ZARISKI HYPERPLANE SECTION THEOREM FOR
GRASSMANNIAN VARIETIES

ICHIRO SHIMADA

ABSTRACT. Let ¢ : X — M be a morphism from a smooth irreducible complex
quasi-projective variety X to a Grassmannian variety M such that the image is

of dimension > 2. Let D be a reduced hypersurfacein M, and «y a general linear

automorphism of M. We show that, under a certain differential-geometric

condition on ¢(X) and D, the fundamental group 7 1((y o ¢) ™ (M \ D)) is
isomorphic to a central extension of 7 1(M \ D) X 71(X) by the cokernel of
w2 (p) : m2(X) — w2 (M).

1. INTRODUCTION

Let V be a complex vector space of dimension m, and let
M := Grass(r,V)

be the Grassmannian variety of all r-dimensional linear subspaces of V. Let the
group G := GL(V) act on M from left in the natural way. Suppose that we are
given a morphism

¢o: X —- M
from a smooth irreducible quasi-projective variety X. Suppose also that a non-zero
reduced effective divisor D of M is given. For v € G, let

Tp X - M
denote the composite of ¢ with the action v: M — M of v on M, and let
e T (M\ D) - (M\D)xX
denote the morphism given by z — (Y¢(z),z). We consider the homomorphism
10, : m (16" M\ D)) — m(M\ D) x 71 (X)

induced by 7.

The main result of this paper states that, if v € G is general, then, under a
certain differential-geometric condition on ¢(X) and D, the homomorphism 7®,
gives m1(Y¢~H(M \ D)) a structure of the central extension of 7 (M \ D) x m(X)
by the cokernel of mo(¢) : mo(X) — mo(M). This differential-geometric condition
(Condition (DG) in §2) is closely related to the problem of characterizing Chow
forms among hypersurfaces in a Grassmannian variety. (See [4, Chapter 4].) In
fact, if Condition (DG) is not satisfied, then ¢(X) and D or Sing D are very special
subvarieties of M, and the fundamental group 71 (7¢~*(M \ D)) is not necessarily
a central extension of w1 (M \ D) x m1(X) by the cokernel of m(¢). See §9 for
examples.
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When M is a projective space P~ Condition (DG) is always satisfied. Putting
¢ to be a linear embedding of P2, we obtain the classical Zariski hyperplane section
theorem [9], the first rigorous proof of which was given by Hamm and Lé [6].
Therefore, our result is a generalization of Zariski hyperplane section theorem to
Grassmannian varieties.

This paper is organized as follows. In §2, we make some definitions, state Main
Theorem, and give some remarks. In §3, we investigate the situation where Condi-
tion (DG) is not satisfied, and describe special features that ¢(X) and D possess
in this situation. Sections from §4 to §8 are devoted to the proof of Main Theorem.
The strategy of the proof is as follows. In §4, we extend the family of ¢~ (M \ D)
over G to a family over an affine space End(V'), so that we can use [8, Theorem 1.3].
In §5, we prove that the fundamental group of the total space of the family over
End(V) is a central extension of m (M \ D) x m1(X) by the cokernel of m(¢). By
[8, Theorem 1.3], it is therefore enough to show that the local monodromies on the
fundamental groups of fibers of the family can be defined and are all trivial. In §6,
we introduce the transversality condition. In §7, we prove that Condition (DG)
implies the transversality condition, and in §8, we prove that the transversality
condition implies the triviality of local monodromies. In §9, we present examples
which show that Condition (DG) is not dispensable for the statement on the fun-
damental groups to hold.

Debarre [2] also found a relation between a similar differential-geometric condi-
tion on subvarieties of a Grassmannian variety and a certain connectivity theorem.

2. STATEMENT OF MAIN THEOREM

For a point p of M, let L(p) denote the linear subspace of V' corresponding to p.
Then we have canonical isomorphisms

(2.1) T,M = Hom(L(p), V/L(p)) and TyM = Hom(V/L(p), L(p)),
where Ty M is the dual space of the Zariski tangent space T, M to M at p. We
define rank(7) for 7 € T, M and corank(w) for w € Ty M to be the rank of the corre-

sponding linear homomorphisms L(p) — V/L(p) and V/L(p) — L(p), respectively.
For linear subspaces T" of T), M and N* of T,y M, we put

rank(7) := max{rank(r) | 7€ T}, and
corank(N™) := max{ corank(w) | w € N* }.
Let Y be a reduced irreducible closed subvariety of M. We choose a general point
p €Y, and put
rank Y := rank(7,Y’) and corankY := corank(N,Y),

where N;Y is the co-normal space (T,M/T,Y)" C TyM of Y at p. Let us call
them the rank and the corank of Y, respectively.

We also define a notion of type of a subvariety ¥ of M with rankY = 1 or
corank Y =1 as follows.

Let A and B be finite dimensional linear spaces, and T a linear subspace of
Hom(A, B) with dim7T > 1. Suppose that the rank of 7 : A — B is < 1 for all
7 € T. Then either one of the following occurs:

(I) There is a one-dimensional linear subspace By of B such that 7(A) C Br
forany T € T.
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(IT) There is a hyperplane Ay of A such that Ap C Ker for any 7 € T.
When dim T = 1, both of (I) and (II) occur, while when dim7" > 2, only one of (I)
or (II) occurs.

Suppose that Y is of rank 1 (resp. of corank 1). We say that Y is of type (I)
or (II) according to whether (I) or (II) holds for T,,Y C Hom(L(p), V/L(p)) (resp.
N;Y C Hom(V/L(p), L(p)), where p is a general point of Y. Remark that, when
Y is of corank 1 and of codimension 1 in M, then Y is both of type (I) and (II).

Let {D; | ¢ € I} be the set of irreducible components of the reduced hypersurface
D of M, and let {(SingD); | j € J@} be the set of irreducible components with
codimension 2 in M of the singular locus Sing D of D. We consider the following
conditions:

(ar) The closure ¢(X) of ¢(X) is of rank 1 with type (I).
(arr) The closure ¢(X) of ¢(X) is of rank 1 with type (IT).
(b) For at least one i € I, D; is of corank 1.
(c1) For at least one j € J®), (Sing D); is of corank 1 with type (T).
(cr1) For at least one j € J?), (Sing D); is of corank 1 with type (II).
Our differential-geometric condition (DG) is the following:

Condition (DG). The Grassmannian variety M is P!, or the condition
((ar) and ( (b) or (cr) ) or ( (a) and ( (b) or (cur) ))

is not satisfied.

