THE ELLIPTIC MODULAR SURFACE OF LEVEL 4 AND ITS REDUCTION MODULO 3: COMPUTATIONAL DATA

ICHIRO SHIMADA

1. INTRODUCTION

This note is an explanation of the computational data obtained in the paper [1]. The data are available from the author's webpage:

http://www.math.sci.hiroshima-u.ac.jp/~shimada/K3andEnriques.html The data are written in four files:

- SOS3.txt (Section 2 of the paper [1]),
- PGU.txt (the elements of $PGU_4(\mathbb{F}_9)$),
- Borcherds.txt (Sections 4 and 5 of the paper [1]),
- Enriques.txt (Section 6 of the paper [1]).

A zipped folder (XOX3compdata.zip) containing these files is also available from the site above.

We use the notation of [1] in the following.

2. Conventions

(1) Every finite set is sorted in a certain way, and is expressed as a list

$$[\texttt{elm}_1,\ldots,\texttt{elm}_M].$$

A map f from a finite set $X = [\texttt{elm}_1, \ldots, \texttt{elm}_M]$ to a finite set $Y = [\texttt{elm}'_1, \ldots, \texttt{elm}'_N]$ is expressed as a list of indices $[i_1, \ldots, i_M]$ such that f maps $\texttt{elm}_{\nu} \in X$ to $\texttt{elm}'_{i_{\nu}} \in Y$ for $\nu = 1, \ldots, M$. In particular, a permutation of X is expressed by a permutation of $1, \ldots, M$.

(2) Every lattice has a fixed basis. Let L be a lattice of rank m. Then L is expressed by the Gram matrix with respect to the fixed basis. Each element of $L \otimes \mathbb{Q}$ is expressed by a row vector of length m with respect to the fixed basis, and every isometry $g \in O(L)$ is expressed by an $m \times m$ matrix with respect to the fixed basis. (Recall that O(L)

acts on L from the right.) A map f from a finite set $X = [\texttt{elm}_1, \ldots, \texttt{elm}_M]$ to $L \otimes \mathbb{Q}$ is given by the list of row vectors expressing $f(\texttt{elm}_{\nu})$ for $\nu = 1, \ldots, M$. Let L' be a lattice of rank n. A linear map from $L \otimes \mathbb{Q}$ to $L' \otimes \mathbb{Q}$ is expressed by an $m \times n$ matrix with respect to the fixed bases of L and L'.

(3) The discriminant form (A, q) of an even lattice L of rank n is expressed by a list

The list $\operatorname{discg} = [a_1, \ldots, a_k]$ of integers $a_i > 1$ indicates that the discriminant group $A = L^{\vee}/L$ is isomorphic to

$$\mathbb{Z}/a_1\mathbb{Z}\times\cdots\times\mathbb{Z}/a_k\mathbb{Z}.$$

Let $\bar{v}_1, \ldots, \bar{v}_k$ be generators of A such that \bar{v}_i generates the *i*th factor $\mathbb{Z}/a_i\mathbb{Z}$ of A. The (i, j)-component of the $k \times k$ matrix **discf** is a rational number that expresses

$$\begin{cases} q(\bar{v}_i) \in \mathbb{Q}/2\mathbb{Z} & \text{if } i = j, \\ b(\bar{v}_i, \bar{v}_j) \in \mathbb{Q}/\mathbb{Z} & \text{if } i \neq j, \end{cases}$$

