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Abstract. We show that every supersingular K3 surface in characteristic 2
with Artin invariant ≤ 2 is obtained by the Kummer type construction of

Schröer.

1. Introduction

We work over an algebraically closed field k. A K3 surface X is called super-
singular (in the sense of Shioda) if the rank of the Néron-Severi lattice NS(X) of
X attains the possible maximum 22. Supersingular K3 surfaces exist only when
char k is positive. The Artin invariant σ(X) of a supersingular K3 surface X is
defined in [3] by

discNS(X) = −p2σ(X),

where p = char k > 0. It is known that σ(X) is a positive integer ≤ 10.
Let A be an abelian surface, and let ι : A → A be the involution x 7→ −x.

If char k 6= 2, then the minimal resolution of the quotient surface A/〈ι〉 is a K3
surface, which is called the Kummer surface associated with A.

An abelian surface A in positive characteristic is called supersingular if A is
isogenous to a product of supersingular elliptic curves. Ogus [12, 13] proved that,
if char k > 2, the supersingular K3 surfaces with Artin invariant ≤ 2 are exactly
the Kummer surfaces associated with supersingular abelian surfaces. (See also
Shioda [22].) On the other hand, Shioda [23] and Katsura [10] observed that, if
char k = 2, then the minimal resolution of the quotient of a supersingular abelian
surface by the involution x 7→ −x is a rational surface.

In [17], Schröer presented a Kummer type construction of supersingular K3
surfaces in characteristic 2. We assume that char k = 2 in this paragraph. Let
C ×C be the self-product of the rational curve C with one ordinary cusp. We put

C = Spec k[u2, u3] ∪ Spec k[u−1] for the first factor, and

C = Spec k[v2, v3] ∪ Spec k[v−1] for the second factor.

Let r and s be constants in k such that (r, s) 6= (0, 0). Then the derivation

(1.1) (u−2 + r)
∂

∂u
+ (v−2 + s)

∂

∂v

defines a global vector field δ on C ×C satisfying δ[2] = 0. Hence δ corresponds to
an action of the infinitesimal group scheme α2 on C × C. Let Xr,s be the minimal
resolution of the quotient surface (C × C)/α2.
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Theorem 1.1 ([17]). The surface Xr,s is a supersingular K3 surface with Artin
invariant

σ(Xr,s) =

{
1 if r = 0 or s = 0 or r3 = s3,
2 otherwise.

The purpose of this paper is to prove the following:

Theorem 1.2. Let X ′ be a supersingular K3 surface in characteristic 2 with Artin
invariant ≤ 2. Then there exist constants r, s ∈ k with (r, s) 6= (0, 0) such that X ′

is isomorphic to Schröer’s Kummer surface Xr,s.

Even though the moduli curve of marked supersingular K3 surfaces with Artin
invariant ≤ 2 is constructed ([13, 15]), it is not separated. Hence the existence of
the complete family of Schröer’s Kummer surfaces of dimension 1 does not imply
Theorem 1.2 immediately.

The main ingredient of the proof is the following structure theorem for Néron-
Severi lattices of supersingular K3 surfaces due to Rudakov and Shafarevich [15]:

Theorem 1.3. Let X and X ′ be supersingular K3 surfaces defined over the same
algebraically closed field. If σ(X) = σ(X ′), then the lattices NS(X) and NS(X ′)
are isomorphic.

Indeed, the Néron-Severi lattice NS(X) of a supersingular K3 surface X in char-
acteristic p is p-elementary ([15, Theorem in Section 8], see also [3]). If p = 2, then
NS(X) is of type I ([15, Proposition in Section 5]). Hence the classification theo-
rem of even hyperbolic p-elementary lattices ([15, Theorem in Section 1]) implies
Theorem 1.3.

The outline of the proof of Theorem 1.2 is as follows. First note that, by [17,
Proposition 6.2], if σ(Xr,s) = 2, then Schröer’s Kummer surface Xr,s is birational
to a purely inseparable double cover Yr,s of P2 defined by

w2 = x(y4 + s2y2) + y(x4 + r2x2),

which has rational double points of type 4D4 + 5A1. Let us assume, for simplicity,
that the given supersingular K3 surface X ′ is of Artin invariant 2. We choose
one of Schröer’s Kummer surfaces X with Artin invariant 2 (for example, we put
X := X1,s with s /∈ F4). Using the isomorphism between NS(X) and NS(X ′),
we can show that X ′ is also birational to a double cover Y ′ of P2 with rational
double points of type 4D4 +5A1. By means of the notion of half-lines and splitting
lines, we can show that the covering morphism Y ′ → P2 is purely inseparable, and
then we can determine the defining equation of Y ′. It turns out that the defining
equation of Y ′ is equal to that of Yt,1 for some non-zero constant t ∈ k. Therefore
X ′ is isomorphic to Schröer’s Kummer surface Xt,1.

A surface birational to a purely inseparable cover of P2 is called a Zariski surface,
and its basic properties have been studied in [5]. In [18] and [19], we showed
that every supersingular K3 surface in characteristic 2 is birational to a purely
inseparable double cover of P2 with 21 ordinary nodes, and studied the Néron-Severi
lattice of such a surface. Using the results obtained in [19], we have determined
in [20] the moduli curve of polarized supersingular K3 surfaces with Artin invariant
≤ 2 and with 21 ordinary nodes. In [17], Schröer showed that, as r and s varies, his
Kummer surfaces Xr,s form a smooth family over the projective line Proj k[

√
r,
√

s].
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It would be an interesting problem to investigate the relation between the moduli
curve in [20] and Schröer’s projective line.

On the other hand, in [21], we investigated supersingular K3 surfaces with 10
ordinary cusps. Such supersingular K3 surfaces exist only in characteristic 3. An
example is obtained as a purely inseparable triple cover of P1 × P1. The proof in
the present article of the fact that Y ′ → P2 is purely inseparable uses an argument
developed in [21].

The plan of this paper is as follows. In §2, we collect from the lattice theory
some definitions and facts that will be used in this paper. The very elementary
Lemmas 2.4 and 2.5 play an important role in the proof of the fact that Y ′ is
purely inseparable over P2. In §3, we review some properties of the Néron-Severi
lattice of a K3 surface. We then introduce the notion of half-lines and splitting
lines for a polarized K3 surface of degree 2 in §4. After investigating the purely
inseparable double cover Yr,s → P2 birational to Schröer’s Kummer surface Xr,s,
we prove Theorem 1.2 in §6.

