
SUPERSINGULAR K3 SURFACE IN CHARACTERISTIC 5:
COMPUTATIONAL DATA

ICHIRO SHIMADA

1. Introduction

In this note, we explain the computational data that appear in the paper

[KKS] T. Katsura, S. Kondo, I. Shimada: On the supersingular K3 surface in
characteristic 5 with Artin invariant 1,

and are available from the author’s web page

http://www.math.sci.hiroshima-u.ac.jp/~shimada/K3.html.

These computational data are divided in two parts and written in three files: the
first part is the data of the generalized Borcherds’ method, and the second part is
the geometric data of curves on the superspecial abelian surface A in characteristic
5.

2. The data of the generalized Borcherds’ method

2.1. The Néron-Severi lattice SX and its embedding into L. The following
data are given in the file

compdataB.txt.

We work over F25 = F5(
√

2):

F25 := [0, 1, 2, 3, 4, sqrt(2), 1 + sqrt(2), 2 + sqrt(2), 3 + sqrt(2), 4 + sqrt(2),

2 ∗ sqrt(2), 1 + 2 ∗ sqrt(2), 2 + 2 ∗ sqrt(2), 3 + 2 ∗ sqrt(2), 4 + 2 ∗ sqrt(2),

3 ∗ sqrt(2), 1 + 3 ∗ sqrt(2), 2 + 3 ∗ sqrt(2), 3 + 3 ∗ sqrt(2), 4 + 3 ∗ sqrt(2),

4 ∗ sqrt(2), 1 + 4 ∗ sqrt(2), 2 + 4 ∗ sqrt(2), 3 + 4 ∗ sqrt(2), 4 + 4 ∗ sqrt(2)].

The list
FSF25

of size 126 is the list of the F25-rational points on the Fermat sextic curve

CF : x6 + y6 + z6 = 0

in characteristic 5, sorted as in Table 4.1 of [KKS]. The 252 × 252 matrix

M252

is the intersection matrix of the hF -lines

(2.1) l+1 , l−1 , l+2 , l−2 , l+3 , l−3 , . . . , l+125, l
−
125, l

+
126, l

−
126.
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The 22 × 22 matrix

GramSX

is the Gram matrix of the Néron-Severi lattice SX of the Fermat double sextic plane

X : w2 = x6 + y6 + z6

of characteristic 5, with respect to the basis

ℓ1 := l+1 , ℓ2 := l−1 , ℓ3 := l+2 , ℓ4 := l+3 , ℓ5 := l+4 , ℓ6 := l+5 , ℓ7 := l+7 , ℓ8 := l+8 ,

ℓ9 := l+9 , ℓ10 := l+10, ℓ11 := l+13, ℓ12 := l+14, ℓ13 := l+15, ℓ14 := l+16, ℓ15 := l+17,

ℓ16 := l+19, ℓ17 := l+21, ℓ18 := l+22, ℓ19 := l+24, ℓ20 := l+25, ℓ21 := l+27, ℓ22 := l+34.

The vector

LineClass[i] (i = 1, . . . , 252)

is the class of the ith hF -line in (2.1) represented with respect to this basis. The
22 × 22 matrix

Frob

is the isometry of SX induced by

[l±i ] 7→ [the Gal(F25/F5)-conjugate of l±i ].

(Note that we let O(SX) act on SX from the right, so that we have

Frob · GramSX · tFrob = GramSX,

where tFrob is the transpose of Frob.) The 22 × 22 matrix

Flip

is the action of the deck-transformation of X → P2 on SX :

[l±i ] 7→ [l∓i ].

The matrix

discSX := [[2/5, 0], [0, 4/5]]

is the Gram matrix of the discriminant form

qS : S∨
X/SX → Q/2Z

of SX with respect to the basis

α1 := [ℓ3]∨ mod SX and α2 := [ℓ4]∨ mod SX .

Using this basis of S∨
X/SX

∼= F2
5, we present the group

OqS := O(qS) = { ḡ ∈ GL2(F5) | ḡ preserves qS }

of order 12 as a list of 2 × 2 matrices with entries in F5. By means of the matrices

TransAS and TransBS
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of size 2 × 22 and 22 × 2, respectively, we can calculate the action ḡ ∈ O(qS) on
S∨

X/SX = 〈α1, α2〉 induced by a given isometry g ∈ O(SX):

ḡ = TransAS · GramSX−1 · g · GramSX · TransBS mod 5.

