to the middle l-adic
cohomology group of X. O

Remark 5.3. Theorem 5.1 implies that, if r = 1 or s = 1, then N(X]r,s]}) is
unimodular. Recall from Remark 3.1 that, if » = 1 or s = 1, then X|r,s]{ is a
rational variety.

Next we prove Theorem 1.7 on the primitive part Npim(X) of N (X).

Proof of Theorem 1.7. We use the notation in the proof of Theorem 5.1. Since
det Ay = det A(n — 1,s,r,0) = £f(n) #0,

the submodule H is a sublattice of N'(X) with rank n — 1. Therefore Npyim (X) =
H* is also a sublattice with

rank NMprim (X) =b— (n—1) = f(n) — L.
By (5.2), the classes
(5.5) [Xa] — [Za/] (MAN €Ly, k=1,....,n—1)

are contained in Npyim (X). In particular, we have Mp C Npim (X). By (5.1), we
have
2(—s)"2 if P =P,

([Dep)); [Decpr)) = {(s)n2 if P#P'.

Hence the intersection matrix Ap of the classes [Dypy] (P € Py, P # By) is non-
degenerate. Therefore Mp is of rank f(n) — 1, and we have

(5.6) Mp ® Q = Nprim(X) @ Q.

The symmetric matrix Ap multiplied by (—1)" defines a positive-definite quadratic
form. Hence [—1]"Nprim (X) is a positive-definite lattice. O
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6. DENSE LATTICES

In this section, we investigate the case wheren =4,l=c=1landp=r=5=2,
and prove Theorem 1.8. We put X := X|[2,2]] throughout this section. Note that
X is of dimension 4.

The minimal norm Npin(L) of a positive-definite lattice L of rank m is the
minimum of norms z? of non-zero vectors z € L, and the normalized center density
0(L) of L is defined by

§(L) := (disc L)™*? - (Npin (L) /4)™/2,

where disc L is the discriminant of L. It is known that, for each m, there exists a
lattice L such that 6(L) exceeds the Minkowski-Hlawka bound

C(m) : 2—m+1 : Vn;lv

where ( is the Riemann zeta function and V,, is the volume of the m-dimensional
unit ball. (See [3, Chap. VI] or [4, Chap. 1] for the Minkowski-Hlawka theorem.)
However the proof is not constructive.

We recall the notion of dual lattices. Let L be a lattice. Then L ® Q is equipped
with the Q-valued symmetric bilinear form that extends the Z-valued symmetric
bilinear form on L. We define the dual lattice LV of L by

LV:={2€L®Q | (v,y) €Z forany y € L }.

Then LV is a Z-module containing L as a submodule of finite index. By definition,
if Ly and Lo are sublattices of a lattice L3 such that L; C Ly ® Q, then Lq is
contained in Lj.

We use the notation of the previous section adapted to the present situation
n =4 and p =r = s = 2. Note that M is a lattice of rank f(4) = |Py| = 85 with
the orthogonal basis [Xyp)] (P € Po). Let

NE(X) C Nprim(X)
be the submodule generated by the classes (5.5). Since Mp C Nx(X), we have
MD ®Q :NZ(X) ®Q :Nprlm(X) ®Q

by (5.6). In particular, N (X) is a lattice. Since Mp C M, we have Ng(X) C
M®Q in N(X)®Q. We apply the above argument to L; = Nx(X), Ly = M,
L; = N(X), and regard Nx(X) as embedded in the dual lattice M.

Let ep (P € Py) be the basis of MY dual to the orthogonal basis [y p)] of M:
(6.1) MY = P Zep = 7%
We describe the submodule Ay, C MV in a combinatorial way using the projective
geometry of Py = P3(F,). We put

Pr_1 = { S(A) | Ae Ly },

which is a subset of the power set 270 of Py. By (5.1), the vector [Eyp)) € M C MY
is equal to s" 2 ep = 4e,, and hence we have M = s"~2 (M") = 4M". Moreover
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the Q-valued symmetric bilinear form on MY is given by
1/s"2=1/4 if P=P,
(ep,epr) = / / . ’
0 if P# P
For S € 2P0, we put
vg 1= Z ep € MV,

pPes
By (5.1), we see that Ny is the submodule of MV generated by
(6.2) 53_k(’vs — vg) (S,SI € Pr_1, k=1,...,3).

Next we introduce a code C over
R:=17/s""'7 =7/8Z
and a lattice M¢. The reduction homomorphism MY — MY ® R is denoted by
v 7. Let C € MY ® R be the image of Ny C MY by v — ». Using (6.1), we
regard C as a submodule of Rf(Y) = R®5 and consider C as an R-code of length 85.
Let M € MY denote the pull-back of C by the reduction homomorphism. Since
Me = (Ng) +8(MY) = (M) +2(M),

the Q-valued symmetric bilinear form on MV takes values in Z on M. Therefore
M is a lattice.