2. Preliminaries on lattices

A free Z-module Λ of finite rank with a non-degenerate symmetric bilinear form

(2.1) Λ × Λ → Z

denoted by (u, v) 7→ uv is called a lattice. Let Λ be a lattice. The dual lattice
Λ∨ of Λ is the Z-module Hom(Λ, Z). Then Λ is naturally embedded into Λ∨ as a
submodule of finite index. The discriminant group of Λ is, by definition, the finite
abelian group Λ∨/Λ. There exists a unique symmetric bilinear form

(2.2) Λ∨ × Λ∨ → Q

that extends (2.1). An overlattice of Λ is a submodule N of Λ∨ containing Λ such
that the bilinear form (2.2) takes values in Z on N × N . If Λ is a sublattice of
a lattice Λ′ with finite index, then Λ′ is embedded into Λ∨ in a natural way, and
hence is regarded as an overlattice of Λ.

We say that Λ is even if u2 ∈ 2Z holds for every u ∈ Λ. The signature (s+, s−)
of a lattice Λ is the numbers of positive and negative eigenvalues of the intersection
matrix of Λ. We say that Λ is negative-definite if s+ = 0, and that Λ is hyperbolic
if s+ = 1. By abuse of language, a positive definite lattice of rank 1 is also called
hyperbolic.

Let Λ be an even negative-definite lattice. A vector r ∈ Λ is called a root if
r2 = −2. We denote by Roots(Λ) the set of roots in Λ. We define an equivalence
relation ∼ on Roots(Λ) by the following: r ∼ r′ if there exists a sequence r0 =
r, r1, . . . , rm−1, rm = r′ of roots in Λ such that riri+1 6= 0 for i = 0, . . . ,m − 1. Let
R1, . . . , Rk be the equivalence classes of ∼. We call the decomposition

Roots(Λ) = R1 t · · · t Rk

the irreducible decomposition of Roots(Λ). Suppose that we are given a linear form

α : Λ → R

such that α(r) 6= 0 for any r ∈ Roots(Λ). We put

(2.3) R+
i := { r ∈ Ri | α(r) > 0 }.
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A root r ∈ R+
i is called decomposable if there exist r1, r2 ∈ R+

i such that r = r1+r2,
and r is called indecomposable if it is not decomposable. For the proof of the
following results, see [8] or [6], for example.

Proposition 2.1. Let r be an element of R+
i such that α(r) > 0. Then r can be

written in a unique way as a linear combination of indecomposable elements of R+
i .

Moreover the coefficients are all non-negative integers.

Proposition 2.2. Let Λi be the sublattice of Λ generated by the roots in Ri. Then
Λ1, . . . , Λk form an orthogonal direct sum in Λ. The indecomposable elements of
R+

i form a basis of the lattice Λi, and the intersection matrix of Λi with respect to
this basis is a Cartan matrix of type ADE multiplied by −1.

The indecomposable elements of R+
i have the following characterization:

Corollary 2.3. Let ε1, . . . , εd be elements of R+
i such that every element of R+

i is
written as a linear combination of ε1, . . . , εd with non-negative integer coefficients
in a unique way. Then {ε1, . . . , εd} is equal to the set of indecomposable elements
of R+

i .

Proof. Suppose that εi is decomposable. There exist r1, r2 ∈ R+
i such that εi =

r1 + r2. Since each of r1 and r2 is written as a linear combination of ε1, . . . , εd with
non-negative integer coefficients, we obtain a contradiction to the uniqueness of
the way to write εi as a linear combination of ε1, . . . , εd with non-negative integer
coefficients. Therefore each of ε1, . . . , εd is indecomposable.

Suppose that r ∈ R+
i is indecomposable. We can write r as a linear combination

of ε1, . . . , εd with non-negative integer coefficients. Since each εi is indecomposable,
the uniqueness of the way to write r as a linear combination of indecomposable
elements of R+

i with non-negative integer coefficients implies that r is equal to one
of ε1, . . . , εd. ¤

Let τi be the ADE-type of the Cartan matrix of the intersection matrix of
Λi given in Proposition 2.2. We define the root type of Λ to be the formal sum
τ1 + · · · + τk.

We say that Λ is a root lattice if Λ is generated by Roots(Λ). For later use, we
present properties of root lattices of type A1 and D4.

Let Λ be the root lattice of type A1, and let a ∈ Λ be a root, which generates
Λ. We put a∨ := −a/2, which generates Λ∨. Then the discriminant group of Λ is
isomorphic to Z/2Z. The proof of the following is elementary:

Lemma 2.4. Let v ∈ Λ∨ be a vector such that va ≥ 0. If v ≡ 0 mod Λ, then we
have v2 = 0 or v2 ≤ −2, and v2 = 0 holds if and only if v = 0. If v ≡ a∨ mod Λ,
then we have v2 = −1/2 or v2 ≤ −9/2, and v2 = −1/2 holds if and only if v = a∨.

Let Λ be the root lattice of type D4 generated by the roots d1, . . . , d4 whose
intersection numbers are given by the Dynkin diagram in Figure 2.1. Let d∨

1 , . . . , d∨
4

be the basis of Λ∨ dual to d1, . . . , d4. We have

(2.4) [d∨1 , d∨2 , d∨3 , d∨4 ] = [d1, d2, d3, d4]


−1 −1/2 −1 −1/2

−1/2 −1 −1 −1/2

−1 −1 −2 −1

−1/2 −1/2 −1 −1

 .
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The discriminant group of Λ is isomorphic to (Z/2Z) ⊕ (Z/2Z), and is generated
by d∨1 mod Λ and d∨

4 mod Λ.

d1
g

d2
g

d3g d4gQ
QQ

´
´́

Figure 2.1. The Dynkin diagram of type D4

Lemma 2.5. Let v ∈ Λ∨ be a vector such that vdi ≥ 0 holds for i = 1, . . . , 4. If
v ≡ 0 mod Λ, then we have v2 = 0 or v2 ≤ −2, and v2 = 0 holds if and only if
v = 0. If v ≡ d∨

1 mod Λ, then we have v2 = −1 or v2 ≤ −3, and v2 = −1 holds if
and only if v = d∨1 .