Then g preserves the period KX of X if and only if ḡ ∈ O(qS) is one of the following
six matrices:

AutPeriod := [ [[1, 0], [0, 1]], [[2, 1], [3, 2]], [[2, 4], [2, 2]],

[[3, 1], [3, 3]], [[3, 4], [2, 3]], [[4, 0], [0, 4]] ].

The 4 × 4 matrix
GramR

is the Gram matrix of the lattice R with respect to the basis u1, . . . , u4. We present
the group

OR := O(R) = { g ∈ GL4(Z) | g · GramR · tg = GramR }

of order 72. (Recall again that we let O(R) act on R from the right.) The matrix

discR := [[8/5, 0], [0, 6/5]]

is the Gram matrix of the discriminant form

qR : R∨/R → Q/2Z

of R with respect to the basis

β1 := [u4]∨ mod R and β2 := [u2]∨ mod R.

Using this basis, we present

OqR := O(qR) = { ḡ ∈ GL2(F5) | ḡ preserves qR }.

(Since qS
∼= −qR, we have O(qS) ∼= O(qR). We have chosen the bases α1, α2 and

β1, β2 in such a way that OqS and OqR are equal sets of matrices.) By means of the
matrices

TransAR and TransBR

of size 2× 4 and 4× 2, respectively, we can calculate the induced action ḡ ∈ O(qR)
on R∨/R = 〈β1, β2〉 ∼= F2

5 of a given isometry g ∈ O(R):

ḡ = TransAR · GramR−1 · g · GramR · TransBR mod 5.

The fact that g 7→ ḡ is a surjective homomorphism from O(R) to O(qR) is now
readily verified.

The 26 × 26 matrix
GramL

is the Gram matrix of the even unimodular hyperbolic lattice L of rank 26 with
respect to a certain basis v1, . . . , v26. (This matrix GramL and the basis v1, . . . , v26
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do not appear in the paper [KKS]. They play, however, a crucial role in the actual
execution of the generalized Borcherds’ method.) The 26 × 26 matrix

Emb

gives the embedding ι : SX⊕R ↪→ L with respect to the basis [ℓ1], . . . , [ℓ22], u1, . . . , u4

and v1, . . . , v26. Vectors v in SX ⊕ R are row vectors, and ι is given by

v 7→ v · Emb.

By definition, Emb is an invertible matrix with integer entries such that

Emb · GramL · tEmb =

[
GramSX O

O GramR

]
.

The projections L → S∨
X and L → R∨ are easily calculated by Emb.

2.2. The data of the induced chambers. The data of the three induced cham-
bers Di (i = 0, 1, 2) are given in the file

compdataChams.txt.

The Weyl vector wi of Di is given in terms of the dual basis

[ℓ1]∨, . . . , [ℓ22]∨, u∨
1 , . . . , u∨

4

of S∨
X ⊕ R∨:

w[0] := [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,−2,−1, 0, 1]∨,

w[1] := [1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 0]∨,

w[2] := [4, 4, 7, 4, 1, 4, 4, 4, 4, 4, 7, 1, 4, 4, 4, 7, 7, 4, 4, 4, 7, 7, 2, 1,−1, 0]∨.

Hence its projection wi,S to S∨
X is obtained from w[i] by deleting the last 4 coordi-

nates. The polarizations are given by

h1 := w1,S , h2 := 5 w2,S , h3 := 5w3,S .

Their representations by the non-dual basis [ℓ1], . . . , [ℓ22] of SX are

h[0] := [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

h[1] := [14, 16,−4,−6,−5,−11, 12,−8,−5, 0, 10, 8,−13, 3,−3, 5,−8, 10, 7,−2, 5,−10],

h[2] := [14, 11, 3, 6, 21, 15,−3, 18, 6,−6,−27, 0, 9,−12, 3,−15,−3,−9,−18, 12, 0, 15].

