RECONFIRMATION OF THE ENUMERATION OF HOLES OF
THE LEECH LATTICE

ICHIRO SHIMADA

This note is a detailed version of Remark 2.10 of the author’s preprint [3]. There-
fore we use the notation of [3] freely. In the following, TABLE means Table 25.1
of [1, Chapter 25] calculated by Borcherds, Conway, and Queen. In TABLE, the
equivalence classes of holes of the Leech lattice A are enumerated. The purpose of
this note is to explain a method to reconfirm the correctness of TABLE.

The fact that there exist at least 23 + 284 equivalence classes of holes can be
established by giving explicitly the set P, of vertices of the polytope P, for a repre-
sentative c of each equivalence class [c]. See Remark 3.1 of [3] and the computational
data given in the author’s web page [4].

In order to see that there exist no other equivalence classes, Borcherds, Conway,
and Queen used the volume formula

vol(P 1
1 .
(0.1) Z [Aut( PC,A )| |Coo|

The volume vol(P.) of P can be easily calculated from the set P, of vertices,
and the result coincides with the values given in the third column of TABLE. The
equality (0.1) holds when |Aut(P., A)| is replaced by the value g = g(c) given in the
second column of TABLE and the summation is taken over the set of the equivalence
classes of holes listed in TABLE. Therefore, in order to show the completeness of
TABLE, it is enough to prove the inequality

(0.2) |Aut(Pe, A)| < g(c)

for each hole ¢ that appears in TABLE. The groups Aut(P., A) for deep holes are
studied in detail in [1, Chapters 23 and 24]. Hence we will prove the inequality (0.2)
for shallow holes c.

Let ¢ be a shallow hole that appears in TABLE. Then P, is a 24-dimensional
simplex, and P, consists of 25 points of A. Recall that Aut(P,) is the group of
permutations g of P, such that ||p? — ¢9|| = ||p — ¢|| holds for any p,q € P.. Each
permutation g € Aut(P,) induces an affine isometry gy: A ®@ Q =% A ® Q, and we
have

(0.3) g € Aut(Pe,A) <= g preserves A C AR Q.

When Aut(P,) is not very large, we can make the list of elements of Aut(P., A) by
the criterion (0.3). We can also use the following trick to reduce the amount of the
computation.
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no. type a B v |Aut(P.) g(c)
293 a5a§0 as as 10 2-219.10! 720
299 d4a%1 d4 a1 21 621' 120960
303 asall az ay 11 2-211.11 7920
304 asza?® a3z a; 22 222! 887040
305 aad? a; ay 12 21212 190080
306 axa® ay a 23 2.231 10200960
307 a® a; a1 24 25! 244823040

TABLE 0.1. Shallow holes with large Aut(P,)

|Myy| = 20160 = g(ca90)/6
\May| = 443520 = g(cs04)/2
|Mas| = 10200960 = g(c306)
|May| = 244823040 = g(csor)
M| = 7920 = g(cs03)
M| = 95040 = g(cs05)/2

TABLE 0.2. Orders of Mathieu groups

Example 0.1. Consider the shallow hole ca97 of type dja]. We have |Aut(P.)| =
64-4!.9! = 11287019520. We choose two vertices v and vo that correspond to nodes
of two a; in dja}, and consider the subgroup Stab(vy,vs) of Aut(P,) consisting of
permutations that fix each of v; and vy. Then the index of Stab(vy,v2) in Aut(P,)
is at most 72. We see by the criterion (0.3) that Aut(P., A)NStab(vy,vz) is of order
6, and hence |Aut(P., A)| is at most 72 x 6 = 432 = g(cag7). In fact, Aut(Pe, A) is
isomorphic to (((C5 x C5) : Qg) : C3) : Ca, where C,, is the cyclic group of order n
and Qg is the quaternion group.

This brute-force method works for shallow holes except for the seven cases listed
in Table 0.1.

0.1. Golay codes and Mathieu groups. The values g(c) in Table 0.1 suggest
that the groups Aut(P., A) are related to Mathieu groups. (See Table 0.2.) For
each shallow hole ¢ in Table 0.1, we construct a code that is related to a Golay
code, and clarify the relation between Aut(P.,A) and the corresponding Mathieu

group.