For example, if ¢(X) is of rank > 1, orif all D; (i € I) and all (Sing D); (j € J®)
are of corank > 1, then Condition (DG) is satisfied. (As will be shown in §3, a
subvariety of M with (co)rank 1 is of very special type.)

To describe a central extension of a fundamental group, we use the following
method. Let T be an oriented connected topological manifold, and let o be an
element of H?(T,Z). Then there exists a topological line bundle L — T, unique up
to isomorphisms, such that ¢;(L) = . Let L™ C L be the complement to the zero
section of L. We have the homotopy exact sequence

— m(T) 2 (C) — (L) — m(T) — 1

such that the image of w1 (C*) — 71 (L*) is contained in the center. Thus we obtain
a central extension of m1(7T') by the cyclic group Coker 9y, which we call the central
extension associated with o € H?(T, 7).

Let ¢ € H?(M,Z) be the first Chern class of the positive generator of Pic(M).
We define n € H2((M \ D) x X,Z) to be the cohomology class

—(to prl)*C‘F (po prQ)*c,

where pry and pr, are projections from (M \ D) x X to M \ D and X, respectively,
and ¢ is the inclusion of M \ D into M.

Main Theorem. Suppose that dim¢(X) > 2, and that the condition (DG) is
satisfied. Let v be a general element of the group G. Then the homomorphism
7@, m(T¢T (M \ D)) — m(M\ D) x m(X)

gives m1(Y¢~L(M \ D)) a structure of the central extension of mi (M \ D) x m(X)
by the cokernel of wa (@) : mo(X) — mo(M), and this central extension is associated
with the cohomology class 7.
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Corollary 2.1. Let ¢ : X — P™ ! be a morphism from a smooth irreducible
quasi-projective variety X to P!, and D C P™ ! a reduced effective divisor.
Suppose that dim ¢(X) > 2. If v is a general linear automorphism of P~ then
71 (¢~ L (P~ \ D)) is isomorphic to a central extension of mi(P™~1\ D) x 7 (X)
by the cokernel of w2(9), and this central extension is associated with 7). |

Remark 2.2. We have an isomorphism Grass(r,V) = Grass(m — r, V). Hence,
replacing r with m — r if necessary, we can assume that » < m — 2. We will use
this assumption in the proof of Proposition 8.4 in §8.

Remark 2.3. Since X is quasi-projective, we can embed X into a projective space
PN. We cut X by a general linear subspace A of PV with codimension dim X — 2
to obtain a smooth surface S := X NA. Let "¢|g : S — M be the restriction of ¢
to S. Suppose that v € G is general. By Goresky and MacPherson’s theorem [5,
Part II, 1.1, Theorem], both of the inclusions

§—X and T¢|5'(M\ D) =67 (M\ D)

induce isomorphisms on the fundamental groups, and the inclusion of S into X
induces a surjective homomorphism 72(S) — m2(X). In particular, the cokernel of

ma(¢) is isomorphic to the cokernel of m2(¢|s). On the other hand, dim ¢(X) > 2
holds if and only if dim ¢| s(S) = 2 holds. Moreover the condition (ay) (resp. (ar)) is
satisfied if and only if (a1) (resp. (arr)) with ¢ replaced by ¢|s is satisfied. Therefore
it suffices to prove Main Theorem for ¢|g; that is, we can assume that dim X = 2,
and that ¢ : X — M is a quasi-finite morphism onto its image. We will use this
assumption in §8.

Remark 2.4. Let L — T and o = ¢;(L) € H?(T,Z) be as above. We have a
homomorphism between exact sequences

0 — H2(7T1(T)7Z) - HQ(T7Z) - HQ(fvz)
! ! !
0 — H2(m(T),Cokerd;) — H2(T,Cokerdy) = H2(T,Cokerdy),

where 7 : T — T is the universal covering of T (see [1]). Since
() € H*(T,Z) = Hom(my(T),Z)

is the boundary homomorphism dy, : m2(T) — Z, it becomes zero in H? (f, Coker dy,).
Thus «a defines an element of H?(m(T'), Coker dz). One can easily check that this
element corresponds to the central extension of m (T') associated with .

Remark 2.5. In fact, Corollary 2.1 can be easily proved directly as follows. As
was remarked above, we can assume that dim X = 2, and that ¢ : X — P™ ! is
quasi-finite onto its image. Let v be a general element of G. We define

F: X xP" '\ D) - pr!xpn!

to be the morphism given by F(z,y) := ("¢(x),y). Let A be the diagonal of
Pl x P11 and let A, be a small tubular neighborhood of A. Then F~1(A)
is isomorphic to 7¢~1(P™~1\ D), and since 7 is general, F~!(A,) is homotopic to
F~1(A). Then the result of Corollary 2.1 (except for the description of the central
extension) follows from [3, Theorem 9.2 (b) with Remark 9.3].
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3. SUBVARIETIES OF A GRASSMANNIAN VARIETY WITH (CO)RANK 1

In this section, we assume that M is not a projective space P!,

Theorem 3.1. Let Y be a reduced irreducible closed subvariety of M. Suppose that
dimY > 2.

(1) The subvariety Y is of rank 1 with type (1) if and only if there exists a linear
subspace W C V with dimW = r + 1 such that L(p) CW for allp €Y.

(2) The subvariety Y is of rank 1 with type (I1) if and only if there exists a linear
subspace W' C V with dimW = r — 1 such that W' C L(p) forallpe Y.

Proof. The proofs of (1) and (2) are completely parallel. Therefore we will prove
only (1). The ‘if’ part is obvious. We will prove ‘only if” part.