where b(x,y) = (q(x+y) - q(x) - q(y))/2. The third item **proj** is the $n \times k$ integer matrix M such that $v \mapsto \bar{v} = vM$ is the canonical projection $L^{\vee} \to A$, where $v \in L^{\vee}$ is expressed by a row vector with respect to the fixed basis of $L \otimes \mathbb{Q}$ (not with respect to the canonical dual basis of L^{\vee}). Hence the (i, j)-component of M should be regarded as an element of $\mathbb{Z}/a_j\mathbb{Z}$. The item **lift** is the list $[v_1, \ldots, v_k]$ of elements of $L^{\vee} \subset L \otimes \mathbb{Q}$ that are mapped to $[\bar{v}_1, \ldots, \bar{v}_k]$ by the canonical projection. (Again, the vector v_i is written with respect to the fixed basis of $L \otimes \mathbb{Q}$.) An automorphism \bar{g} of (A, q) is expressed by a $k \times k$ integer matrix $M_{\bar{g}}$ with respect to the basis $\bar{v}_1, \ldots, \bar{v}_k$ of A. Hence the (i, j)-component of $M_{\bar{g}}$ should be regarded as an element of $\mathbb{Z}/a_j\mathbb{Z}$. Note that, by **proj** and **lift**, we can easily calculate the image $\eta_L(g) \in O(q)$ of $g \in O(L)$ by the natural homomorphism $\eta_L : O(L) \to O(q)$.

(4) Let $\Gamma = (V, \eta)$ be a finite graph. The set $V = \{v_1, \ldots, v_n\}$ of vertices is sorted in a certain way. The graph Γ is expressed by an $n \times n$ matrix whose (i, j)-component is

$$\begin{cases} -2 & \text{if } i = j, \\ \eta(\{v_i, v_j\}) & \text{if } i \neq j. \end{cases}$$

2

A map from a finite simple graph (V, E) to a finite simple graph (V', E') is expressed by a map $V \to V'$ of sets of vertices (see Convention (1) above). A map from a finite graph (V, E) to a lattice L is expressed by a map from V to L (see Convention (2) above).

(5) Let Z̄ be a normal K3 surface, that is, a normal surface whose minimal resolution Z is a K3 surface. Then Z̄ has only rational double points as its singularities. The singularities of Z̄ are described by a list of pairs [type, rs]. Each pair gives the ADE-type type (expressed by a string such as "A1", "A2", ...) of a singular point P of Z̄ and the list rs = [r₁,...,r_m] of classes r_i = [C_i] ∈ S_Z of smooth rational curves C_i on Z that are contracted to the singular point P.

3. The file SOS3.txt

In the file SOS3.txt, we have the following data, which are related to the materials in Section 2 of the paper [1].

3.1. QP-graphs. The set of vertices of the Petersen graph \mathcal{P} is the list

$$V_{\mathcal{P}} = [1, \dots, 10].$$

The set of vertices of a QP-graph \mathcal{Q} is the list

$$V_{\mathcal{Q}} = [1, \ldots, 40].$$

- PG is the Petersen graph \mathcal{P} .
- GraphQPO is the graph Q_0 .
- GraphQP1 is the graph Q_1 .
- QPgamma0 is the QP-covering map $\gamma_0: \mathcal{Q}_0 \to \mathcal{P}$.
- QPgamma1 is the QP-covering map $\gamma_1 \colon \mathcal{Q}_1 \to \mathcal{P}$.
- GramQPO is the Gram matrix of $\langle Q_0 \rangle$.
- GramQP1 is the Gram matrix of $\langle Q_1 \rangle$.
- embQPO is the canonical map $\mathcal{Q}_0 \hookrightarrow \langle \mathcal{Q}_0 \rangle$. (See Convention (4).) From embQPO, we can recover the basis of $\langle \mathcal{Q}_0 \rangle$ with respect to which GramQPO is written. We do not have a simple description of this basis.

• embQP1 is the canonical map $\mathcal{Q}_1 \hookrightarrow \langle \mathcal{Q}_1 \rangle$. From embQP1, we see that $\langle \mathcal{Q}_1 \rangle$ has a basis consisting of the classes of the vertices

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 21, 23, 25, 29, 33.

- discQPO is the discriminant form of $\langle Q_0 \rangle$.
- discQP1 is the discriminant form of $\langle Q_1 \rangle$.
- AutPG is Aut(\mathcal{P}), which is a list of permutations of $V_{\mathcal{P}} = [1, \ldots, 10]$.
- AutQPO is Aut(Q_0), which is a list of permutations of $V_{Q_0} = [1, \ldots, 40]$.
- AutQP1 is Aut(Q_1), which is a list of permutations of $V_{Q_1} = [1, \ldots, 40]$.