Proof. The first assertion is obvious. Suppose that v ≡ d∨
1 mod Λ. Then we can

put
v = d∨1 + x1d1 + x2d2 + x3d3 + x4d4,

where x1, . . . , x4 ∈ Z. From the condition vdi ≥ 0 for i = 1, . . . , 4, we obtain the
following inequalities:

(2.5) 1 − 2x1 + x3 ≥ 0, −2x2 + x3 ≥ 0, x1 + x2 − 2x3 + x4 ≥ 0, x3 − 2x4 ≥ 0.

Using (2.4), we calculate

v2 = −1 − 2(x2
1 + x2

2 + x2
3 + x2

4 − x1 − x1x3 − x2x3 − x3x4)

= −1 − {(1 − 2x1 + x3)2 + (−2x2 + x3)2 + (x3 − 2x4)2 + (x3 − 1)2 − 2}/2.

Therefore v2 is a negative odd integer, and v2 = −1 holds if and only if two of the
four integers 1 − 2x1 + x3, −2x2 + x3, x3 − 2x4, x3 − 1 are ±1 and the other two
are 0. Combining this with the inequalities (2.5), we see that v2 = −1 holds if and
only if x1 = x2 = x3 = x4 = 0. ¤

3. The Néron-Severi lattice of a K3 surface

In this section, we work over an algebraically closed field of arbitrary charac-
teristic. Let X be an (algebraic) K3 surface, and let NS(X) be the Néron-Severi
lattice of X, which is an even hyperbolic lattice. For a divisor D on X, we denote
by [D] ∈ NS(X) the class of D.

3.1. The nef-cone. We put

Nef(X) := { v ∈ NS(X) ⊗ R | v[D] ≥ 0 for any effective divisor D on X }.
Let A be an ample divisor on X, and let C+(X) be the connected component of

{ v ∈ NS(X) ⊗ R | v2 > 0 }
that contains [A]. For a vector v ∈ NS(X), we put

〈v〉⊥R := { w ∈ NS(X) ⊗ R | vw = 0 }.
Then the family of hyperplanes {〈r〉⊥R | r2 = −2} of NS(X) ⊗ R is locally finite in
C+(X). It is well-known and easy to prove that [A] /∈ 〈r〉⊥R for any vector r with
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r2 = −2, and that Nef(X) is equal to the closure in NS(X) ⊗ R of the connected
component of

C+(X) \
⋃

〈r〉⊥R
that contains [A]. By the argument of Proposition 3 in [15, Section 3], we obtain
the following:

Proposition 3.1. Let X and X ′ be two algebraic K3 surfaces such that NS(X) and
NS(X ′) are isomorphic. Then there exists an isomorphism φ : NS(X) ∼→ NS(X ′)
such that φ ⊗ R maps Nef(X) to Nef(X ′).

3.2. Polarizations.

Proposition 3.2. Let H be a divisor on an algebraic K3 surface X such that
[H] ∈ Nef(X) and H2 > 0. Then the following conditions are equivalent to each
other:

(i) The complete linear system |H| has no fixed components.
(ii) There exist no vectors e ∈ NS(X) such that e[H] = 1 and e2 = 0.

Proof. The implication (i)=⇒(ii) follows from the argument in the proof of (4)=⇒(1)
in [24, Proposition 1.7]. The other implication (ii)=⇒(i) follows from [11, Proposi-
tion 0.1]. ¤
Definition 3.3. A polarization of an algebraic K3 surface X is a divisor H on
X satisfying [H] ∈ Nef(X), H2 > 0, and the conditions (i) and (ii) in Proposi-
tion 3.2. The positive integer H2 is called the degree of the polarization H. By [11,
Proposition 0.1], if H is a polarization of degree d, then |H| is base-point free by
Saint-Donat [16, Corollary 3.2], and we have dim |H| = 1 + d/2.

A pair (X,H) of a K3 surface X and a polarization H of X is called a polarized
K3 surface.

Combining Propositions 3.1 and 3.2, we obtain the following:

Corollary 3.4. Let X and X ′ be two K3 surfaces such that NS(X) and NS(X ′)
are isomorphic, and let H be a polarization of X. If φ : NS(X) ∼→ NS(X ′) is an
isomorphism such that φ⊗ R maps Nef(X) to Nef(X ′), then φ([H]) is the class of
a polarization H ′ of X ′.

A curve C on X is called a (−2)-curve on X if it satisfies the following conditions
that are equivalent to each other:

(i) C is a smooth rational curve,
(ii) C is reduced irreducible with negative self-intersection,
(iii) C is irreducible and C2 = −2.

Let (X,H) be a polarized K3 surface. Then the complete linear system |H| defines
a morphism Φ|H| from X to a projective space PN (N = 1+H2/2) that is generically
finite over the image. We denote by

(3.1) X
ρ−→ Y

π−→ PN

the Stein factorization of Φ|H|; that is, ρ is birational, Y is normal, and π is finite.
The normal K3 surface Y has only rational double points as its singularities, and
hence ρ is a contraction of an ADE-configuration of (−2)-curves. (See [1, 2].) Let
E be the set of (−2)-curves that are contracted by ρ. The classes [E] of E ∈ E are
determined by the following procedure. Let [H]⊥ be the orthogonal complement of
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[H] in NS(X). Since NS(X) is even hyperbolic and [H]2 is positive, [H]⊥ is even
and negative-definite. We can therefore consider the set Roots([H]⊥) of roots in
[H]⊥.

Lemma 3.5. Let r be an element of Roots([H]⊥). Then there exists a unique
effective divisor E such that r = [E] or r = −[E] holds. Moreover, the integral
component of E is a (−2)-curve.