A primitive defining vector of a wall of an induced chamber Di is a vector v ∈ S∨
X

primitive in S∨
X such that (v)⊥ is a wall of Di and 〈v, x〉 > 0 holds for a (and

hence any) vector x in the interior of Di. For each wall of Di, there exists a unique
primitive defining vector. We express each primitive defining vector in terms of the
dual basis [ℓ1]∨, . . . , [ℓ22]∨ of S∨

X . The group AutX(Di) ∼= Aut(X,hi) acts on the
set of primitive defining vectors of walls. The list

walls[i]
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is the list of orbits under the action of AutX(Di) on the set of primitive defining
vectors of walls of Di.

The list walls[0] consists of 3 lists, the first of which consists of 252 primitive
vectors defining the (−2)-walls of the chamber D0. If they are converted to the
representations in terms of the non-dual basis [ℓ1], . . . , [ℓ22] of SX , they coincide
with LineClass[i] (i = 1, . . . , 252).

The list walls[1] consists of 18 lists, the first of which consists of 168 primitive
vectors defining the (−2)-walls of the chamber D1.

The list walls[2] consists of 27 lists. The first member of walls[2] consists of
48 primitive defining vectors, and the second member also consists of 48 vectors.
These 96 vectors define the (−2)-walls of the chamber D2.

The group AutX(Di) is given by the following method. For i = 0, 1, 2, we fix a
reference vector refv[i] ∈ SX :

refv[0] := [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0],

refv[1] := [1, 1,−1, 0, 0, 0, 1, 0, 0, 0, 0, 0,−1,−1, 0, 0, 0, 0, 0, 0, 1, 0],

refv[2] := [1, 0, 1, 1, 2, 2, 0, 1, 0,−1,−2, 1, 0,−1, 0,−1,−1, 0,−1, 1, 0, 1],

represented in terms of the non-dual basis. (This vector refv[i] is a defining vector
of a (−2)-wall of Di, and hence it corresponds to a (−2)-curve on X.) Then the
list

SAutXD[i]

is the stabilizer subgroup of refv[i] in AutX(Di), and the list

TAutXD[i]

is the list of representatives of the right coset of SAutX[i] in AutX(Di). Hence each
element of AutX(Di) is uniquely written as a product

σ · τ (σ ∈ SAutXD[i], τ ∈ TAutXD[i]).

The lists

SS[0, 0], SS[0, 1], SS[0, 2], SS[1, 0], SS[1, 1], SS[1, 2]

are the classes of smooth rational curves in S00,S01,S02,S10,S11,S12 (the decom-
position of the 96 smooth rational curves corresponding to the (−2)-walls in the
chamber D2 into the sets of disjoint 16 smooth rational curves) written in terms of
the non-dual basis of SX . If they are converted to the representation in terms of
the dual basis of S∨

X , their union coincide with the union of the first and the second
lists of walls[2].
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The vector

sv[1] := [0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1]∨ ∈ S∨
X

is a member of the second list of walls[0], and it defines the wall separating the
chambers D0 and D1. The vector (−1) ∗ sv[1] is a member of the second list of
walls[1]. The vector

sv[2] := [1, 1, 2, 1, 0, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2]∨ ∈ S∨
X

is a member of the third list of walls[0], and it defines the wall separating the
chambers D0 and D2. The vector (−1) ∗ sv[2] is a member of the eleventh list of
walls[2].

3. The data of curves on the abelian surface A

The following data are given in the list

compdataKm.txt.

The list F25 of elements of F25 = F5(
√

2) is included in this file. We put

omega := 2 + 3 ∗ sqrt(2),

which is a cubic root of unity in F25. We exhibit 16×6 = 96 smooth rational curves
on the Kummer surface Km(A), where A = E × E is the product of the elliptic
curve defined by DefE = 0, where

DefE := y2 + 4 ∗ x3 + 1.

The addition m : E × E → E of the elliptic curve E with the origin at x = ∞

((x1, y1), (x2, y2)) 7→ (x3, y3) = (α(x1, x2), α̃(x1, y1, x2, y2))

is given by the pair of rational functions

addE := [α, α̃].