Suppose that Y is of rank 1 with type (I). We choose a general point yo of Y.
There exists a unique (r 4+ 1)-dimensional linear subspace W (yy) containing L(yo)
such that T}, Y is contained in the linear subspace

W (yo) := { 7 € Hom(L(yo), V/L(y0)) | Tm7 C W (y0)/L(10) }
of Hom(L(yo), V/L(yo)) under the isomorphisms (2.1). We choose a basis

ela"'7erafla"'7fm—r

of V such that L(yo) is spanned by eg,...,e,, and that W(yg) is spanned by
e1,...,er, f1. We define a local coordinate system (z;;)i<i<m—r1<j<r of M in
such a way that the r-dimensional linear subspace L(p) of V corresponding to a
point p = (x;;) is spanned by the vectors

m-—r
e;(p) = e; + Z fizig (G=1,....7).
i=1

Let d be the dimension of Y. Since Y is of type (I), we have d < r. Let (21, ..., 2q)
be a local analytic coordinate system of Y with yo = (0,...,0) defined in a small
open neighborhood U of yy. We put

0,
Gij(#1,...,24) = xijly, and 0O,gij := 89;].
v

Then the tangent vector (0/0z,), € T,Y is given by an (m — r) x r matrix
Fu(y) := (0vgi;(y))

that expresses a linear homomorphism from L(y) to V/L(y) with respect to the
basis €] (y), ..., e.(y) of L(y) and the basis

fimod L(y) , ..., fi—r mod L(y)
of V/L(y). The condition that Y is of rank 1 with type (I) is equivalent to the
condition that the d - r column vectors of the d matrices Fi(y), ..., Fq(y) are

proportional to each other for any y € U.
Recall that T, Y is contained in W (yp). By choosing a suitable basis of V' and
making a linear transformation among z1, ..., z4, we can assume that

1 ifi=1andj=v,
0 otherwise

(3.1) 0v9i5(yo) = {
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holds for v =1, ...,d. Then, by an analytic transformation of the local coordinates
(21,...,24), we can put g1, = 2, for v = 1,...,d. In particular, we have
(3.2) Ovgiv =1, and 0,91, =0 (j#v).

Since the column vectors of the matrix F,(y) are proportional to each other for
any y € U, the equality (3.2) implies that the column vectors of F,(y) are zero
except for the v-th column. Hence we have d,¢;; = 0 for j # v; that is, g;; is a
function of one variable z;. On the other hand, the p-th column vector of F),(y)
and the v-th column vector of F,(y) are proportional to each other for any y € U.
Since the top entry of these column vectors is 1 by (3.2), we have J,g;, = 0,9
for i =2,...,m —r. The left hand side depends only on z,, while the right hand
side depends only on z,. Therefore they are constant. Since they are zero at
by (3.1), we have d,g;, =0fori=2,....m—rand v =1,...,d. Since g;, is zero
at yg, we have g;,, = 0fori =2,....m—r and v = 1,...,d. This implies Y is
contained in {p € M | L(p) C W(yo)}. O

Next we consider the subvariety of M with corank 1. We put
P, (V) := Grass(1,V),

and consider M as the variety of all (r — 1)-dimensional projective linear subspaces
of P.(V). For a point p € M, let II(p) C P.(V) denote the projective linear
subspace corresponding to p. Let S be a reduced irreducible closed subvariety of
P.(V). For a point z € S, we denote by ET,S C P.(V) the embedded Zariski
tangent space to S at z. We denote by 5™ the smooth locus of S, and put

Cr(S):={pe M | dim(Il(p) N ET,S) = k for some z € Il(p) NS"s },

where the over-line means the Zariski closure. When k = dim.S — m + r + 1, the
subvariety Ci(S) of M is the higher associated hypersurface defined in [4, Section
2E, Chapter 3]. Note that, if Y is a hypersurface of M, then Y is of corank 1 if
and only if Y is coisotopic in the sense of [4, Definition 3.9, Section 3, Chapter 4].
Therefore, by Theorem 3.14 in [4, Section 3, Chapter 4], we obtain the following
theorem. (See also [2, Proposition 3.3].)

Theorem 3.2. A reduced irreducible hypersurface Y C M is of corank 1 if and
only if Y is a higher associated hypersurface Cy(S) of a reduced irreducible closed
subvariety S C Po(V) with dimS =m —r — 1 + k. O

This theorem can be generalized as follows. Let M* be the Grassmannian variety
of all (m — r)-dimensional linear subspaces of V* := Hom(V, C). We have a natural
isomorphism

~

0 : M* — M.

For a reduced irreducible closed subvariety S* of P*(V) := P, (V*), we define the
subvariety Ck(S*)* of M* associated to S* in the same way.

Theorem 3.3. Let Y be a reduced irreducible closed subvariety of M with codi-
mension [ > 2.
(1) If Y is of corank 1 with type (1), then there exists a reduced irreducible closed
subvariety S C P.(V) with dim S = m — r — 1 such that Y coincides with Cy(S).
(2) If Y is of corank 1 with type (I1), then there exists a reduced irreducible closed
subvariety S* C P*(V') with dim S* =r — [ such that Y coincides with 6(Co(S*)*).
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Proof. The following proof is almost same as the proof of [2, Proposition 3.3|. First
note that, if Y C M is of corank 1 with type (II), then 6=(Y) C M* is of corank
1 with type (I). Therefore it is enough to prove (1).

Let Y™® be a Zariski open dense subset of Y consisting of y € Y at which Y
is smooth. Since corank(N;Y’) is a lower semi-continuous function of y € Y, we
have corank(N;Y) = 1 for any y € Y. Let y be a point of Y. There exists a
unique one-dimensional linear subspace B(y) of L(y) and a linear subspace K (y)
of V/L(y) with codimension [ such that

T,Y ={ 7 € Hom(L(y),V/L(y)) | 7(B(y)) € K(y) }

under the isomorphisms (2.1). We denote by p(y) the point of P, (V') corresponding
to B(y). Note that p(y) € II(y). Let X be the Zariski closure of {(y, p(v)) | y € Y"*}
inY x P,(V), and let S be the image of the projection of 3 to P.(V). We put

s:=dimS, and k:=dim(ET,y,S N1l(y)),
where yo is a general point of Y™, We then have Y C Ci(S). Hence we have
(3.3) dimY = (m—r)r—1 < dimCy(S) < s+k(s—k)+(m—r)(r—k—1).
The fiber of ¥ — S over the general point p(yo) of S is contained in
{pe M | L(p) D B(y) } = Grass(r —1,m—1).

Hence we have
(3.4) s > dmX—(m—-r)(r—=1) = m—r—1.
Let

(u,v) € Hom(L(yo), V/L(yo)) x Hom(B(yo), V/B(yo))

be an element of
Tiyopwo)E C TyM X Tpy)Pu (V).