3.2. The line configuration \mathcal{L}_{112} on X_3 and the lattice S_3 . We denote by I the element $\sqrt{-1} \in \mathbb{F}_9$. An element of \mathbb{F}_9 is written as a + b I, where $a, b \in \{0, 1, -1\}$.

• L112eqs is the list of equations of lines on $X_3 \cong F_3$. An equation

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 = a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 = 0$$

of a line with $a_{ij} \in \mathbb{F}_9$ is expressed by the matrix

$$\left[\begin{array}{rrrrr} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \end{array}\right].$$

The set \mathcal{L}_{112} is sorted according to the list L112eqs. We denote by ℓ_i the *i*th element of \mathcal{L}_{112} .

- GraphL112 is the dual graph of \mathcal{L}_{112} .
- GramS3 is the Gram matrix of S_3 .
- discS3 is the discriminant form of S_3 .
- L112vs expresses the embedding L₁₁₂ → S₃ given by l → [l], that is, L112vs is the list [[l₁],..., [l₁₁₂]] of vectors representing the classes of lines. Looking at L112vs, we see that the set of classes of lines

 $\ell_1, \ \ell_2, \ \ell_3, \ \ell_4, \ \ell_5, \ \ell_6, \ \ell_7, \ \ell_9, \ \ell_{10}, \ \ell_{11}, \ \ell_{17}, \ \ell_{18}, \ \ell_{19}, \\ \ell_{21}, \ \ell_{22}, \ \ell_{23}, \ \ell_{25}, \ \ell_{26}, \ \ell_{27}, \ \ell_{33}, \ \ell_{35}, \ \ell_{49}$

is the basis of S_3 .

• h3 is the ample class $h_3 \in S_3$.

3.3. The configuration \mathcal{L}_{40} on X_0 and the lattice S_0 .

- GraphL40 is the dual graph of \mathcal{L}_{40} . We identify \mathcal{L}_{40} with the set of vertices of \mathcal{Q}_1 . Hence GraphL40 is identical to GraphQP1.
- The matrix GramS0 is the Gram matrix of S_0 . We fix a basis of S_0 so that GramS0 is identical with GramQP1.
- discS0 is the discriminant form of S_0 . Note that discS0 is identical with discQP1.
- L40vs expresses the canonical embedding $\mathcal{L}_{40} \hookrightarrow S_0$ given by $\ell \mapsto [\ell]$. Since we have identified \mathcal{L}_{40} with the set of vertices of \mathcal{Q}_1 , the item L40vs is identical to embQP1.
- h0 is the ample class $h_0 \in S_0$.

3.4. The embeddings $\rho_{\mathcal{L}} \colon \mathcal{L}_{40} \hookrightarrow \mathcal{L}_{112}$ and $\rho \colon S_0 \hookrightarrow S_3$.

- rhoL is the embedding $\rho_{\mathcal{L}} \colon \mathcal{L}_{40} \hookrightarrow \mathcal{L}_{112}$.
- rho is the embedding $\rho: S_0 \hookrightarrow S_3$.

4. The file PGU.txt

The group $\mathrm{PGU}_4(\mathbb{F}_9)$ is very large (of order 13063680). Hence this group is recorded in the following way in the file $\mathrm{PGU}.\mathsf{txt}$. For each line $\ell_k \in \mathcal{L}_{112}$, we choose an element $\tau_k \in \mathrm{PGU}_4(\mathbb{F}_9)$ such that

$$\ell_1^{\tau_k} = \ell_k.$$

Let D be the set of lines ℓ_j such that $\langle \ell_1, \ell_j \rangle = 0$. Then we have $\ell_6 \in D$ and |D| = 81. For each $\ell_{\nu} \in D$, we choose an element $\sigma(\ell_{\nu}) \in \text{PGU}_4(\mathbb{F}_9)$ such that

$$\ell_1^{\sigma(\ell_{\nu})} = \ell_1, \quad \ell_6^{\sigma(\ell_{\nu})} = \ell_{\nu}$$