The automorphism γ : E → E of E is given by

gammaE := [(2 + 3 ∗ sqrt(2)) ∗ x, 4 ∗ y],

and the endomorphism φE,2 : E → E of degree 2 is given by

phiE2 := [(2 ∗ x2 + 3 ∗ x + 1)/(x + 4), 2 ∗ sqrt(2) ∗ y ∗ (x2 + 3 ∗ x + 3)/(x + 4)2].

The composite γ ◦ φE,2 : E → E is

gammaEphiE2 := [(x + 3) ∗ (x + 1) ∗ (4 + sqrt(2))/(x + 4),

(3 ∗ (x + 3 ∗ sqrt(2) + 4)) ∗ (x + 2 ∗ sqrt(2) + 4) ∗ y ∗ sqrt(2)/(x + 4)2].

By these data, the curves B1, . . . , B6 in Proposition 9.1 of [KKS] are obtained.
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The Gram matrix of the Néron-Severi lattice SA of A with respect to the basis
[B1], . . . , [B6] is given by

GramSA.

Let A2 denote the kernel of the homomorphism [2]A : A → A. A point (p1, p2) ∈
E × E of A2 is given by the x-coordinates of p1 ∈ E and p2 ∈ E. They are sorted
as follows:

A2Pts := [ [infinity, infinity], [infinity, 1],

[infinity, 2 + 3 ∗ sqrt(2)], [infinity, 2 + 2 ∗ sqrt(2)],

[1, infinity], [1, 1], [1, 2 + 3 ∗ sqrt(2)], [1, 2 + 2 ∗ sqrt(2)],

[2 + 3 ∗ sqrt(2), infinity], [2 + 3 ∗ sqrt(2), 1],

[2 + 3 ∗ sqrt(2), 2 + 3 ∗ sqrt(2)], [2 + 3 ∗ sqrt(2), 2 + 2 ∗ sqrt(2)],

[2 + 2 ∗ sqrt(2), infinity], [2 + 2 ∗ sqrt(2), 1],

[2 + 2 ∗ sqrt(2), 2 + 3 ∗ sqrt(2)], [2 + 2 ∗ sqrt(2), 2 + 2 ∗ sqrt(2)] ].

By the blow-up b : Ã → A at the points of A2, the lattice SA is embedded into
the Néron-Severi lattice SÃ of Ã. Let Ek denote the exceptional curve over the kth
point of A2Pts. Let B′

i be the total transform of Bi by b. Then, with respect to
the basis

[B′
1], . . . , [B

′
6], [E1], . . . , [E16]

of SÃ, the Gram matrix of SÃ is equal to

GramSAtilde :=

[
GramSA O

O −I16

]
.

The list
KmRatPts

is the list of F25-rational points on Km(A). We use the coordinates (x1, y1) and
(x2, y2) for the first and the second factor of A = E × E, respectively. Locally
around the origin of E, we put

x̃ = 1/x, z = y/x2,

so that E is defined by z2 = x̃ − x̃4. We also use the coordinates (x̃1, z1) and
(x̃2, z2). Note that the singular surface A/〈ιA〉 is defined by

w2 = (x3
1 − 1)(x3

2 − 1), where w = y1y2.

Let
ρ : Km(A) → A/〈ιA〉

be the minimal resolution. Suppose that P is an F25-rational point of Km(A). Let
[a1, a2, b] be the (x1, x2, w)-coordinates of ρ(P ). (When a1 = ∞ or a2 = ∞, we
put b = 0.) If ρ(P ) is a smooth point of A/〈ιA〉, then P is expressed in KmRatPts

as [a1, a2, b]. Suppose ρ(P ) is a singular point of A/〈ιA〉. Let P̃ ∈ A2 be the point
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whose image ϖ(P̃ ) ∈ A/〈ιA〉 is equal to ρ(P ), and let TP̃ ,A denote the tangent
space to A at P̃ . Then the (−2)-curve ρ−1(ρ(P )) is naturally identified with the
projective line P∗(TP̃ ,A). We express P in KmRatPts as [[a1, a2], [c1, c2]], where
[c1, c2] is the homogeneous coordinates of P∗(TP̃ ,A) with respect to the following
basis of the linear space TP̃ ,A:

TP̃ ,A = 〈∂/∂y1, ∂/∂y2〉 if a1 ̸= ∞ and a2 ̸= ∞,

TP̃ ,A = 〈∂/∂y1, ∂/∂z2〉 if a1 ̸= ∞ and a2 = ∞,

TP̃ ,A = 〈∂/∂z1, ∂/∂y2〉 if a1 = ∞ and a2 ̸= ∞,

TP̃ ,A = 〈∂/∂z1, ∂/∂z2〉 if a1 = ∞ and a2 = ∞.