Since B(y) C L(y) holds for every y € Y™, we have u|p(y,) = 7o v, where 7 is the
natural projection from V/B(yo) to V/L(yo). Since (yo, p(yo0)) is a general point of
%, Tpyo)S is the image of Ty, ,(ye))%- Therefore T),,)S is contained in the linear
subspace

K (yo) := { v € Hom(B(y), V/B(yo)) | Im(rov) C K(yo) }

of Ty P« (V'), which is of dimension m — 1 — [ and contains T),(,,)II(yo). Hence
we have

(35) k> dimT,yy)S + dim T,y [(yo) — dim K (yo) = s — (m — 7 —1).
Since I > 2, the pair (s, k) satisfying the inequalities (3.3), (3.4) and (3.5) is only
(m —r —1,0). Therefore we have Y = Cy(S) with dimS =m —r — [. O

4. CONSTRUCTION OF A FAMILY OF COMPLEMENTS OVER End(V)

Hironaka’s resolution of singularities gives us a smooth projective completion X
of X and a morphism ¢ : X — M such that

W::Y\X

is a normal crossing divisor, and that the restriction of ¢ to X coincides with .
We equip W with the reduced structure so that W is a reduced divisor (possibly
empty) of X. For v € G, let "¢ : X — M denote the composite of ¢ with the
action of v on M.
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Let A denote the space End(V'), which is an affine space of dimension m?, and
contains GG as a Zariski open dense subset. We put

U:={(7,p) € AxM | dimy(L(p)) =7 }.
Then the action G x M — M of G on M extends to the morphism
a:U — M.
We also put
X={(r,2) €AxX | (v,9(x) €U},
which is a Zariski open dense subset of A x X containing G x X. When (y,z) € X,

we write Y¢(x) to denote the point (v, @(x)) of M. This notation is compatible
with the previous definition when v € G. Let

X - M
be the morphism given by (v, z) — Y¢(x), and let
VX - MxX
be the morphism given by (v, z) — (¥ (x),x). It is easy to check that ¥ is a locally

trivial fiber space in the category of complex manifolds and holomorphic maps.
Every fiber of ¥ is isomorphic to

R := GL(r) x A™(m=r),
In particular, ¥ is smooth. We regard
(D x X)+ (M x W)
as a divisor of M x X, which is reduced because both of D and W are reduced.
Since W is smooth, the pull-back
Z' =0 (DxX)+(MxW)) =4 1(D)+((AxW)NX)
is also a reduced divisor of X. Let
Vo X\Z — (M\D)x X
be the restriction of W. Then we have the following diagram of the fiber product
xX\z — X
(4.1) v | | lw
(M\D)xX — MxX.
Let Z be the closure of Z’ in A x X; that is, Z is the unique divisor of A x X whose

support is the closure of Z’ and whose restriction to X coincides with Z’. Then Z
is again a reduced divisor. We put

E:=(AxX)\Z

and let f : E— A be the projection.

Let A C A denote the irreducible hypersurface A\ G. For every point p € M,
the locus of all v € A such that (v,p) ¢ U is of codimension > 1 in A. This implies
that (A x M)\ U is of codimension > 2 in A x M, and (A x X) \ X is also of
codimension > 2 in A x X. Therefore the inclusion of X'\ Z’ into E = (A x X)\ Z
induces an isomorphism

T (X\ Z") = m(E).
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For v € A, let F, denote the fiber f~'(v), and let Z, be the scheme-theoretic
intersection of Z with {7} x X. We regard Z, as a subscheme of X. If y € G, then
we have
Fy=X\Zy="¢""(M\D),

and the restriction of ¥ to F, = 7¢~!(M \ D) is equal to the morphism 7®.

Now Main Theorem follows from the following two claims.
Claim 4.1. The homomorphism ¥, : (X \ Z') — 7 (M \ D) x m(X) gives
T (E) = m (X \ Z') a structure of the central extension of m (M \ D) x m(X) by
the cokernel of m2(¢) associated with n € H?((M \ D) x X, Z).

Claim 4.2. If the condition (DG) is satisfied, then the inclusion of F., — E induces
an isomorphism on the fundamental groups for a general v € G.

5. PROOF OF CLAIM 4.1

Let £ — M be the universal family of r-dimensional subspaces of V. Then we
have c;(det £) = —¢, where ¢ € H?(M,Z) is the positive generator. Let

L1 —MxX, and Lo —MxX

be the pull-backs of £ — M by the first projection pr; : M x X — M, and by the
composite morphism ¢ o pry : M x X — X — M, respectively. Then we have a
fiber bundle

Isom(La, £1) — M x X,

whose fiber over (p, z) is Isom(L(¢(x)), L(p)) = GL(r). The C*-bundle
det (Isom(Lsy, L£1)) — M x X

is the complement to the zero section of the line bundle (det £5)~! ® det Ly, whose
first Chern class is given by
f:=—pric+ (popry)*c € H* (M x X, 7).

If (y,z) € X, then v : V — V induces an isomorphism from the fiber L(¢(xz)) of
Lo over U(v,z) = ("¢(x),x) to the fiber L("¢(x)) of L1 over ¥(~,z). Hence W is
naturally lifted to a morphism

U : X — det (Isom(L2, L1)),

which is a fiber bundle with fibers isomorphic to SL(r) x A™™~") In particular,
¥ induces an isomorphism from () to 71 (det(Isom(L2, £1)), which is a central
extension of 1 (M) x 7 (X) associated with 7.

Recall that the morphism W is locally trivial with fibers isomorphic to R =
GL(r) x A™™=7) Therefore we obtain from the diagram (4.1) a homomorphism

between the homotopy exact sequences for ¥ and ¥;
m (M \ D) x X) KA m(R) — m(X\Z) it m((M\ D) x X)
(5.1) l | ! l
mo(M x X) — m(R) — 71 (X) — T (M x X),

where vertical arrows are induced from the inclusions. Note that the morphism ¥’
factors through

\Tf/ = \TJ|T\Z’ : ?\Z/ — det (ISOIH(EQ,Ll)” (M\D)x X -



10 ICHIRO SHIMADA

Since every fiber of U’ is isomorphic to SL(r) x A™™m=") this morphism U’ induces
an isomorphism

7'('1(? \ Z/) = ﬂl(det(lsom(ﬁg, Ll))|(M\D)><X)7

so that U/ makes 7 (X \ Z’) the central extension of w1 (M \ D) x m(X) by the
cyclic group
Coker (0 : mo(M\ D) x m2(X) — m1(R) )

associated with the cohomology class 7 = 77| (am\pyxx € H*((M\ D) x X, Z). Hence
it is now enough to show that the cokernel of 9 in (5.1) is isomorphic to the cokernel
of ma(9) : ma(X) — ma(M).