Remark 0.2. In Remarks (ii) of [1, Chapter 25|, it is stated that Aut(Pe, A) is
isomorphic to the Mathieu group May for the shallow hole c397 of type a3°.

We fix notions and notation about codes, and recall the definitions of Golay
codes and Mathieu groups. Let I be either Fy or F3, and let [ be a positive integer.
A code of length | over F is a linear subspace of F!. Let C be a code of length
I. When F = Fy, we say that C is binary, and when F = F3, we say that C' is
ternary. When dimC = d, we say that C is an (I,d)-code. Each element of C
is called a codeword. The weight wt(z) of a codeword x = (x1,...,2;) is defined
to be the cardinality of {i|xz; # 0}. The minimal weight of C' is the minimum of
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TABLE 0.3. A basis of Coy
1 0 000 O 0 1 1 1 1 1
01 0 0 0 0 2 0 1 2 21
o o1 0 0 0 2 1 0 1 2 2
0O 0 01 0 0 2 2 1 0 1 2
0O 0 0 0 1 0 2 2 2 1 01
o o0 0 o0 o0 1 2 1 2 2 1 0

TABLE 0.4. A basis of Cq2

{wt(x) |z € C'\ {0}}. The weight distribution of a code C is the expression

0t wit wh? .. wlm

that indicates that C' contains exactly n; codewords of weight w; for i =1,..., m,

where 0, w1, ..., w,, are distinct weights, and that |C| =1+ ny + - - - + n,, holds.

For a linear subspace V of F!, the intersection C' NV is also a code of length 1.

For a positive integer k < [, let pr),: F! — F* denote the projection
(x1,...,21) = (1,...,2).
Then pr,(C) is a code of length k.

Let G; denote the subgroup of GL;(F) consisting of monomial transformations,
that is, G; is the group of linear automorphisms of F! generated by permutations
of coordinates and multiplications by a non-zero scalar on one coordinate. When
F = Fy, we have G; = &, and when F = F3, we have G; = {£1} x &;. The
automorphism group of a code C of length [ is defined to be

Aut(C):={geG | C!=C}.

Two codes C' and C’ of length [ are said to be equivalent if there exists a mono-
mial transformation g € G; such that C' = CY9. The weight distribution and the
isomorphism class of the automorphism group depend only on the equivalence class
of codes.

The binary Golay code Cay is the binary (24,12)-code generated by the row
vectors of the matrix in Table 0.3. The ternary Golay code Cio is the ternary
(12, 6)-code generated by the row vectors of the matrix in Table 0.4. We have the
following theorem, which will be used frequently in the next section.
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Theorem 0.3 (Pless [2]). (1) Let C be a binary (24,12)-code. Then the following
conditions are equivalent:

o C is equivalent to the binary Golay code Coy,
o the minimal weight of C is 8, and
o the weight distribution of C is 01 879 122576 16759 241,

(2) Let C be a ternary (12,6)-code. Then the following conditions are equivalent:

e (' is equivalent to the ternary Golay code C1a,
o the minimal weight of C is 6, and
o the weight distribution of C is 0! 62649440 1224,

Let F be Fy. The automorphism group of Co4 is the Mathieu group Myy. As
a subgroup of the full symmetric group Ga4 of the set {x1,..., 224} of coordinate
positions of F2*, the Mathieu group My, is 5-transitive. For a positive integer
k < 24, let & denote the subgroup of Ga4 consisting of permutations that fix each
of xx41,...,x94. For k = 21,22,23, we define the Mathieu group My, by

My, := Moy N Sy.

Let F be F3. We have a natural homomorphism from Gy to the full symmetric
group &1 of the set {x1,...,z12} of coordinate positions of Fi2. The image of
Aut(Cy2) by this homomorphism is the Mathieu group Mjy. The kernel of the pro-
jection Aut(C12) — Mo is of order 2 and is generated by the scalar multiplication
by —1. The action of Mjs on {x1,...,212} is 5-transitive. The stabilizer subgroup
of 12 in M4 is the Mathieu group Mi;.