Theorem 6.1. The lattice M¢ is an even positive-definite lattice of rank 85, with
discriminant 22°, and of minimal norm 8.

Proof. Since Mc is the submodule generated by the vectors (6.2) and 8ep (P € Py)
in MV, we can calculate the basis and the Gram matrix of M¢ by a computer,
and confirm that Mg is even and of discriminant 22°. For P # P’, the vector
4d(ep —epr) € Mc in (6.2) with & = 1 has norm 8. Hence all we have to prove is
that every non-zero vector of M is of norm > 8. We assume that a non-zero vector
w, € M¢ satisfies wy? < 8, and derive a contradiction. We express ws as a vector
in Zf4) = 7% by (6.1). Recall that w, € C C R® is the code word ws mod 8.

For v =0,1, 2,3, we put

K, :=Ker(C—>M"®@R— M'QL/2"Z),
where MY ® R — MY ® Z/2"Z is the reduction homomorphism. Then we have a
filtration
C=Ko D Ki DKy D ]C3:0,
and each quotient
Fl, = ’CV/ICV+1

is naturally regarded as an Fy-code of length 85.

We fix terminologies. Let I' C F2 be an Fa-code. The Hamming weight wt(w)

of a code word w € T" is the number of 1 that occurs in the components of w. The
weight enumerator of T' is the polynomial ) |- A CON

We compute the weight enumerator of the Fa-code
Lo =Mc/(Mcn2MY) ¢ MY/)2MY = MY @ F,
of dimension 16 by a computer. The result is
1+ 3570 2% + 38080 20 + 23800 2*® + 85 254,
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If the image of ws € C by the projection C — I'y were non-zero, then ws; would
have at least 32 odd components and hence w,? > 8. Thus we have ws € ;. The
Fs-code

Iy =WMcn2MY)/( McNdaMY) C 2MY JAMY 2 MY @ F,

is of dimension 60. The weight enumerator of I'; cannot be calculated directly,
because 290 is too large. However, the orthogonal complement I't- of T'; with
respect to the standard inner product on F5° is of dimension 25, and hence its
weight enumerator is calculated in a naive method. Via the MacWilliams Theorem
(see [18, Ch.5]), we see that the weight enumerator of I’y is

14 17850 28 4 45696 219+8020600 =12 + 229785600 214 + 4668633585 216 + - - -
<o 41142400 27 + 23800 276 + 357 280,

In particular, every non-zero code word of I'; is of Hamming weight > 8. There-
fore, if the image of ws; € K7 in I'; were non-zero, then wy would have at least 8
components that are congruent to 2 modulo 4, and hence w,? > 8. Thus we have
wg € Ko. The Fy-code

Iy = (McNdaMY)/(McN8MY) C 4MY /SMY =2 MY @ F,
is of dimension 84, and is defined in M"Y ® Fy by an equation
I0+"'+QZ84:0.

Therefore, if the image of ws € Ko in I'y were non-zero, then ws would have at least
2 components that are congruent to 4 modulo 8, and hence w,2 > 8. Thus we have
ws € K3. Hence every component of wg is congruent to 0 modulo 8. Since wy is
non-zero, we have w,2 > 8, which contradicts the hypothesis. O

Proof of Theorem 1.8. Since Nx(X) is generated by the vectors (6.2), we can cal-
culate the Gram matrix of Nx(X), and show that disc Ns(X) = 85-2%6. On the
other hand, using (5.1), (5.2) and (5.3), we can realize H and N (X) as submodules
of (H+ My)Y in terms of the dual basis of the basis (5.4) of H + My, and com-
pute the Gram matrix of Npyim(X) = HL. It turns out that Npyim(X) is also of
discriminant 85-216. Hence we conclude that Ns;(X) = Nprim(X). It is easy to see
that the minimal norm of Nx(X) is < 8. Since Ny (X) is embedded in the lattice
Mec, we see that Npyim(X) is even and of minimal norm > 8 by Theorem 6.1. [J

Remark 6.2. The intersection pairing of algebraic cycles on an algebraic variety
in positive characteristic has been used to construct dense lattices. For example,
Elkies [7, 8, 9] and Shioda [25] constructed many lattices of high density as Mordell-
Weil lattices of elliptic surfaces in positive characteristics. See also [4, page xviii].

Remark 6.3. In [23], we have obtained a dense lattice of rank 86 from the Fermat
cubic 6-fold in characteristic 2. This lattice is also closely related to M.
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