We define the following subsets of $PGU_4(\mathbb{F}_9)$:

$$PGU_{R} := \{ g \in PGU_{4}(\mathbb{F}_{9}) \mid \ell_{1}^{g} = \ell_{1}, \ \ell_{6}^{g} = \ell_{6} \} = \{ \rho_{1}, \dots, \rho_{1440} \},$$

$$PGU_{S} := \{ \sigma(\ell_{\nu}) \in PGU_{4}(\mathbb{F}_{9}) \mid \ell_{\nu} \in D \} = \{ \sigma_{1}, \dots, \sigma_{81} \},$$

$$PGU_{T} := \{ \tau_{1}, \dots, \tau_{112} \}.$$

Since $PGU_4(\mathbb{F}_9)$ acts transitively on the set of ordered pairs of disjoint lines on X_3 , every element of $PGU_4(\mathbb{F}_9)$ is uniquely written in the form

$$\rho_i \sigma_j \tau_k$$
 ($1 \le i \le 1440, 1 \le j \le 81, 1 \le k \le 112$).

Therefore, as a set, $PGU_4(\mathbb{F}_9)$ can be obtained as the Cartesian product

$$\mathrm{PGU}_R \times \mathrm{PGU}_S \times \mathrm{PGU}_T.$$

Caution. The group $\operatorname{PGU}_4(\mathbb{F}_9)$ acts on \mathbb{P}^3 from the *left*, and acts on \mathcal{L}_{112} and S_3 from the *right* by the pull-back. Therefore, if a line $\ell \in \mathcal{L}_{112}$ is defined by an equation Ax = 0, where A is a 2 × 4 matrix, then, for $g \in \operatorname{PGU}_4(\mathbb{F}_9)$, the line $\ell^g = g^{-1}(\ell)$ is defined by the equation (Ag)x = 0.

- The three lists PGUR, PGUS, PGUT are the lists of matrices in $PGU_4(\mathbb{F}_9)$ representing the elements of PGU_R , PGU_S , PGU_T , respectively. An item of each of these lists is a 4×4 matrix g with components in \mathbb{F}_9 such that ${}^Tg \cdot \bar{g}$ is a scalar matrix, where \bar{g} is the matrix obtained from g by applying $a \mapsto a^3$ to each component.
- The three lists PGURperm, PGUSperm, PGUTperm are the lists of permutations on the set \mathcal{L}_{112} induced by the elements of PGU_R , PGU_S , PGU_T , respectively. The set PGURperm is sorted according to PGUR, and the same for PGUSperm and PGUTperm.
- The three lists PGUROS3, PGUSOS3, PGUTOS3 are the lists of isometries of S_3 induced by the elements of PGU_R , PGU_S , PGU_T , respectively. The set PGUROS3 is sorted according to PGUR, and the same for PGUSOS3 and PGUTOS3.

5. THE FILE Borcherds

This file contains the computational data related to Borcherds' method for X_0 and X_3 (Sections 4.1 and 4.2 of [1]), the data related to Aut (X_0, h_0) (Section 4.3 of [1]), and the data related to the proof of Theorems 1.7 and 1.8 (Section 5 of [1]).

Let S be an even hyperbolic lattice. Let $i: S \hookrightarrow L_{26}$ be a primitive embedding inducing $i_{\mathcal{P}}: \mathcal{P}(S) \hookrightarrow \mathcal{P}(L_{26})$, and let $\operatorname{pr}_S: L_{26} \otimes \mathbb{Q} \to S \otimes \mathbb{Q}$ be the orthogonal projection. Let $w \in L_{26}$ be a Weyl vector. A wall $(v)^{\perp}$ of a $\mathcal{V}(i)$ -chamber $D = i_{\mathcal{P}}^{-1}(\mathcal{C}(w))$ is expressed by a pair [v, r] of the primitive vector v of S^{\vee} defining the wall $(v)^{\perp} \cap D$ of D and a Leech root $r \in \mathcal{R}(L_{26})$ with respect to w such that $(\operatorname{pr}_S(r))^{\perp} = (v)^{\perp}$.