First we show that @ maps the first factor mo(M\ D) to zero. Because Ho(M,Z) is
an infinite cyclic group generated by the homology class of a closed algebraic curve
in M, every non-zero element of Hy(M,Z) has a non-trivial intersection number
with the homology class of the ample divisor D. Hence any non-zero element of
mo(M) = Ho(M,Z) cannot be in the image of mo(M \ D) — mo(M); that is, the
homomorphism 7o (M \ D) — w2 (M) induced by the inclusion is a zero map. Then
the commutativity of the diagram (5.1) proves the claim d(m2(M\ D) x{0}) = 0. To
investigate the image of the second factor m2(X') by 9, we choose a point pg € M\ D
and consider the morphism

Voo {(v,2) €X\Z" | "9(z) =po } — X
given by (v, ) — x, which is the pull-back of ¥’ by the inclusion
X2{p}xX — (M\D)xX.

Hence the boundary homomorphism 9y : m2(X) — 71 (R) associated with the locally
trivial fiber space W, coincides with the restriction of 0 to the second factor. On
the other hand, ¥} is also obtained as the pull-back of the second projection

(5.2) atpo)={(v,p)eU | v(p)=p} = M

by ¢ : X — M. Therefore we have a homomorphism between the homotopy exact
sequences associated with ¥j and (5.2);

— mX) B mR) — m@ ' ({p} x X)) —
(5.3) 1 o [ |

— mM) P m@E) —  m@w) —.

Thus all we have to show is that the boundary homomorphism 9j; associated
with (5.2) is an isomorphism. Since both of wo(M) and 71 (R) are an infinite cyclic
group, it is enough to show that m1(a~!(pg)) is trivial. Since (A x M) \ U is of
codimension > 2 in A x M, 71 (U) is trivial. Because the morphism o : U — M
admits a section p — (idy, p), the homomorphism ., : w2 (U) — w9 (M) is surjective.
From the homotopy exact sequence associated with a, we see that m (a~1(pg)) is
trivial. O

6. PROOF OF CLAIM 4.2

Let {D; | i € I'} be the set of irreducible components of the reduced divisor D,
and let {(SingD); | j € J} be the set of irreducible components of the singular
locus Sing D of D. We regard each (SingD); as a reduced subscheme of M. Let
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J@) C J be the set of all j € J such that (Sing D); is of codimension exactly 2 in
M . For points p,q € M and linear subspaces K C T,M, L C T;M, we put

G(p,q) ={v€G | v(p)=q}, and
Gp,¢; K,L):=={~v€G(p,q) | (dv)p(K)C L}
Instead of G(p,p), we write G,. We consider the following conditions. We equip
¢(X) with the reduced structure.
TR1(i). Let p be a general point of ¢(X), and let ¢ be a general point of D;.
Then G(p, ¢; Tp¢(X), TyD;) is of codimension > 2 in G(p, q).

TR2(j). Let p be a general point of $(X), and let ¢ be a general point of
(Sing D), where j € J®?). Then the locus

{veGp.q) | (dv)p(Tpo(X)) + Ty(Sing D); = T,M }

is Zariski open dense in G(p, q).
We say that the transversality condition is satisfied if TR1(4) is satisfied for every
i € I and TR2(j) is satisfied for every j € J®).

Now Claim 4.2 follows from the following two sub-claims.
Sub-claim 6.1. Suppose that the condition (DG) is satisfied. Then the transver-
sality condition is satisfied.
Sub-claim 6.2. If the transversality condition is satisfied, then the inclusion F, —
E induces an isomorphism 1 (F,) = m1(E) for a general v € G.

7. PROOF OF SUB-CLAIM 6.1

Suppose first that » = 1 or r = m — 1, i.e., that M is a projective space. For
any p € M, the natural representation G, — GL(T, M) of G, on T,,M is surjective.
Hence the assumption dim ¢(X) > 2 implies the transversality condition.

From now on, we assume 2 < r < m — 2. Then Sub-claim 6.1 follows from the
following:

(1) If TR1(7) is not satisfied, then ¢(X) is of rank 1 and D; is of corank 1.

(2) If TR2(j) is not satisfied for j € J), then ¢(X) is of rank 1, (Sing D); is of
corank 1, and the types of ¢(X) and (Sing D); coincide.

Because of the definition of (co)rank, these follow immediately from Proposition 7.1

below. Let p be a point of M, and let F', H and K be linear subspaces of T, M
such that

dimF > 2, dimH =dim7T,M —1, and dimK =dimT,M — 2.

We denote by G,(F, H) C G, the locus of all v € G}, such that (dv),(F) C H.
Proposition 7.1. (1) Suppose that G,(F, H) is of codimension <1 in G,. Then
we have rank(F) =1 and corank((7, M/H)*) = 1.

(2) Suppose that K + (dv),(F') fails to coincide with the total space T,M for a
general v € Gp. Then we have rank(F') = 1 and corank((T,M/K)*) = 1. Moreover
the types of F' and (T, M/K)* coincide.

Proof. For simplicity, we put

n:=m-—r.
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We fix bases {e1,...,e,} of L(p) and {f!,..., f*} of V/L(p). We express, via the
isomorphisms (2.1), elements 7 € T, M (resp. w € T,y M) by r x n matrices (7;;)
(resp. n x 7 matrices (w’?)), where

7(e:) = Zﬂjfj, and  w(f7) = Zwﬂei.
i=1

j=1
The canonical bilinear form ( , ): 7, M x T,M — C is then given by

(w,7) = Z witr;.
4,J

We write the natural homomorphism
u: Gy — GL(L(p)) x GL(V/L(p))

by u(y) = (v, %, 72), putting the inverse on the first factor. Let us also express
elements v, of GL(L(p)) and v of GL(V/L(p)) by r x r matrices (¢;*) and n x n
matrices (h!;), respectively;

nle) = gifer, v(f)=> hif.
k=1 j=1
Then the action of v € G, on T}, M is identified with the multiplication of matrices
(Tij) — (Z gikalhlj).
k.l

Now we start the proof of (1). Let « be a generator of the 1-dimensional linear
subspace (T, M/H)* of T; M. We have
H={reT,M | (a,7)=0}.