Proof. By the Riemann-Roch theorem and the Serre duality, we see that either r
or −r is the class of an effective divisor. Replacing r with −r, if necessary, we
can assume that r is the class of an effective divisor E. Let E = F + M be the
decomposition of E into the sum of the fixed part F and the movable part M .
Since [H] ∈ Nef(X), we have HF ≥ 0 and HM ≥ 0. Because HE = 0, we
have HM = 0. Since [H]⊥ is negative-definite and M2 ≥ 0, we obtain M = 0.
Therefore E is unique and every irreducible component of E has negative self-
intersection number. Thus the reduced part of every irreducible component of E is
a (−2)-curve. ¤

Let Roots([H]⊥) = R1t· · ·tRk be the irreducible decomposition of Roots([H]⊥)
defined in §2. We choose an interior point a of Nef(X) (for example, the class of
an ample divisor on X), and let α : NS(X) → R be the linear form given by
α(x) := ax. By Lemma 3.5, we see that α(r) 6= 0 for any r ∈ Roots([H]⊥). We
thus can define R+

i by (2.3), and consider the indecomposable roots of R+
i . Note

that R+
i ⊂ Ri does not depend on the choice of the interior point a of Nef(X).

Proposition 3.6. Let Sing(Y ) be the set of singular points of Y . There exists
a bijection from the set {R1, . . . , Rk} to Sing(Y ) with the following property. Let
Pi ∈ Sing(Y ) be the point corresponding to Ri. Then the classes of (−2)-curves
contracted by ρ to Pi are exactly the indecomposable roots of R+

i .

Proof. Let r be an element of R+
i . By Lemma 3.5 and α(r) > 0, r is the class

of a unique effective divisor of the form a1E1 + · · · + alEl, where E1, . . . , El are
(−2)-curves and a1, . . . , al are positive integers. Since [H] ∈ Nef(X) and r ∈ [H]⊥,
we have [Eν ] ∈ [H]⊥ for ν = 1, . . . , l. In particular, we have Eν ∈ E for ν = 1, . . . , l.
Let Λj be the sublattice of [H]⊥ generated by the roots in Rj for j = 1, . . . , k.
Since Λ1, . . . , Λk form a direct sum in NS(X), the uniqueness of the effective divisor
representing r ∈ Λi implies that [E1], . . . , [El] are all in Ri. Since α([Eν ]) > 0, we
have [Eν ] ∈ R+

i . Thus we have shown that every element of R+
i is written as a

linear combination of the classes of (−2)-curves in R+
i with non-negative integer

coefficients in a unique way. By Corollary 2.3, we see that r is the class of a
(−2)-curve in E if and only if r is indecomposable in R+

i . ¤
Let (X ′,H ′) be another polarized K3 surface. Let

X ′ ρ′

−→ Y ′ π′

−→ PN ′

be the Stein factorization of the morphism Φ|H′| defined by |H ′|, and let E ′ be the
set of (−2)-curves contracted by ρ′.

Corollary 3.7. Suppose that there exists an isomorphism φ : NS(X) ∼→ NS(X ′)
such that φ ⊗ R maps Nef(X) to Nef(X ′), and that φ([H]) is equal to [H ′]. Then
the ADE-type of Sing(Y ) coincides with that of Sing(Y ′). Moreover, there exist
bijections

φE : E ∼→ E ′ and φSing : Sing(Y ) ∼→ Sing(Y ′)
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such that the following diagram is commutative;

(3.2)

NS(X)
φ−→ NS(X ′)x x

E φE−→ E ′y y
Sing(Y )

φSing−→ Sing(Y ′) ,

where the up-arrows are given by E 7→ [E] ∈ NS(X) and E′ 7→ [E′] ∈ NS(X ′),
respectively, and the down-arrows are given by E 7→ ρ(E) ∈ Sing(Y ) and E′ 7→
ρ′(E′) ∈ Sing(Y ′), respectively.

3.3. Polarizations with maximal rational double points.

Definition 3.8. We say that a polarized K3 surface (X,H) has maximal rational
double points if the total Milnor number of Sing(Y ) is equal to rankNS(X)− 1; or
equivalently, the root lattice generated by Roots([H]⊥) is of finite index in [H]⊥.

Let (X,H) be a polarized K3 surface with maximal rational double points.
Consider the Stein factorization (3.1) of Φ|H|. For P ∈ Sing(Y ), we denote by
EP ⊂ E the set of (−2)-curves that are contracted to P by ρ, by ΛP ⊂ NS(X)
the sublattice generated by the classes [E] of the curves E ∈ EP , and by ∆P the
discriminant group Λ∨

P /ΛP of ΛP . We also denote by ΛH ⊂ NS(X) the sublattice
of rank 1 generated by [H], and by ∆H the discriminant group Λ∨

H/ΛH of ΛH ,
which is a cyclic group of order equal to H2. We then put

Λ := ΛH ⊕
⊕

P∈Sing(Y )

ΛP and ∆ := Λ∨/Λ.

We have natural decompositions

Λ∨ = Λ∨
H ⊕

⊕
P∈Sing(Y )

Λ∨
P and ∆ = ∆H ⊕

⊕
P∈Sing(Y )

∆P .

By the assumption, Λ is of finite index in NS(X), and hence NS(X) is an overlattice
of Λ. Let v be a vector of NS(X). Using the direct-sum decomposition of Λ∨ and
the natural embedding NS(X) ↪→ Λ∨, we can define the H-component vH ∈ Λ∨

H

and the P -components vP ∈ Λ∨
P of v. We denote by v̄ ∈ ∆ the class of v modulo

Λ. Then the H-component v̄H ∈ ∆H and the P -components v̄P ∈ ∆P of v̄ are also
defined.

4. Polarizations of degree 2 in characteristic 2

From now on to the end of this paper, we assume that the base field k is of
characteristic 2.

Let (X,H) be a polarized K3 surface of degree 2. Then the Stein factorization
of Φ|H| is of the form

X
ρ−→ Y

π−→ P2,

where π : Y → P2 is a finite double cover. We have h0(X,OX(mH)) = m2 + 2 for
every m ≥ 1 by [11, Proposition 0.1]. Therefore the finite double cover π : Y → P2

is defined by the equation

(4.1) w2 + w C(x0, x1, x2) + G(x0, x1, x2) = 0
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in the total space of the line bundle V → P2 corresponding to the invertible sheaf
OP2(3), where w is a fiber coordinate of V , [x0 : x1 : x2] is a homogeneous coordinate
system of P2, and C and G are homogeneous polynomials of degree 3 and 6 that
are regarded as sections of V and V ⊗2, respectively. If C 6= 0, then π is separable,
while if C = 0, then π is purely inseparable.