Then KmRatPts consists of 1176 points, 760 of which are of type [a1, a2, b] and 416
of which are of type [[a1, a2], [c1, c2]].

We describe the 96 smooth rational curves on Km(A) divided into six sets

S00,S01,S02,S10,S11,S12.

The 16 curves in S00 are the exceptional curves of the minimal resolution ρ :
Km(A) → A/〈ιA〉, and hence they are in one-to-one correspondence with A2. The
smooth rational curves in S00 are sorted according to the order of A2Pts. We have
a finite double covering

π : Ã → Km(A).

Let R00,k denote the kth member of S00. Then we have

2Ek = π∗(R00,k)

for k = 1, . . . , 16. The other 80 smooth rational curves are obtained from the
(hyper-)elliptic curves

H = E, F, or G

defined by defeqE = 0, defeqF = 0, defeqG = 0, respectively, where

defeqE := v^2+4*u^3+1,

defeqF := v^2+4*u^6+1,

defeqG := v^2+4*sqrt(2)*(u^12+2*u^8+2*u^4+1).

Let ιH : H → H denote the involution of H over the u-line. There are 80 embed-
dings

η : H ↪→ A

satisfying ιA ◦ η = η ◦ ιH such that the strict transforms of η(H)/〈ιA〉 by the
minimal resolution ρ : Km(A) → A/〈ιA〉 are the 80 smooth rational curves in
S01,S02,S10,S11,S12. These embeddings

η := (ψ1, ψ2) : H ↪→ E × E = A, where ψ1 = pr1 ◦ η and ψ2 = pr2 ◦ η,



SUPERSINGULAR K3 SURFACE IN CHARACTERISTIC 5: COMPUTATIONAL DATA 9

are described in the following form:

LL[i, j, k] := [ the name of H, [[psi1x, psi1y], [psi2x, psi2y]] ],

for k = 1, . . . , 16, where, for m = 1, 2, the pair

[psimx, psimy]

is the pair (ψmx(u), ψmy(u, v)) of rational functions of u and v expressing the mor-
phism ψm : H → E given by

ψm : (u, v) 7→ (x, y) = (ψmx(u), ψmy(u, v)).

(The constant morphism to the origin of E is denoted by [∞, 0].) The 16 embed-
dings LL[i, j, 1], . . . , LL[i, j, 16] yield the 16 smooth rational curves Rij,1, . . . , Rij,16

in Sij ; that is, LL[i, j, k] is the list of the curves Lij in [KKS].

Remark 3.1. Since ιA ◦ ψ = ψ ◦ ιH , each ψmy(u, v) is of the form v · Ψm(u), where
Ψm(u) is a rational function of u. If H is defined by v2 = fH(u), then we have

fH(u)Ψm(u)2 = ψmx(u)3 − 1.

Remark 3.2. The embeddings LL[i, j, k] are composed from the morphisms

φE,2 : E → E, φF,2 : F → E, φF,3 : F → E, φG,3 : G → E, φG,4 : G → E,

and
γ : E → E, hF : F → F, h′

F : F → F, hG : G → G,

by the translation by the points in A2 and the automorphism τ : (P,Q) 7→ (Q, ιE(P ))
of A. These morphisms are also given in the computational data with the names

phiE2uv, phiF2, phiF3, phiG3, phiG4, gammaEuv, hF, hF2, hG,

respectively. (The morphisms gammaEuv and phiE2uv are same as gammaE and
phiE2, but are written in variables u and v.) The translation of a morphism to A

by the points in A2 can be calculated from addE and A2Pts.