5.1. The lattice L_{26} .

- GramL26 is the Gram matrix of L_{26} .
- w0 is the Weyl vector $w_0 \in L_{26}$.
- wOprime is a Weyl vector $w'_0 \in L_{26}$ such that $\langle w_0, w'_0 \rangle = 1$. We can confirm that w_0 is a Weyl vector by showing that the orthogonal complement in L_{26} of the

lattice $\langle w_0, w'_0 \rangle$ of rank 2 is an even negative-definite unimodular lattice with no roots.

5.2. Borcherds' method for X_3 .

- i3 is the primitive embedding $i_3: S_3 \hookrightarrow L_{26}$.
- pr3 is the orthogonal projection $\operatorname{pr}_3: L_{26} \otimes \mathbb{Q} \to S_3 \otimes \mathbb{Q}$.
- OqS3 is the group $O(q(S_3))$. Each element is expressed by a matrix with respect to the generators of $A(S_3)$ fixed in discS3.
- OqS3period is the group $O(q(S_3), \omega)$. Each element is expressed by a matrix with respect to the generators of $A(S_3)$ fixed in discS3.
- h3 is the ample class $h_3 \in S_3$. (This is identical to h3 given in SOS3.txt.)
- Wout3 is the list of outer-walls of the initial $\mathcal{V}(i_3)$ -chamber D_3 . The projection $[v, r] \mapsto v$ gives a bijection from Wout3 to L112vs.
- 0648 is the orbit O'_{648} of inner-walls of D_3 .
- 05184 is the orbit O'_{5184} of inner-walls of D_3 .

The group $\operatorname{Aut}(X_3, h_3)$ is equal to $\operatorname{PGU}_4(\mathbb{F}_9)$, which is recorded in the file PGU.txt. Hence we omit it.

The double-plane involution $g(b'_{10})$.

- gdpp10 is the double-plane involution $g(b'_{10}) \in \operatorname{Aut}(X_3)$ expressed by a 22 × 22matrix acting on S_3 .
- innwall10 is the primitive vector of S_3^{\vee} (written with respect to the fixed basis of $S_3 \otimes \mathbb{Q}$) that defines the inner-wall of D_3 in the orbit O'_{648} across which $D_3^{g(b'_{10})}$ is adjacent to D_3 .
- dpp10 is a double-plane polarization $b'_{10} \in S_3$ that induces the involution $g(b'_{10})$.
- Singdpp10 is the singularities of the normal K3 surface that is the finite double coverer of P² in the Stein factorization of the morphism X₃ → P² induced by b'₁₀. (See Convention (5).)

The double-plane involution $g(b'_{31})$.

 gdpp31 is the double-plane involution g(b'₃₁) ∈ Aut(X₃) expressed by a 22 × 22matrix acting on S₃.

- innwall31 is the primitive vector of S_3^{\vee} (written with respect to the fixed basis of $S_3 \otimes \mathbb{Q}$) that defines the inner-wall of D_3 in the orbit O'_{5184} across which $D_3^{g(b'_{31})}$ is adjacent to D_3 .
- dpp31 is a double-plane polarization $b'_{31} \in S_3$ that induces the involution $g(b'_{31})$.
- Singdpp31 is the singularities of the normal K3 surface that is the finite double coverer of \mathbb{P}^2 in the Stein factorization of the morphism $X_3 \to \mathbb{P}^2$ induced by b'_{31} .

5.3. Borcherds' method for X_0 .

- i0 is the primitive embedding $i_0: S_0 \hookrightarrow L_{26}$.
- pr0 is the orthogonal projection $\operatorname{pr}_0: L_{26} \otimes \mathbb{Q} \to S_0 \otimes \mathbb{Q}$.
- OqSO is the group $O(q(S_0))$. Each element is expressed by a matrix with respect to the generators of $A(S_0)$ fixed in discSO.
- OqSOperiod is the group $O(q(S_0), \omega)$. Each element is expressed by a matrix with respect to the generators of $A(S_0)$ fixed in discSO.
- h0 is the ample class $h_0 \in S_0$. (This is identical to h0 given in S0S3.txt.)
- Wout0 is the list of outer-walls of the initial $\mathcal{V}(i_0)$ -chamber D_0 .
- 064 is the orbit O_{64} of inner-walls of D_0 .
- 040 is the orbit O_{40} of inner-walls of D_0 .
- 0160 is the orbit O_{160} of inner-walls of D_0 .
- 0320 is the orbit O_{320} of inner-walls of D_0 .
- AutX0h0 is the group $Aut(X_0, h_0)$. The order is 3840. Each element of this list is a 20×20 matrix acting on S_0 .