Definition 4.1. An irreducible curve F ⊂ X is called a half-line of (X,H) if
FH = 1 holds. A line L ⊂ P2 is said to be splitting in (X,H) if the proper
transform of L in X is non-reduced or reducible, or equivalently, if the scheme-
theoretic pre-image π−1(L) ⊂ Y of L by π is non-reduced or reducible.

Let F be a half-line of (X,H). Then Φ|H| induces an isomorphism from F to
a line L ⊂ P2, and this line L is splitting in (X,H). In particular, a half-line is a
(−2)-curve.

Definition 4.2. If L ⊂ P2 is a line splitting in (X,H), then the proper transform
of L in X is written as F +F ′, where F and F ′ are half-lines of (X,H). These half-
lines are said to be lying over L. We say that L is of non-reduced type if F = F ′,
while L is of reduced type if F 6= F ′.

Lemma 4.3. Suppose that π is separable. Then the number of splitting lines of
non-reduced type is at most 3.

Proof. Let L be a splitting line of non-reduced type. We choose homogeneous
coordinates [x0 : x1 : x2] of P2 such that L is defined by x2 = 0. Putting x2 = 0 in
the defining equation (4.1), we see that the curve defined by

(4.2) w2 + w C(x0, x1, 0) + G(x0, x1, 0) = 0

in the total space of the line bundle V |L → L on L is non-reduced. Let γ(w, x0, x1)
be the left-hand side of (4.2). Since char k = 2, we have ∂γ/∂w = C(x0, x1, 0).
Therefore C(x0, x1, 0) is constantly equal to zero. Thus we have shown that the
defining equation of a splitting line of non-reduced type divides C(x0, x1, x2). There-
fore, if C 6= 0, then the number of splitting lines of non-reduced type is at most
deg C = 3. ¤

Next we investigate the case where π is purely inseparable. In this case, π is
given by the equation

(4.3) w2 + G(x0, x1, x2) = 0.

Note that every splitting line is now of non-reduced type.

Remark 4.4. Let Γ(x0, x1, x2) be a homogeneous polynomial of degree 3. Then the
equations w2 = G and w2 = G + Γ2 define surfaces isomorphic over P2.

We have the following relation between splitting lines and rational double points
of Y . See [4] or [9] for the normal form of defining equations of rational double
points in characteristic 2.

Lemma 4.5. Let L ⊂ P2 be a line defined by `(x0, x1, x2) = 0.
(1) The line L is splitting in (X,H) if and only if there exist homogeneous

polynomials Q(x0, x1, x2) and Γ(x0, x1, x2) of degree 5 and 3, respectively, such
that G = `Q + Γ2.

(2) Suppose that L is splitting in (X,H), and let Q be a polynomial of degree
5 such that G + `Q is a square of a cubic polynomial. We denote by T ⊂ P2 the
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quintic curve defined by Q = 0. Let p be a point of L, and P the point of Y such
that π(P ) = p. Then P is a smooth point of Y if and only if p /∈ T , and P is an
A1-singular point of Y if and only if T intersects L transversely at p.

Proof. We can assume that ` = x2. Since the curve defined by w2+G(x0, x1, 0) = 0
in V |L is non-reduced, we see that G(x0, x1, 0) is the square of a polynomial of
degree 3. Hence the assertion (1) follows. Let (x, y) be an affine coordinate system of
P2 with the origin p such that L is defined by y = 0. We write (4.3) as w2 = g(x, y).
Let gij be the coefficient of xiyj of g. Then P is a smooth point of Y if and only if
g01 6= 0 or g10 6= 0, and P is an A1-singular point of Y if and only if g01 = g10 = 0
and g11 6= 0. Let q(x, y) be the inhomogeneous polynomial corresponding to Q,
and let qij be the coefficients of xiyj of q. Then, up to a multiplicative constant,
we have g01 = q00, g10 = 0, g11 = q10. Therefore the assertion (2) follows. ¤

Remark 4.6. The polynomials Q and Γ such that G = `Q + Γ2 are not determined
uniquely by G and `. However, the homogeneous polynomial Q|L on the line L is
determined uniquely by G and `.

5. Schröer’s Kummer surfaces as Zariski surfaces

Let r and s be constants in k such that r 6= 0, s 6= 0 and r3 6= s3. Then Schröer’s
supersingular K3 surface Xr,s defined in Introduction is of Artin invariant 2. By
Proposition 6.2 of [17], the quotient surface (C ×C)/α2 of the α2-action on C ×C
defined by the vector field (1.1) contains an open subset U isomorphic to

Spec k[a, b, c]/( c2 + a(b4 + s2b2) + b(a4 + r2a2) ).

The singular locus of U consists of four D4-singular points coming from the fixed
points of the α2-action on the smooth part of C × C. Let

πr,s : Yr,s → P2

be the purely inseparable double cover defined by

w2 = [x0(x4
1 + s2x2

1x
2
2) + x1(x4

0 + r2x2
0x

2
2)]x2,

which is a projective completion of U . Then Yr,s is birational to Xr,s, and hence
there exists a morphism ρr,s : Xr,s → Yr,s that is the minimal resolution. The
pull-back of a line of P2 by πr,s ◦ρr,s is a polarization Hr,s of degree 2 of Xr,s. Then

Xr,s
ρr,s−→ Yr,s

πr,s−→ P2

is the Stein factorization of Φ|Hr,s|. The singular locus of Yr,s consists of four
D4-singular points P (00), P (01), P (10), P (11) in U and five A1-singular points
Q(0), Q(1), Q(ω), Q(ω̄), Q(∞) lying on the line defined by x2 = 0. Here ω is a
primitive third root of 1, and ω̄ = ω2. These singular points are indexed in such a
way that their images by πr,s are given in Table 5.1, where p(αβ) := πr,s(P (αβ))
for αβ = 00, 01, 10, 11, and q(γ) := πr,s(Q(γ)) for γ = 0, 1, ω, ω̄,∞. It is easy to see
that the five lines listed below are splitting in (Xr,s, Hr,s):

L(∞) := {x2 = 0},
L(0∗) := {x0 = 0}, L(1∗) := {x0 + rx2 = 0},
L(∗0) := {x1 = 0}, L(∗1) := {x1 + sx2 = 0}.
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p(00) = [0 : 0 : 1]

p(01) = [0 : s : 1]

p(10) = [r : 0 : 1]

p(11) = [r : s : 1]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

q(0) = [1 : 0 : 0]

q(1) = [1 : 1 : 0]

q(ω) = [1 : ω : 0]

q(ω̄) = [1 : ω̄ : 0]

q(∞) = [0 : 1 : 0]

Table 5.1. The coordinates of the singular points of Yr,s
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¦
¦
¦
¦
¦
¦
¦
¦
¦
¦
¦
¦
¦
¦

L(0∗)
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E
E
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E
E
E
E
E
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E
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L(1∗)
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L(∗0)
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L(∗1)

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@@ L(∞)

uq(∞)

uq(0)

uq(1)

up(00)

up(11)

up(10)

up(01)

uq(ω)

uq(ω̄)

Figure 5.1. The configuration of splitting lines

To simplify the notation, we put

P := {00, 01, 10, 11}, Q := {0, 1, ω, ω̄,∞}, L := {∞, 0∗, 1∗, ∗0, ∗1}.