Suppose that « is represented by an n x r matrix (a/?). When 7 € F is given, the
condition on v € G, for (dv),(T) to be contained in the hyperplane H C T, M is
given by the quadratic equation

Z O[jigikalhlj -0,

W5,k

where u(y) = (', 72) and 1 = (g:%), 72 = (h';). We put
Q(r) = { ((9:"), (h5)) € End(L(p)) x End(V/L(p)) | > o¥'giFnah'; =0},
W5,k
and let Q(7)Y be the intersection of Q(7) with GL(L(p)) x GL(V/L(p)). Then we

have
Gy(FH) = () u(Q(r)").
TEF

The locus Q(7) is a quadratic hypersurface for 7 # 0. Moreover the closure of Q(7)°
in End(L(p)) x End(V/L(p)) is equal to Q(7), because Q(7) cannot possess an irre-
ducible component in common with the complement in End(L(p)) x End(V/L(p))
to GL(L(p)) x GL(V/L(p)). Tt is also easy to see that, if two matrices 71 and 7o
of F are linearly independent, then Q(71) does not coincide with Q(72). Therefore
the assumption of (1) implies that, for every 7 € F \ {0}, Q(7) is a union of two
hyperplanes, and all these Q(7) contain one fixed hyperplane in common. We put

p = corank((T, M/H)").
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By choosing the bases {ei,...,e,} and {f',..., f*} suitably, we put the matrix
(a??) into the following form:

ji 1 ifi=jand1<i<p,
v =
0 otherwise.

Let n = (k1) be a non-zero element of F. The reducibility of Q(n) implies that
there exist \;* € C and p?, € C such that

> S sttt = (St ) (S )
i,k 4l

i=1 k,l

that is,

1) A — {nkl ifi=jand1<i<p,

0 otherwise.

There exists at least one (k,) such that n # 0. Hence (7.1) implies that p = 1.
Moreover, we have A" = 0 for i > 2, pf;, = 0 for j > 2, and ni = \* - put;. We
have Q(n) = A1 U Ag, where A; and As are hyperplanes defined by

M=) Nal* =0} A={d uhli =0}
k l

By the consideration above, either A; C Q(7) for all 7 € F or Ay C Q(7) for all
7 € F holds. In the former case, for any 7 € F', there exist scalars ¢; (I =1,...,n)
such that \;'#; = 7. This implies that Kerr C L(p) contains a fixed hyperplane

{inei | in)\il =0}

of L(p). Thus F is of rank 1 with type (II). In the later case, for any 7 € F,
there exist scalars s, (k = 1,...,7) such that sgu'; = 7. This implies that, for
= 1,...,r, the vector 7(ex) € V/L(p) is proportional to Y, !, f'. Thus F is
of rank 1 with type (I).
Next we prove (2). We put

p = min{ corank(w) | we (T,M/K)"\ {0} }.

Note that p is not the maximal rank, but the minimal one. Let o € (T}, M/K)* be
an element such that corank(a) = p, and let 8 € (T, M/K)* be an element that is
linearly independent with o. Then K is defined in T, M by

K={reT,M | (a,7) = (8,7)=0}.

Let n and ¢ be linearly independent elements of F. Then the assumption of (2)
implies that

(o (d)p(m) (B, (d)p()\
(72) det (<a,<dv>p<<>> (@(czm(c)))‘o

holds for a general v € G, and hence for an arbitrary v € G,. We write down
this equation in terms of the components of the matrices a = (a/?), 3 = (57%),

n= (mj), ¢= (Cij) and v, = (gik), Y2 = (hlj), where u(y) = (71_1,72)- We put
[ji, kL : §i' k') i= o? " Corp.
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Looking at the coefficient of g;*h!;g;* h¥ ;; of (7.2), we obtain the following equa-
tions:
([ji, kl : "¢ KU + [58, kU 2 ji' k"D +
[ K'L: jla KU+ [59 KT ga, kL)) —
("¢ KLz gi, KU + (i kU2 50, KT +
574, k' §i' KU + [5i, k'L = 374 kL)) = 0.
By re-choosing the bases {e1,...,e,} and {f!,..., f"} appropriately, we get

P {1 if j=iand 1<i<p,
« =

(7.3)

(7.4) |
0 otherwise.

Because corank(c) = p is minimal and « and [ are linearly independent, there
exists (¢, 7) such that
(7.5) (' >p or j' >p) and B £0.
Suppose that there existed 4; and (ig, j2) such that
al?it = qfriz = g2tz — (. o1t £ and 3722 £ 0.
Applying (7.3) to (j,4,j',i") = (i1,41, ja, 72), we would obtain nxCer — Mk G =
0 for arbitrary (k,l,k’,1’). This contradicts the linear independence of 7 and (.
Therefore there are no such 4 and (i, j2). This means, by (7.4) and (7.5), that
p=1 and (F'#0 = (j<pori<p)).
Now by changing {e1,...,e,} and {f!,..., f*} again, we get
(7.6) ad® = 0 unless (j,i) = (1,1), while o' =1, and
(7.7) (7% = 0 unless (i,5) = (1,1) or (2,1) or (1,2).
Applying (7.3) to (4,4,4',i') = (1,1,1,2), we obtain

B2 ((raCrrr — M Cra) + (M Cert — MiennCrrr)) = 0
for arbitrary (k,1,k’,1"). Putting | =1, we get

(7.8) B (MGt — M) = 0
for arbitrary k, k' and I. Applying (7.3) to (j,4¢,7',4') = (1,1,2,1) and putting
k =k, we also obtain

(7.9) B2 (mwiCrr — M Gra) = 0

for arbitrary k and I, I’. Suppose that both of 32 and 3?' were non-zero. Then
(7.8) and (7.9) would imply that 1 and ¢ should be linearly dependent, which
contradicts the assumption. Hence either (52 # 0, 3% = 0) or (3'2 = 0, 5% # 0)
holds. Combining this with (7.6), we see that corank(w) < 1 for every linear
combination w of o and §; that is, we have corank(K) = 1.