The double-plane involution $g(b_{80})$.

- gdpp80 is the double-plane involution $g(b_{80}) \in \operatorname{Aut}(X_0)$ expressed by a 20 × 20matrix acting on S_0 .
- innwall80 is the primitive vector of S_0^{\vee} (written with respect to the fixed basis of $S_0 \otimes \mathbb{Q}$) that defines the inner-wall of D_0 in the orbit O_{64} across which $D_0^{g(b_{80})}$ is adjacent to D_0 .
- dpp80 is a double-plane polarization $b_{80} \in S_0$ that induces the involution $g(b_{80})$.
- Singdpp80 is the singularities of the normal K3 surface that is the finite double coverer of P² in the Stein factorization of the morphism X₀ → P² induced by b₈₀. (See Convention (5).)

The double-plane involution $g(b_{112})$.

- gdpp112 is the double-plane involution g(b₁₁₂) ∈ Aut(X₀) expressed by a 20 × 20matrix acting on S₀.
- innwall112 is the primitive vector of S_0^{\vee} (written with respect to the fixed basis of $S_0 \otimes \mathbb{Q}$) that defines the inner-wall of D_0 in the orbit O_{40} across which $D_0^{g(b_{112})}$ is adjacent to D_0 .
- dpp112 is a double-plane polarization $b_{112} \in S_0$ that induces the involution $g(b_{112})$.
- Singdpp112 is the singularities of the normal K3 surface that is the finite double coverer of \mathbb{P}^2 in the Stein factorization of the morphism $X_0 \to \mathbb{P}^2$ induced by b_{112} .

The double-plane involution $g(b_{296})$.

- gdpp296 is the double-plane involution g(b₂₉₆) ∈ Aut(X₀) expressed by a 20 × 20matrix acting on S₀.
- innwall296 is the primitive vector of S_0^{\vee} (written with respect to the fixed basis of $S_0 \otimes \mathbb{Q}$) that defines the inner-wall of D_0 in the orbit O_{160} across which $D_0^{g(b_{296})}$ is adjacent to D_0 .
- dpp296 is a double-plane polarization $b_{296} \in S_0$ that induces the involution $g(b_{296})$.
- Singdpp296 is the singularities of the normal K3 surface that is the finite double coverer of \mathbb{P}^2 in the Stein factorization of the morphism $X_0 \to \mathbb{P}^2$ induced by b_{296} .

The double-plane involution $g(b_{688})$.

- gdpp688 is the double-plane involution $g(b_{688}) \in \operatorname{Aut}(X_0)$ expressed by a 20 × 20matrix acting on S_0 .
- innwall688 is the primitive vector of S_0^{\vee} (written with respect to the fixed basis of $S_0 \otimes \mathbb{Q}$) that defines the inner-wall of D_0 in the orbit O_{320} across which $D_0^{g(b_{688})}$ is adjacent to D_0 .
- dpp688 is a double-plane polarization $b_{688} \in S_0$ that induces the involution $g(b_{688})$.
- Singdpp688 is the singularities of the normal K3 surface that is the finite double coverer of \mathbb{P}^2 in the Stein factorization of the morphism $X_0 \to \mathbb{P}^2$ induced by b_{688} .