The configuration of the splitting lines L(λ) (λ ∈ L) and the points p(αβ) (αβ ∈ P),
q(γ) (γ ∈ Q) are given in Figure 5.1. For a splitting line L(λ) (λ ∈ L), we denote
by F (λ) the half-line of (Xr,s,Hr,s) lying over L(λ). By blowing up Yr,s at their
singular points explicitly, we see that the half-lines F (λ) and the exceptional divisors
of ρr,s : Xr,s → Yr,s intersect as in Figure 5.2. We denote the exceptional curves over
the D4-singular points P (αβ) (αβ ∈ P) as in Figure 5.3, and denote the exceptional
curves over the A1-singular points Q(γ) (γ ∈ Q) by A(γ). The polarized K3 surface



12 ICHIRO SHIMADA AND DE-QI ZHANG

A(0)

A(∞)
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F (∞)

F (0∗)
E
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E
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E
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E
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E
E
E
E

F (1∗)

Figure 5.2. The configuration of half-lines and exceptional curves

D1(αβ)

D4(αβ)

¡
¡

¡¡
D2(αβ)

D3(αβ)F (α∗)

F (∗β)

Figure 5.3. The exceptional curves over P (αβ)
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(Xr,s,Hr,s) has maximal rational double points. Consider the sublattice

(5.1) Λr,s := ΛH ⊕
⊕

αβ∈P

ΛP (αβ) ⊕
⊕
γ∈Q

ΛQ(γ)

of NS(Xr,s) with finite index, as in the subsection 3.3. The lattice ΛH is of rank
1 generated by h := [Hr,s], and Λ∨

H is generated by h∨ := h/2. The lattice ΛP (αβ)

is of rank 4 with basis di(αβ) := [Di(αβ)] (i = 1, . . . , 4). We denote the basis of
Λ∨

P (αβ) dual to d1(αβ), . . . , d4(αβ) by d1(αβ)∨, . . . , d4(αβ)∨. The relation between
d1(αβ), . . . , d4(αβ) and d1(αβ)∨, . . . , d4(αβ)∨ are given by (2.4). The lattice ΛQ(γ)

is of rank 1 generated by a(γ) := [A(γ)], and Λ∨
Q(γ) is generated by a(γ)∨ :=

−a(γ)/2. From Figures 5.2 and 5.3, we see that the classes of half-lines F (λ)
(λ ∈ L) are given as follows:

(5.2)

[F (∞)] = h∨ + a(0)∨ + a(ω)∨ + a(1)∨ + a(ω̄)∨ + a(∞)∨,

[F (0∗)] = h∨ + d1(00)∨ + d1(01)∨ + a(∞)∨,

[F (1∗)] = h∨ + d1(10)∨ + d1(11)∨ + a(∞)∨,

[F (∗0)] = h∨ + d4(00)∨ + d4(10)∨ + a(0)∨,

[F (∗1)] = h∨ + d4(01)∨ + d4(11)∨ + a(0)∨.

We then put

(5.3) ∆r,s := (Λr,s)∨/Λr,s = ∆H ⊕
⊕

αβ∈P

∆P (αβ) ⊕
⊕
γ∈Q

∆Q(γ),

which is an F2-vector space of dimension 14. Since the discriminant of NS(Xr,s) is
−22σ(Xr,s) = −24, we see that NS(Xr,s)/Λr,s ⊂ ∆r,s is a subspace of dimension 5.
It is easy to prove that the five elements

[F (λ)] := [F (λ)] mod Λr,s (λ ∈ L)

of NS(Xr,s)/Λr,s are linearly independent. Therefore NS(Xr,s) is generated by the
classes h = [Hr,s], di(αβ) = [Di(αβ)], a(γ) = [A(γ)] and [F (λ)].

Remark 5.1. Suppose that r3 = s3. Then there exists c ∈ F×
4 = {1, ω, ω̄} such that

s = cr holds. The three points p(00), p(11) and q(c) on P2 are collinear. Let M be
the line passing through these points. Then M is a splitting line for (Xr,cr, Hr,cr).
Let G be the half-line lying over M . By blowing up Yr,cr at the points P (00), P (11)
and Q(c), we see that

[G] = h∨ + d2(00)∨ + d2(11)∨ + a(c)∨.

Note that d2(αβ)∨ ≡ d1(αβ)∨ + d4(αβ)∨ mod ΛP (αβ) by (2.4). Hence [G] :=
[G] mod Λr,cr is linearly independent from the set of vectors [F (λ)] (λ ∈ L) in
∆r,cr. In particular, the linear subspace NS(Xr,cr)/Λr,cr of ∆r,cr is of dimension 6
generated by [F (λ)] (λ ∈ L) and [G], and the Artin invariant of Xr,cr is 1.

6. Proof of main theorem

Note that supersingular K3 surfaces with Artin invariant 1 are isomorphic to
each other [7, 13]. Therefore it is enough to prove Theorem 1.2 under the additional
assumption that the Artin invariant of X ′ is 2.
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We choose a Schröer’s Kummer surface X with σ(X) = 2. To fix the ideas, we
choose s ∈ k \ F4, and put X := X1,s, and set

H := H1,s, Y := Y1,s, ρ := ρ1,s, π := π1,s, ∆ := ∆1,s, Λ := ∆1,s.