The morphism η : H ↪→ A given as LL[i, j, k] induces an embedding

η̄ : P1 → Km(A)

from the u-line P1 = H/〈ιH〉 into Km(A). Using η := LL[i, j, k], we make the list

RatPtsR[i, j, k]

of the F25-rational points of the kth smooth rational curve Rij,k = Im η̄ in Sij . Let

P1F25 := [infinity, 0, 1, 2, 3, 4,

sqrt(2), 1 + sqrt(2), 2 + sqrt(2), 3 + sqrt(2), 4 + sqrt(2),

2 ∗ sqrt(2), 1 + 2 ∗ sqrt(2), 2 + 2 ∗ sqrt(2), 3 + 2 ∗ sqrt(2), 4 + 2 ∗ sqrt(2),

3 ∗ sqrt(2), 1 + 3 ∗ sqrt(2), 2 + 3 ∗ sqrt(2), 3 + 3 ∗ sqrt(2), 4 + 3 ∗ sqrt(2),

4 ∗ sqrt(2), 1 + 4 ∗ sqrt(2), 2 + 4 ∗ sqrt(2), 3 + 4 ∗ sqrt(2), 4 + 4 ∗ sqrt(2)]
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denote the list of F25-rational points of P1. For i = j ̸= 0, the list RatPtsR[i, j, k]
is sorted according to P1F25; the νth point of P1F25 is mapped to the νth point of
RatPtsR[i, j, k] by the morphism η̄ : P1 → Km(A) induced from the η = LL[i, j, k].
While for i = j =0, RatPtsR[0, 0, k] is sorted according to P1F25 via an iso-
morphism

η′
0,0,k : P1 →∼ ρ−1(ϖ(Pk)),

where Pk is the kth point in A2Pts, and ϖ(Pk) is the corresponding node of A/〈ιA〉.

We put

P6 := [infinity, 0, 1, 2, 3, 4],

P4 := [sqrt(2), 1 + 2 ∗ sqrt(2), 3 + 3 ∗ sqrt(2), 4 + 4 ∗ sqrt(2)],

P4conj := [4 ∗ sqrt(2), 1 + 3 ∗ sqrt(2), 3 + 2 ∗ sqrt(2), 4 + sqrt(2)],

P12 := [2 ∗ sqrt(2), 3 ∗ sqrt(2), 1 + sqrt(2), 1 + 4 ∗ sqrt(2),

2 + sqrt(2), 2 + 2 ∗ sqrt(2), 2 + 3 ∗ sqrt(2), 2 + 4 ∗ sqrt(2),

3 + sqrt(2), 3 + 4 ∗ sqrt(2), 4 + 2 ∗ sqrt(2), 4 + 3 ∗ sqrt(2)].

The rational function ϕ = ϕi,j,k,j′ = varphiCtoP1[i, j, k, jprime] gives the isomor-
phism in Corollary 1.3 from the u-line to P1 ⊗ F25 such that, letting η be the mor-
phism LL[i, j, k] for the case i = j ̸= 0, or the ismorphism η′

0,0,k : P1 →∼ ρ−1(ϖ(Pk))
for the case i = j = 0, we have

ϕ−1(P6) = { u | there is a rational curve in Sij′ that passes through η̄(u) },

ϕ−1(P4) = { u | there is a rational curve in Si′j′ that passes through η̄(u) },

ϕ−1(P4conj) = { u | there is a rational curve in Si′j′′ that passes through η̄(u) },

ϕ−1(P12) = { u | there is a rational curve in Si′j that passes through η̄(u) },

where i ̸= i′ and j ̸= j′ ̸= j′′ ̸= j.

Let Γ̃ij,k be the pull-back by the finite morphism π : Ã → Km(A) of the kth
smooth rational curve Rij,k in Sij ; that is, Γ̃00,k is the divisor 2Ek, while if ij ̸= 00,
the curve Γ̃ij,k is the strict transform by Ã → A of the image Γij,k of the embedding
LL[i, j, k]. Then the class [Γ̃ij,k] ∈ SÃ with respect to the basis

[B′
1], . . . , [B′

6], [E1], . . . , [E16]

of the Néron-Severi lattice SÃ is given by

NSClass[i, j, k].

Since the pull-back by π : Ã → Km(A) embeds SKm(A)(2) into SÃ, we can calculate
the intersection numbers of Rij,k by GramSAtilde and NSClass[i, j, k].
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