5.4. The finite group $Aut(X_0, h_0)$ (Section 4.3 of [1]).

• SixFs is the list of 6 quadrangles $F_c = [v_1, v_2, v_3, v_4]$ of singular fibers of the Jacobian fibration $\sigma: X_0 \to \mathbb{P}^1$, where v_1, v_2, v_3, v_4 are sorted in such a way that

they form the dual graph

$$v_1 \longrightarrow v_2$$

 $v_4 \longrightarrow v_3$

and the six quadrangles F_c are sorted according to the critical values c sorted as $Cr(\sigma) = [0, \infty, 1, -1, i, -i].$

- fsigma is the class $f \in S_0$ of a fiber of $\sigma \colon X_0 \to \mathbb{P}^1$.
- zsigma is the class $z \in S_0$ of the zero section of $\sigma \colon X_0 \to \mathbb{P}^1$.
- AutXOf is the group $Aut(X_0, f)$. The order is 768. Each element of this list is a 20×20 matrix acting on S_0 .
- iotasigmaz is the inversion $\iota_{\sigma} \in \operatorname{Aut}(X_0, f)$ of the Jacobian fibration (σ, z) . This automorphism is expressed by a 20 × 20 matrix acting on S_0 .
- MWtorsigmaz is the list of 16 pairs [v, [a, b]], where $v \in \mathcal{L}_{40}$ is the class of a section of $\sigma: X_0 \to \mathbb{P}^1$ that defines $[a, b] \in (\mathbb{Z}/4\mathbb{Z})^2$ under a fixed isomorphism between the Mordell-Weil group MW (σ, z) and $(\mathbb{Z}/4\mathbb{Z})^2$.
- Tsigma is the list of translations by sections of σ: X₀ → P¹. Each element of this list is a 20 × 20 matrix acting on S₀, and the elements are sorted according to MWtorsigmaz.
- Galmu is the Galois group $Gal(\mu)$. The order is 32. Each element of this list is a 20×20 matrix acting on S_0 .

5.5. **Proof of Theorems 1.7 and 1.8 of** [1].

- pr30 is the orthogonal projection $\operatorname{pr}_{30} \colon S_3 \otimes \mathbb{Q} \to S_0 \otimes \mathbb{Q}$.
- GramQ is the Gram matrix of Q.
- embQS3 is the embedding $Q \hookrightarrow S_3$.
- prQ is the orthogonal projection $pr_Q: S_3 \otimes \mathbb{Q} \to Q \otimes \mathbb{Q}$.
- v1v2 is the pair $[v_1, v_2]$ of primitive vectors of S_3^{\vee} that define the hyperplanes $(v_1)^{\perp}, (v_2)^{\perp}$ in Lemma 5.4 of [1].
- FourD3s is the list $[id, \gamma_1, \gamma_2, \varepsilon]$ such that $D_3 = D_3^{id}, D_3^{\gamma_1}, D_3^{\gamma_2}, D_3^{\varepsilon}$ are the $\mathcal{V}(i_3)$ chambers containing the face D_0 of D_3 .
- CCC4 is the list C_4 .
- CCC7 is the list of the two orbits of the action of $PGU_4(\mathbb{F}_9)$ on \mathcal{C}_7 .

FIGURE 6.1. Basis of L_{10}

- liftAutX0h0 is the list of 4 lists of 960 pairs $[\tilde{g}, g]$ such that \tilde{g} is an element of $\mathrm{PGU}_4(\mathbb{F}_9) \cdot \gamma \subset \mathrm{Aut}(X_3)$ preserving $S_0 \subset S_3$, where $\gamma \in [\mathrm{id}, \gamma_1, \gamma_2, \varepsilon]$, and g is the restriction of \tilde{g} to S_0 .
- liftgdpp112 is the element of $O^+(S_3, S_0) \cap \operatorname{Aut}(X_3)$ that is mapped to the doubleplane involution $g(b_{112})$ of X_0 by $\tilde{\rho}|_{\operatorname{Aut}}$. This is a double-plane involution of X_3 given by the double-plane polarization $\rho(b_{112}) \in S_3$, and the classes of smooth rational curves contracted by $\Phi_{\rho(b_{112})} \colon X_3 \to \mathbb{P}^2$ are the image by ρ of those contracted by $\Phi_{b_{112}} \colon X_0 \to \mathbb{P}^2$.
- liftgdpp688 is the element of $O^+(S_3, S_0) \cap \operatorname{Aut}(X_3)$ that is mapped to the doubleplane involution $g(b_{688})$ of X_0 by $\tilde{\rho}|_{\operatorname{Aut}}$. This is a double-plane involution of X_3 given by the double-plane polarization $\rho(b_{688}) \in S_3$, and the classes of smooth rational curves contracted by $\Phi_{\rho(b_{688})} \colon X_3 \to \mathbb{P}^2$ are the image by ρ of those contracted by $\Phi_{b_{688}} \colon X_0 \to \mathbb{P}^2$.