Suppose that £'2 # 0 and 2! = 0. Then Kerw C V/L(p) contains the hyper-
plane spanned by f2, ..., f* for any w € K. Thus K is of type (II). Moreover the
fact that (7.8) holds for arbitrary elements n and ¢ of F' implies that there exist
fixed scalars uq, ..., u, such that, for any 7 € F', we have ¢, ..., t, € C satisfying
Trr = ugt;. This implies that Ker 7 C L(p) contains a fixed hyperplane

{inei | Zuixi20}
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for any 7 € F. Thus F is of rank 1 with type (II). Suppose that 32! # 0 and
(32 = 0. Then Imw C L(p) is proportional to e; for any w € K. Thus K is of type
(I). Moreover, by (7.9), there exist fixed scalars vy, ..., v, such that, for any 7 € F,
we have s1, ..., s, € C satisfying 75y = sgv;. This implies that Im7 C V/L(p) is
generated by a fixed vector 37, v; f7 for ant 7 € F. Thus F is of rank 1 with
type (I). O

8. PROOF OF SUB-CLAIM 6.2

In order to prove Sub-claim 6.2, it is enough to show that f : F — A satisfies
the conditions (T1)-(T4) in [8, Theorem 1.3].

The condition (T1) is obviously satisfied. Since f is smooth, the condition (T2)
is also satisfied. For the condition (T3), it is enough to show that the locus

Sp={veA|F,=0}

is contained in a Zariski closed subset of codimension > 2 in A. The following
lemma is easy:
Lemma 8.1. Let S be an irreducible hypersurface of M, and let p, q be two distinct

points of M. Then the Zariski closed subset {~v € G | v(p) € S,v(q) € S} of G is of
codimension > 2. O

Corollary 8.2. If C is an irreducible Zariski closed subset of M with dimC > 1,
then the Zariski closed subset {y € G | v(C) C D} of G is of codimension > 2. [

If vy € G NEp, then v(¢(X)) is contained in D. By Corollary 8.2, the assump-
tion dim ¢(X) > 2 implies that G N Zy is contained in a Zariski closed subset of
codimension > 2 in G.

Recall that A is the irreducible hypersurface A\ G of A. Let A° C A be the
Zariski open dense subset consisting of all v € A such that the linear homomorphism
v:V — Visof rank m — 1. Tt is well-known that A° coincides with A\ Sing A
([7, Example 14.16]). For a point p € M, we put

A°(p):={r €A’ | KeryZ L(p) } ={v€A° | (v.,p) €U},
which is a Zariski open dense subset of A°. The following lemma is obvious:
Lemma 8.3. The morphism A°(p) — M given by v — ~(p) is surjective. O

Let = be any point of X. By Lemma 8.3, if v € A°(¢4(x)) is general, then
v(¢(x)) ¢ D. In particular, we have z € X \ Z,. Hence A NEy is contained in
a proper Zariski closed subset of A. Therefore Zj is contained in a Zariski closed
subset of A with codimension > 2. Thus the condition (T3) is satisfied.

Now we check the condition (T4). Let ¥y C A be the topological discriminant
locus (see [8, Definition 1.2]) of f : E — A, and let £, ..., £{") be the irreducible

components of ¥; with codimension 1 in A. If A C ¥, then one of Ey) is A.
First let us consider the local monodromy around A.

Proposition 8.4. If vy is a general point of A, then Z., is a reduced divisor of X.

Proof. For v € A, we put
K,:={peM | KeryC L(p) }.
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If v € A°, then K, is isomorphic to Grass(r —1,m —1). For v € A, let Y; denote
the fiber of the projection X — A over 4. Then we have

- =

X, =X \¢ 1K)

First we prove that, if v € A is general, then ¢~!(K,) is of codimension > 2 in
X. We put
K={(vp)€eA°xM | pe K, }.

Since the projection K — A° is smooth with fibers isomorphic to Grass(r—1, m—1),
K is smooth and of dimension

dim K = dim A° 4+ (m —r)(r — 1).
The group G acts of I from left by
(v,p) = (vog ', g(p) (9e@).

The projection K — M is obviously equivariant under this action. Since G acts
transitively on M, the projection K — M is smooth. Consider the fiber product
K x s X of the projection X — M and ¢ : X — M,

ICX]VIY — K —  A°

1 O 1
®

The projection K x s X — X is smooth and of relative dimension equal to dim A —
dim M. Hence we have

dim(K x 37 X) = dim X + dimK — dim M = dim X + dim A° — (m — 7).
Let ¢ : K x3r X — A° be the composite of the projections K x5y X — K and

K — A°. By construction, ¢~*(K) is isomorphic to ¢~'(v). Therefore, if v € A°
is general, we have

dim¢ 1 (K,) < dim(K xpr X) —dimA° = dim X — (m — 7).

Since we have assumed r < m — 2 (see Remark 2.2), the codimension of ¢~1(K,)
in X is at least 2 for a general v € A.
Let Z denote the scheme-theoretic intersection of 77 and the divisor Z’ of X.

If v € A is general, then 7\7; is of codimension > 2 in X, and hence Z., coincides
with the closure of Z in X. Therefore it is enough to show that Z. is a reduced
divisor of 7; for a general v € A. We put

Xpo = (A°x X)NAX,

and let Z\. be the scheme-theoretic intersection of Z/ and X ao. For v € A°, we
denote by

Yho : Xpo — M and w;:Y;HM
the restrictions of 1) : X — M to X ae and to 7;, respectively. Then we have
Zho = YD) + (A° x W)N X pe,
and, for v € A°, the divisor
Zl =y7Y (D) + WNnX,
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of Y; is the scheme-theoretic intersection of Z4, and Y; in Xao. Note that G
acts on X a0 by
(v,2) = (goy,z) (9€G),

and that ¢y, is equivariant under the action of G. Since G acts on M transitively,
Yo is smooth. Therefore 1.} (D) is a reduced divisor of Xao. Hence, if v € A°
is general, then ¢/ (D) is a reduced divisor of 7;.

Let Wy, ..., W, be the irreducible components of W. We choose a general point
w; of W for each 4. If v e/AO is general, then w; ¢ ¢~'(K) and v(¢(w;)) ¢ D by
Lemma 8.3. Hence WN X, and ¢/ *(D) have no common irreducible components.

Thus Z/, is a reduced divisor of Y; for a general v € A°. O

Let Ba be a Zariski open dense subset of A containing the generic point of A such
that BA NXf C A. Let fa : EA — Ba be the restriction of f to Ea := f~Y(Ba).
By Proposition 8.4, we see that the conditions (B1) and (B2) of [8, Proposition 4.3]
are satisfied by fa. Hence the local monodromy around A is trivial.