0.2. Construction of a code. Let [c] be one of the equivalence classes listed in
Table 0.1. The hole type 7(c) is of the form «f8”, where «, 3, and v are given in
Table 0.1. We put

p=2, F=Fy, when 8 =a;, and
p=3, F=TF3, when 8 =as.

We consider the case ¢ # c3g7. (The case ¢ = c3g7 will be treated in Section 0.4.)
We decompose P, to the disjoint union of A and B, where the vertices in A corre-
spond to the nodes of a and the vertices in B correspond to the nodes of 5¥. Since
a # B, we have a direct product decomposition

Aut(Pe) = Aut(A) x Aut(B),

where Aut(A) and Aut(B) are the groups of symmetries of the Coxeter—Dynkin
diagrams « of A and ¥ of B, respectively. Since Aut(A) is very small, we can
easily calculate Aut(A) N Aut(P., A) by the criterion (0.3). It turns out that, in
all cases, the group Aut(A) N Aut(P,, A) is trivial. Therefore the second projection
Aut(P.) — Aut(B) embeds Aut(Pe, A) into Aut(B). We denote by

Autp(P,A) C Aut(B)

the image of Aut(Pe, A). For the proof of the inequality (0.2), it is enough to show
that the order of Autg (P, A) is at most g(c).

Let (A) and (B) denote the minimal affine subspaces of Ag that contain A and
B, respectively. We have

dim(A) = |[A] -1, dim(B) = |B| -1, dim(A)+ dim(B) =23, (A) N (B) = 0.
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Let Ag/(A) be the quotient of Ag by the equivalence relation
x~y < a+x—y € (A) for one (and hence all) a € (A4),
that is, we have x ~ y if and only if 2 — y is parallel to (A). We denote by
p: Ar = Ar/{A)

the quotient map. Then Ag/(A) has a natural structure of the linear space of
dimension |B| over R with p({A4)) being the origin, and

L:=p(A)

is a discrete Z-submodule of Ag/(A) with full rank. Let M denote the Z-submodule
of Ag/(A) generated by p(B). Then M is also a discrete Z-submodule with full
rank, and is equipped with a canonical basis {p(b) | b € B}. It is obvious that M is
contained in L. Therefore we have

McCLCM®Q.

Note that Aut(B) acts on M naturally, and that each element of the subgroup
Autp(Pe, A) of Aut(B) preserves L C M ® Q.

Let n denote the least positive integer such that n. C M. Then we have a
submodule nL/nM of M/nM = (Z/nZ)B. Tt turns out that n is divisible by p.
We define a submodule F' of M/nM as follows.

e When § = a;, we put b := (n/2)b, and
F =P (Z/nZ)b.
beB

e Suppose that § = as. We label the elements of B as by,b},...,b,,b, in
such a way that the nodes corresponding to b; and b} are connected in the
Coxeter—Dynkin diagram af. We then put b; := (n/3) b; + (2n/3) b}, and

F = é (Z/nZ) b;.

Note that F does not change even if we interchange b; and b}, because we
have (n/3) (b; + 2b}) = —(n/3) (2b; + b)) in M/nM.
Then we have F' = F”. We define a code I' of length v over F by

I':==(nL/nM)NF.

The group Aut(B) acts on F, and is identified with the group G, of monomial
transformations of F¥. (When 8 = ag, the transposition of b; and b} corresponds
to the multiplication by —1 on the ith coordinate of F”.) Under this identification,
we have

Autp(Pe, A) C Aut(T).
In the next section, we describe this code I' explicitly, and derive an upper bound
of |[Aut(Pe, A)| = |[Autg(Pe, A)| from Aut(T).

0.3. Description of the code I'.
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0.3.1. The shallow hole ca93 of type asai’. In this case, we have n = 15. The
ternary code T is a (10, 5)-code with weight distribution

0L 430 660 7120 920 ()12
It turns out that T' is equivalent to the code pryo(Ci2 N'V), where V is the linear
subspace of Fi? defined by 211 +z12 = 0. We can calculate its automorphism group
directly, and see that Aut(T") is of order 1440. Hence Aut(Fe, A) is contained in the
group Aut(A) x Aut(I") of order 2880. We calculate Aut(P., A) by applying the

criterion (0.3) to these 2880 elements. Then we see that Aut(P., A) is isomorphic
to the symmetric group of degree 6, and hence its order is g(ca93) = 720.