6. THE FILE Enriques.txt

- ConfigIV is the dual graph of the smooth rational curves on $Y_{IV,p}$ (Figure 1.2 of [1]). The set of vertices is $[1, \ldots, 20]$.
- GramL10 is the Gram matrix of the even unimodular hyperbolic lattice L_{10} with the basis given by the 10 roots e_1, \ldots, e_{10} forming the dual graph in Figure 6.1 above.
- SixEnriques is the list of the data of the six Enriques involutions $\varepsilon^{(1)}, \ldots, \varepsilon^{(6)}$ in Aut (X_0, h_0) . Each data is the list

of the following items. Let ε_0 be one of $\varepsilon^{(1)}, \ldots, \varepsilon^{(6)}$. The item **e0** is the matrix representation of the action of ε_0 on S_0 . Let $\pi: X_0 \to Y_0 := X_0/\langle \varepsilon_0 \rangle$ be

the quotient morphism, and let S_Y be the Néron-Severi lattice of Y_0 . We fix an identification $L_{10} \cong S_Y$ (see Remark below). The item **emb** is the embedding $L_{10}(2) \cong S_Y(2) \hookrightarrow S_0$ induced by $\pi^* \colon S_Y \hookrightarrow S_0$, and the item **proj** is the orthogonal projection $S_0 \otimes \mathbb{Q} \to S_Y \otimes \mathbb{Q}$ to the image of $\pi^* \otimes \mathbb{Q}$. Let ε_3 be the Enriques involution in $O^+(S_3, S_0) \cap \operatorname{Aut}(X_3)$ that is mapped to ε_0 by $\tilde{\rho}|_{\operatorname{Aut}}$. The item **e3** is the matrix representation of the action of ε_3 on S_3 . The item Zen is the list of 4 lists of 160 triples $[\tilde{g}, g, g|S_Y]$, where

- $\tilde{g} \in O^+(S_3, S_0) \cap \operatorname{Aut}(X_3)$ is an element of $Z_{\operatorname{Aut}(X_3)}(\varepsilon_3) \cap \operatorname{PGU}_4(\mathbb{F}_9) \cdot \gamma$, where γ is an element of FourD3s = [id, $\gamma_1, \gamma_2, \varepsilon$],
- $g \in \operatorname{Aut}(X_0)$ is the restriction $\tilde{g}|_{S_0}$, which is an element of $Z_{\operatorname{Aut}(X_0)}(\varepsilon_0)$, and
- g|S_Y is the restriction of g to S_Y ⊂ S₀, which is an element of Aut(Y₀), and is expressed by a 10 × 10 matrix acting on S_Y.

Remark 6.1. The identification $L_{10} \cong S_Y$ is chosen so that the image of h_0 by the orthogonal projection $S_0 \otimes \mathbb{Q} \to S_Y \otimes \mathbb{Q} = L_{10} \otimes \mathbb{Q}$ generates the 1-dimensional subspace

$$(e_1)^{\perp} \cap \dots \cap (e_5)^{\perp} \cap (e_7)^{\perp} \cap \dots \cap (e_{10})^{\perp}$$

of $\mathcal{P}(L_{10})$.

References

[1] Ichiro Shimada. The elliptic modular surface of level 4 and its reduction modulo 3, 2018. preprint, http://www.math.sci.hiroshima-u.ac.jp/~shimada/preprints.html.

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, HIROSHIMA UNIVERSITY, 1-3-1 KAGAMIYAMA, HIGASHI-HIROSHIMA, 739-8526 JAPAN

E-mail address: ichiro-shimada@hiroshima-u.ac.jp