Next we consider the local monodromy pu; around Ey) that is not A. From now
on, we will assume that dim X = 2, and that ¢ is quasi-finite onto its image (see
Remark 2.3). We put

EG = f_l(G),
and let fg : Eg¢ — G be the restriction of f to Eg. Then we are exactly in the
situation of [8, §5]. Indeed, the restriction of the morphism ¢ : X — M to Eg
coincides with
Gg:GxX = M
in [8, §5]. (Note that we put B := G in [8, §5].) Recalling the definition of the
divisor Z of A x X, we see that E¢ is the complement in G x X to

Zg = (G xW)+g (D).

Therefore we can prove the triviality of the local monodromy pu; around ng) by
showing that the conditions (G1)-(G3) of [8, Proposition 5.1] are satisfied.

Recall, from [8, §5], that Y = 4(X). The condition (G1) is satisfied because
of our assumption. The condition (G2) follows from Corollary 8.2. The condition
(G3) follows from the following proposition, in which we use the assumption in
Sub-claim 6.2 that the transversality condition is satisfied. Recall, from [8, §5],

that Sing(y(Y) N D) is the locus consisting of all points y € (Y) N D such that
either (Y") is singular at y, or D is singular at y, or T,y(Y) + T, D # T, M.
Proposition 8.5. Suppose that the transversality condition is satisfied. Then the

locus {y € G | dim Sing(y(Y') N D) > 0} is contained in a Zariski closed subset of
codimension > 2 in G.

Proof. We assume that there exists an irreducible hypersurface = of G such that
dim Sing(£(Y) N D) > 0 for a general point £ € Z, and derive a contradiction.
Let @ C Y be the minimal Zariski closed subset such that the quasi-finite mor-

phism ¢ : X — Y is étale over Y \ Q. We put
Xo:=X\o"1(Q).

By Corollary 8.2, the locus {vy € G | dim(y(Q) N D) = 1} is of codimension > 2 in
G. Because £ is a general point of the hypersurface =, we have dim(£(Q) N D) =0
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or £(Q) N D = . Therefore the assumption dim Sing(£(Y) N D) > 1 would imply
that the locus
{zeXy | p:=%¢(x)eD and (d%¢).(T.X)C T,D}
should contain a curve. We consider the incident variety
Q:={(v,2,p) €EGxXoxD | "¢(x) =p and (d7$).(T.X) C T,D }.
Then the dimension of the fiber of the projection pry : @ — G over the general
point ¢ of = should be > 1. Thus prg'(Z) would contain an irreducible component
with dimension > dim G.
For i € I, we put
Let prp : 2 — D be the projection. Then we have
o= JJor 11 ™,
icl jeJ
where
Qs = prpt(DP*)  and Q" = pry'((Sing D);).
First we show that
(8.1) dimQ?® <dimG —1 forallie .
The fiber of the projection
Q' — Xox DI
over (z,p) € Xo x DI is the subvariety
(8.2) G( (), p; (d9).(T:X), T,D*)

of G. This fiber is of codimension > 1 in G(¢(x),p) for every (z,p) € Xg X
D7?, because the action of the stabilizer subgroup G, on T, M is an irreducible
representation. On the other hand, the condition TR1(7) implies that the fiber (8.2)
is of codimension > 2 in G(¢(x),p) for a general point (z,p) of X¢ x DI**. Thus
we obtain (8.1) by easy dimension counts. Next we show that

(8.3) dim(prg' () N Q") < dim G — 1
forall j € J. If p € Sing D, then T, D = T,,M. Therefore the fiber of the projection
leng — YO X (SlngD)J

over (z,p) € Xo x (Sing D); is G(é(z),p). Since G(¢(x),p) = G, is irreducible,
Q5" is also irreducible, and

dim Q5" = dim(Sing D); + dim G, + dim X < dimG,

where the equality holds if and only if dim(SingD); = dim M — 2; that is, j €
J®) . Therefore (8.3) holds for any j € J\ J®. Suppose that j € J®?). The
condition TR2(j) implies that there exist an element vy € G and a point p €
70$(X )N (Sing D); such that ¢(X o) and (Sing D); are smooth at p and intersect
transversely at p. Then the locus of all v € G such that 7¢(X )N (Sing D); # 0 is a
Zariski open subset of G containing 9. This implies that the projection Q‘;mg — G

—_

is dominant. Hence prg'(Z) N Q‘;mg must be of codimension > 1 in the irreducible
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variety Q‘;mg. Thus (8.3) is proved for all 7 € J. Combining (8.1) and (8.3), we see
that dimprg'(Z) < dim G — 1, which yields a contradiction. O

9. EXAMPLES

We consider the case when m = 4 and r = 2; that is, M = Grass(P!, P?). For a
point Q@ € P? and a plane H C P3, we put

Xg:={peM | Qell(p)} and Yw:={peM | I(p) C H }.

Let fo : Xg — M and gg : Yg — M be the inclusions, both of which induce
isomorphisms on the second homotopy groups. Let C' C P2 be a closed curve. We
put

Dei={peM | CNI(p) #0},
which is a hypersurface of M. We choose Q € P3 and H C P? in general positions
with respect to C, and consider the three fundamental groups

m(M\ Dc), m(fg'(M\Dc)), and m(gy' (M\ Dc)).

Note that f5'(M \ D¢) is isomorphic to P? \ po(C), where pg : C — P? is the
projection with the center Q. Note also that gi;' (M \ D¢) is isomorphic to

2\ | b,

zeHNC

where HY is the dual projective plane of H and I, C H" is the line corresponding
to a point x € H.

e Suppose that C consists of d lines passing through a point of P3 such that
no three of them are on a plane. Then we have

m(f5 (M \ D¢)) = Fy_y and  mi(gg" (M \ Dg)) = 28D,

where Fj_1 is the free group of rank d — 1. In this case, we can easily prove
that 71 (M \ D¢) is isomorphic to Z®@—1)

e Suppose that C' is a smooth curve of degree d on a plane in P3. Then we
have

mi(fg (M \ Dc)) 2 Z/dZ and mi(95' (M \ Dc)) = Fyi.
In this case, we can show that w1 (M \ D¢) = Z/dZ.
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