0.3.2. The shallow hole cag9 of type dsa?t. In this case, we have n = 14. The binary
code T is a (21, 11)-code with weight distribution

01 G168 g210 (71008 19280 1 4360 {521
We construct a linear embedding
t: T — F3?

such that pry; o ¢ is the identity map of I', and that every codeword of the image
I" := (T) is of weight 0, 8, 12, or 16. Let 5,...,511 be a basis of I. We define
B! € F3* as follows. When the weight of j3; is 6, 10, or 14, we put

(04) B: = (5l|031a1), or 5; = (ﬁl | 170,]—)7 or ﬁ: = (ﬂz | 1,1,0)
When the weight of g; is 8, 12, or 16, we put

Bi:=(6:10,0,0).
We search for a combination of choices in (0.4) such that every element of the linear
subspace of F3! generated by 8},..., 3], has weight 0, 8, 12, or 16. If 3;,..., 51,
satisfy this condition, then the linear embedding I' — F3* defined by 8; — £

satisfies the properties required for ¢. By this method, we find exactly six such
embeddings. We fix one of them. The weight distribution of IV is

01 8378 121288 16381.

Then the code T’ generated by I and the vector ¢ := (1,1,...,1) € F3* of weight
24 is equivalent to Co4. This means that T" is equivalent to the code pry; (Caqy NV),
where V' C F2% is the linear subspace defined by a9 + @23 + 294 = 0.

Let &% be the full symmetric group of the coordinate positions {zag, T23, 24}
We have Gg1 x 6% C Gay. We will construct an injective homomorphism

Aut(T) — Aut(T) N (&2 x &5).

Since Aut(f) N Sy is isomorphic to Moy, the order of Aut(f‘) N (621 x G%) is at
most 6 X |Ma1| = g(cagg). Since Autp(Pe,A) C Aut(T'), the existence of such an
injective homomorphism will imply the desired inequality |Autpg(Pe, A)| < g(c299)-

Let pry: F3* — F3 denote the projection (z1,...,%24) > (z22,723,724). Then
T := prj(I”) is defined in F3 by x9a + 223 + 724 = 0, and hence we have a natural
identification

(0.5) GL(T) = &5.
Let g € 621 be an automorphism of I'. Then, via ¢: I' = IV, the automorphism g

induces a linear automorphism ¢’ of the linear space I'. Since the linear subspace
1~} (Ker pri|r/) of I' consists exactly of codewords of weight 0, 8, 12, and 16, it is
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preserved by g, and hence ¢’ induces a linear automorphism of 7. By (0.5), there
exists a unique permutation ¢g” € &% such that (g,¢") € Ga1 x &5 preserves I".
Since (g, g") preserves e = (1,1,...,1), this pair (g,¢"”) is in fact an automorphism
of T.

0.3.3. The shallow hole c303 of type azai'. In this case, we have n = 18. The
ternary code I' is an (11, 5)-code with weight distribution

01 6132 9110'

Let I' < F3? be the linear embedding given by = — (z|0), and let I denote its
image. We put

Y:={ycFi' | wt(y) =11, and wt(z +y) =2mod 3 forall z € T }.

Then Y consists of 24 vectors. We choose an element 39 € Y, and let f‘1 (resp. 1:‘2)
be the code of length 12 generated by IV and (yo|1) (resp. (yo|2)). Then both of
'y and Ty are equivalent to Cy5. This means that I' is equivalent to pry;(Ci2 NV),
where V is the linear subspace of F3? defined by x15 = 0. Moreover, the two codes
I'y and Iy are distinct, and for each y € Y, one and only one of the following holds:
((y]1)eTy and (y|2)€Tly) or ((y|l)eTly and (y|2)eTy).
Let g € Gy1 be an automorphism of I'. Since g preserves Y, one and only one
of (g|1) € Gia or (g| —1) € Gya is an automorphism of I';. Hence |Aut(T)] is
bounded by the order of 2. M.