Let X ′ be a supersingular K3 surface with Artin invariant 2. Theorem 1.3 implies
that NS(X) and NS(X ′) are isomorphic. By Proposition 3.1, there exists an iso-
morphism φ : NS(X) ∼→ NS(X ′) such that φ ⊗ R maps Nef(X) to Nef(X ′). We fix
such an isomorphism φ once and for all. By Corollary 3.4, we have a polarization
H ′ of X ′ with degree 2 such that [H ′] = φ([H]). As before, let

X ′ ρ′

−→ Y ′ π′

−→ P2

be the Stein factorization of Φ|H′|. By Corollary 3.7, there exist bijections φE :
E ∼→ E ′ and φSing : Sing(Y ) ∼→ Sing(Y ′) such that the diagram (3.2) is commutative.
For P ∈ Sing(Y ), we write P ′ ∈ Sing(Y ′) instead of φSing(P ), and for E ∈ E , we
write E′ ∈ E ′ instead of φE(E). Therefore Sing(Y ′) consists of four D4-singular
points P (αβ)′ (αβ ∈ P), and five A1-singular points Q(γ)′ (γ ∈ Q). For example,
the (−2)-curves contracted to P (αβ)′ by ρ′ are D1(αβ)′, D2(αβ)′, D3(αβ)′ and
D4(αβ)′. We then put

p(αβ)′ := π′(P (αβ)′) and q(γ)′ := π′(Q(γ)′).

We also set

(6.1) Λ′ := ΛH′ ⊕
⊕

αβ∈P

ΛP (αβ)′ ⊕
⊕
γ∈Q

ΛQ(γ)′

and

(6.2) ∆′ := (Λ′)∨/Λ′ = ∆H′ ⊕
⊕

αβ∈P

∆P (αβ)′ ⊕
⊕
γ∈Q

∆Q(γ)′

as (5.1) and (5.3). Note that φ induces isomorphisms

φΛ : Λ ∼→ Λ′ and φ∆ : ∆ ∼→ ∆′

that are compatible with the direct-sum decompositions (5.1), (6.1), and (5.3),
(6.2).

Let L ⊂ P2 be a line splitting in (X,H), and let F be the half-line of (X,H)
lying over L. We can define a line L′ ⊂ P2 splitting in (X ′,H ′) and a half-line F ′

of (X ′, H ′) lying over L′ as follows.

Claim 6.1. There exists a unique effective divisor D′ that represents φ([F ]).

Proof. Since φ([F ])2 = −2 and φ([F ])[H ′] = 1, there exists an effective divisor D′

that represents φ([F ]). Let D′ = Γ′ + M ′ be the decomposition of D′ into the
sum of the fixed part Γ′ and the movable part M ′. Suppose that M ′ 6= 0. If
M ′H ′ = 0, then M ′ 2 < 0 because [H ′]⊥ is negative-definite. Therefore we have
M ′H ′ > 0. Since Γ′H ′ ≥ 0, we have M ′H ′ = 1, which implies that Φ|H′| induces
an isomorphism from M ′ to a line on P2. Hence M ′ is a smooth rational curve,
which is a contradiction. ¤

Since D′H ′ = 1, there exists a unique irreducible component F ′ of D′ such that
F ′H ′ = 1. Then F ′ is a half-line of (X ′,H ′). We define L′ ⊂ P2 to be the image of
F ′ by ρ′ ◦ π′.
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Claim 6.2. Let F ′′ be a half-line for (X ′,H ′) lying over L′. Then [F ′′] = [F ′]
holds in ∆′, where [F ′′] = [F ′′] mod Λ′ and [F ′] = [F ′] mod Λ′.

Proof. The case where F ′ = F ′′ is obvious. Suppose that F ′ 6= F ′′. Then F ′ + F ′′

is the total transform of L′ in X ′ minus a linear combination of curves in E ′, and
hence [F ′] + [F ′′] ∈ Λ′. Because ∆′ is a 2-elementary abelian group, we obtain
[F ′′] = [F ′]. ¤

Claim 6.3. We have φ∆([F ]) = [F ′].

Proof. Since φ([F ]) = [D′], we have φ∆([F ]) = [D′]. Since D′ − F ′ is effective and
(D′ − F ′)H ′ = 0, each irreducible component of D′ − F ′ is contracted to a point
by ρ′. Therefore we have [D′] − [F ′] ∈ Λ′, and hence [D′] = [F ′]. ¤

Now we have half-lines F (λ)′ and splitting lines L(λ)′ of (X ′,H ′) for each λ ∈ L.
By Claim 6.3, the elements [F (λ)′] of ∆′ are distinct to each other. Hence, by
Claim 6.2, the lines L(λ)′ are distinct to each other.

Claim 6.4. Let P be a point of Sing(Y ). If π(P ) ∈ L(λ), then π′(P ′) ∈ L(λ)′.

Proof. If π(P ) ∈ L(λ), then the P -component of [F (λ)] ∈ ∆ is not zero by (5.2).
Hence the P ′-component of [F (λ)′] ∈ ∆′ is not zero by Claim 6.3. Consequently,
there exists E′ ∈ E ′

P ′ such that F (λ)′E′ 6= 0. Therefore the image L(λ)′ of F (λ)′

passes through π′(P ′) ∈ P2. ¤

Claim 6.5. The splitting line L(λ)′ is of non-reduced type for any λ ∈ L.

Proof. Let G′ be an arbitrary half-line of (X ′,H ′) lying over L(λ)′. Then the class
g′ := [G′] ∈ NS(X ′) satisfies the following:

(i) (g′)2 = −2,
(ii) g′[H ′] = 1, and
(iii) for every E′ ∈ E ′, we have g′[E′] ≥ 0.

Suppose that L(λ)′ is of reduced type. Then there exists a half-line F ′′lying over
L(λ)′ that is distinct from F (λ)′. Since [F ′′][F (λ)′] ≥ 0, we have [F ′′] 6= [F (λ)′].
By Claim 6.2, we have [F (λ)′] = [F ′′] in ∆′. Consequently, it is enough to show
that there exists only one class g′ in NS(X ′) satisfying (i), (ii), (iii) above and

(iv) (g′) = [F (λ)′] = φ∆([F (λ)]),
where the second equality follows from Claim 6.3. We denote by g′H′ and g′P ′ the
H ′- and P ′-components of g′, respectively, where P ′ ∈ Sing(S′). By (ii), we have
g′H′ = [H ′]/2. Combining this with (i), we have

(6.3)
∑

αβ∈P

(g′P (αβ)′)
2 +

∑
γ∈Q

(g′Q(γ)′)
2 = −5/2.