On the other hand, let f4 € Aut(A) be the non-trivial element of Aut(A) =
Z/2Z, and let fp be the element of Aut(B) which corresponds to the scalar mul-
tiplication by —1, that is, fp is the product of transpositions of b; and b} for
i=1,...,11. Note that fp belongs to Aut(T"). By the criterion (0.3), we see that
neither fp nor fafp is in Aut(P., A). Hence Autpg(Pe, A) is a proper subgroup of
Aut(T"). In particular, its order is at most |My1]| = 7920 = g(c303).

0.3.4. The shallow hole c304 of type aza2?. In this case, we have n = 16. The binary
code I' is a (22, 11)-code with weight distribution

0l 677 8330 1()616 19616 14330 1577 991
Let B1,..., 811 be a basis of I'. We define 3] € F3* by

5= (B:10,0) if wt(5;) is 8, 12, or 16,
YO (Bil1,1) i wi(B:) is 6, 10, 14, or 22.

Then the image I of the linear embedding I' < F3* defined by 3; ~ 3/ is a binary
(24, 11)-code with weight distribution

01 8407 121232 16407 241
We enumerate the set
Y:={ycF3? | wt(y) =7, and wt(z +y) =3 mod 4 for all z € T }.

Then Y consists of 352 vectors. We choose yo € Y, and define the code Ty
(resp. T'1p) to be the code of length 24 generated by I and (yo|0,1) (resp.
(y0]1,0)). Then both of I'y; and 'y are equivalent to Cps. This means that
I is equivalent to the code pryy(Ces N'V), where V' C F3* is the linear subspace
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defined by a3 + 24 = 0. Moreover, the two codes Lo1 and [y are distinct, and
for each y € Y, one and only one of the following holds:

(w10,1) € Torand (y]1,0) € Tro ) or ( (y]0,1) € Do and (y[1,0) € Ty ) .

Let o € Gay denote the transposition of 293 and a4, and let &5 be the subgroup
{id, o} of Ga4. We have Gz X &5 C Gay. Since Aut(Ip;) N Sag is isomorphic to
Mo and 2 x | Mays| = g(c304), it is enough to construct an injective homomorphism

Aut(F) — Aut(f‘m) N (622 X 6/2)
Note that o interchanges o1 and T'yo. Let g € Gy be an automorphism of T'.

Since g preserves Y, one and only one of (g,id) € Ga2 x &) or (g,0) € G2z x &)
induces an isomorphism of I'g;. Hence the mapping

g (9,id) if (g,id) maps Loy to Loy,
(g,0) 1if (g,id) maps I'g; to I'qg,

gives the desired injective homomorphism.

0.3.5. The shallow hole c3p5 of type ajai?. In this case, we have n = 21. The
ternary code I is a (12, 6)-code of minimal weigh 6, and hence is equivalent to Cis.
Therefore |Autp(Pe, A)| is at most [2.M12| = 2 x 95040 = g(c305)-

0.3.6. The shallow hole c3o6 of type aza?3. In this case, we have n = 18. The binary
code T is a (23, 11)-code with weight distribution
(L g506 91288 1253

Let I' < F3* be the linear embedding given by x + (2|0). Then the code I in F3*
generated by the image of this embedding and the vector ¢ = (1,1,...,1) € F3* is
equivalent to C24. This means that I is equivalent to the code prysg(Coq NV), where
V C F3* is the linear subspace defined by w24 = 0. Hence we obtain an injective
homomorphism Aut(I') — Aut(T) N Sa3 =2 Mos.

0.4. The shallow hole c3o7 of type af°. Let ¢ be a shallow hole with 7(c) = a7’.
Let vg,...,v94 be the vertices of P., and let ¢; be the circumcenter of the 23-

dimensional face of P, that does not contain v;. Then there exists a unique vertex
vy such that m(cg) = 12 and m(c;) = 24 for j # k, where m: A®@ Q — Zs¢ is
defined in Section 3 of [3]. We put A := {v} and B := P. \ A. Then Aut(P., A)
is contained in Aut(B) C Aut(P.). We construct a code I' of length 24 by the
method described in Section 0.2. In this case, the quotient map p: Agp — Ar/(A) is
just the translation x — x — vy, and M is the sublattice of A generated by v; — v
(j # k). We have n = 10, and the binary code I' := (10A N 5M)/10M of length 24
is equivalent to Co4. Hence Aut(P., A) is embedded into May.
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