The case where λ = ∞. By (iii), (iv), (5.2) and Lemmas 2.4, 2.5, we have

(g′P (αβ)′)
2 = 0 or ≤ −2 and (g′Q(γ)′)

2 = −1/2 or ≤ −9/2.

Combining this with (6.3), we have

(g′P (αβ)′)
2 = 0 and (g′Q(γ)′)

2 = −1/2.

By (iii) and Lemmas 2.4, 2.5 again, we have

g′P (αβ)′ = 0 and g′Q(γ)′ = −[A(γ)′]/2.
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Thus the uniqueness of g′ is proved.
The case where λ = 0∗. By (iii), (iv), (5.2) and Lemmas 2.4, 2.5, we have

(g′P (αβ)′)
2 = −1 or ≤ −3 if αβ = 00 or 01,

(g′P (αβ)′)
2 = 0 or ≤ −2 if αβ = 10 or 11,

(g′Q(γ)′)
2 = −1/2 or ≤ −9/2 if γ = ∞,

(g′Q(γ)′)
2 = 0 or ≤ −2 if γ 6= ∞.

Combining this with (6.3), we have

(g′P (00)′)
2 = (g′P (01)′)

2 = −1, (g′P (10)′)
2 = (g′P (11)′)

2 = 0,

(g′Q(∞)′)
2 = −1/2, (g′Q(γ)′)

2 = 0 for γ 6= ∞.

By (iii) and Lemmas 2.4, 2.5 again, we have

g′P (00)′ = δ1(00), g′P (01)′ = δ1(01), g′P (10)′ = g′P (11)′ = 0,

g′Q(∞)′ = −[A(∞)′]/2, g′Q(γ)′ = 0 for γ 6= ∞,

where

δ1(αβ) = −[D1(αβ)′] − [D2(αβ)′]/2 − [D3(αβ)′] − [D4(αβ)′]/2.

(See (2.4).) Thus the uniqueness of g′ is proved.
The other cases λ = 1∗, ∗0, ∗1 can be treated in the same way. ¤

We have five distinct splitting lines L(λ)′ (λ ∈ L) for (X ′,H ′), which are of
non-reduced type by Claim 6.5. By Lemma 4.3, we see that π′ : Y ′ → P2 is purely
inseparable. By Claim 6.4, the configuration of the lines L(λ)′ and the points
p(αβ)′, q(γ)′ are exactly the same as the configuration depicted in Figure 5.1 with
superscript prime (′) being put to everything.

There exists a homogeneous coordinate system [x : y : z] of P2 such that

q(∞)′ = [0 : 1 : 0], q(1)′ = [1 : 1 : 0], q(0)′ = [1 : 0 : 0],

p(00)′ = [0 : 0 : 1], p(10)′ = [1 : 0 : 1].

We put
p(01)′ = [0 : t : 1],

where t is a non-zero constant. Then we have p(11)′ = [1 : t : 1] by Figure′ 5.1. Let

w2 = G(x, y, z)

be the defining equation of Y ′, where G is a homogeneous polynomial of degree 6,
and let Glmn (l + m + n = 6) be the coefficient of xlymzn in G. By Remark 4.4,
we can assume

Glmn = 0 if l ≡ m ≡ n ≡ 0 mod 2.

Because L(0∗)′ = {x = 0} is splitting, Lemma 4.5(1) implies

G015 = G033 = G051 = 0.

Because L(∗0)′ = {y = 0} is splitting, Lemma 4.5(1) implies

G105 = G303 = G501 = 0.
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Because L(∞)′ = {z = 0} is splitting, Lemma 4.5(1) implies

G150 = G330 = G510 = 0.

Therefore we have
G(x, y, z) = xyz C(x, y, z),

where C is a homogeneous polynomial of degree 3. By Lemma 4.5(2), the line
L(0∗)′ = {x = 0} and the quintic curve defined by yz C(x, y, z) = 0 intersect
transversely at q(∞)′ and with multiplicity ≥ 2 at p(00)′ and p(01)′. Therefore
there exists a constant A such that yzC(0, y, z) = Ay2z(y + tz)2. In particular, we
obtain

G132 = G114 = 0 and G123 = t2G141.

By Lemma 4.5(2), the line L(∗0)′ = {y = 0} and the curve xz C(x, y, z) = 0 inter-
sect transversely at q(0)′ and with multiplicity ≥ 2 at p(00)′ and p(10)′. Therefore
there exists a constant B such that xzC(x, 0, z) = Bx2z(x + z)2. In particular, we
obtain

G312 = G114 = 0 and G213 = G411.

By Lemma 4.5(2), the line L(∞)′ = {z = 0} and the curve xy C(x, y, z) = 0
intersect transversely at the five points q(γ)′ (γ ∈ Q). In particular, the curve
xy C(x, y, z) = 0 passes through q(1)′, and hence we obtain

G141 + G231 + G321 + G411 = 0.

Combining these, we see that Y ′ is defined by

w2 = xyz(t2ayz2 + dxz2 + ay3 + bxy2 + cx2y + dx3),

where a, b, c, d are constants such that a + b + c + d = 0. Because L(1∗)′ = {x = z}
is splitting, the polynomial yz2(t2yz2 + ay3 + bzy2 + cz2y) of y and z is a square
of a cubic polynomial. Therefore b = 0. Because L(∗1)′ = {y = tz} is splitting,
the polynomial txz2(dxz2 + bt2xz2 + ctx2z + dx3) of x and z is a square of a cubic
polynomial. Therefore c = 0. Because a + b + c + d = 0, we have a = d. Therefore
Y ′ is defined by

w2 = xyz(t2yz2 + xz2 + y3 + x3).
Hence Y ′ is isomorphic to Schröer’s normal K3 surface Yt,1, and hence X ′ is iso-
morphic to Schröer’s Kummer surface Xt,1.

Remark 6.6. In [14], it is shown that every supersingular K3 surface in characteristic
5 with Artin invariant ≤ 3 is obtained as a double cover of the projective plane with
the branch curve defined by y5 − f(x) = 0, where f(x) is a polynomial of degree 6,
and hence it is unirational.
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