SINGULARITIES OF DUAL VARIETIES IN CHARACTERISTIC 3

ICHIRO SHIMADA

ABSTRACT. We investigate singularities of a general plane section of the dual
variety of a smooth projective variety, or more generally, the discriminant
variety associated with a linear system of divisors on a smooth projective
variety. We show that, in characteristic 3, singular points of Fg-type take the
place of ordinary cusps in characteristic 0.

1. INTRODUCTION

We work over an algebraically closed field k.

Let X be a smooth projective variety of dimension n > 0, and let £ be a line
bundle on X. We consider the m-dimensional linear system |M| of divisors on
X corresponding to a linear subspace M of H°(X, L) with dimension m + 1 > 1.
The discriminant variety of | M| is the locus of all points ¢ € P, (M) such that the
corresponding divisor D; € |M]| is singular ([2, Section 2]). When the linear system
|M| embeds X into a projective space P™, then the parameter space P.(M) of the
linear system |M]| is identified with the dual projective space (P™)Y of P™, and the
discriminant variety of |M]| is called the dual variety of X C P™.

Since the paper of Wallace [24], it has been noticed that the geometry of dual
varieties in positive characteristics is quite different from that in characteristic 0.
For example, the reflexivity property does not hold in general in positive charac-
teristics. See [17] and [8] for the definition and detailed accounts of the reflexivity.
Many papers have been written about this failure of the reflexivity property in
positive characteristics. For example, see [6, 7, 9, 12, 11, 13, 19].

However, if the linear system |M]| is sufficiently ample, then the peculiarity about
the reflexivity in positive characteristics vanishes except for the case when char k
is 2 and dim X is odd. Namely we have the following theorem ([14, Théoreme 2.5],
[8, Theorem (5.4)]):

Theorem 1.1. Suppose that chark # 2 or dim X is even. Let A be a very ample
line bundle of X, and let X be embedded in P™ by the complete linear system | A®?|
with d > 2. Then the dual variety of X C P™ is a hypersurface of (P™)V, and
X C P™ is reflexive.

In this paper, we show that the singularity of the dual variety has a peculiar
feature in characteristic 3 that does not vanish however ample the linear system
may be.

We assume that |M] is sufficiently ample. By cutting the dual variety by a
general plane in P,(M) = (P™)V, we obtain a singular plane curve. If chark > 3
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or char k = 0, the plane curve has only ordinary cusps as its unibranched singular
points. We show that, if char k = 3, the plane curve has Fg-singular points as its
unibranched singular points.

In fact, we prove our results in the more general setting of discriminant varieties
associated with (not necessarily very ample) linear systems. Here in Introduction,
however, we state our results in the case of dual varieties.

We assume that the base field k is of characteristic # 2. Let X C P™ be a
smooth projective variety of dimension n > 0. We assume that X is not contained
in any hyperplane of P, so that the dual projective space

P .= (P™)
of P™ is regarded as the parameter space P.(M) of the linear system |M| of hyper-
plane sections on X, where M is a linear subspace of H(X,Ox(1)). We use the
same letter to denote a point H € P and the corresponding hyperplane H C P™.

We denote by D C X x P the universal family of hyperplane sections. The support
of D is equal to the closed subset

{(p,H) e XxP | pe H}

of X x P. It is easy to see that D is smooth of dimension n +m — 1. Let C
be the critical locus of the second projection D — P with the canonical scheme
structure (Definition 2.15). Then C is smooth, irreducible and of dimension m — 1.
In fact, if N is the conormal sheaf of X C P™, then C is isomorphic to P*(N) ([14,
Remarque 3.1.5]). The support of C is equal to the set

{(p,H) € D | the divisor HN X of X is singular at p }.

The image of C by the projection to P is called the dual variety of X C P™, or the
discriminant variety of the linear system |M| on X.

We will study the singularity of the dual variety by investigating the critical
locus £ of the second projection C — P. The codimension of £ in C is < 1. If the
codimension is 0, then either the dual variety is not a hypersurface of P, or C is
inseparable over the dual variety. By [14, Proposition 3.3] or Proposition 3.14 of
this paper, the complement C \ £ is set-theoretically equal to

{ (p,H) € C | the Hessian of the singularity of H N X at p is non-degenerate }.

We equip the critical locus £ with the canonical scheme structure by Definition 2.15,
and put

EM:={(p,H) €& | & issmooth of dimension m — 2 at (p, H) },

which is a Zariski open (possibly empty) subset of £. Note that, if £™ is non-empty,
then & is of codimension 1 in C, and hence the dual variety is a hypersurface in P.
Moreover, if £5™ is non-empty, then the generalized Monge-Segre-Wallace criterion
([16, Theorem (4.4)] or [17, Theorem (4)]) implies that X C P™ is reflexive.

We put
E4 .= { (p,H) € £ | the singularity of H N X at p is of type Ay }.
See Definition 2.13 for the definition of the hypersurface singularity of type As.

We will show that & is irreducible and the loci £5™ and £42 are dense in & if
|M]| is sufficiently ample (Proposition 4.9).
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Let P = (p, H) be a closed point of £, and let A C P be a general plane passing
through H € P. We denote by Cy the pull-back of A by the projection C — P.
Our main goal is to investigate the singularity of the morphism Cy — A at P € Cjy.

Theorem 1.2. Suppose that chark > 3 or chark = 0. Then the following two
conditions are equivalent:
(i) P e &2,
(ii) P € &%™, and the projection & — P induces a surjective homomorphism
(Opu)" — (Ogp)"
on the completions of the local rings.

Moreover, if these conditions are satisfied, then Cy is smooth of dimension 1 at P,
and the morphism Cn — A has a critical point of As-type at P (Definition 2.1).

This result seems to be classically known. See Proposition 4.4 and Theorem 5.2 (1)
of this paper for the proof.

Now we assume that k is of characteristic 3. Then P € £42 does not necessarily
imply P € £™. Our main results are as follows.

(I) The projection £5™ — P factors as
gsm _q, (5sm)IC SUEN P,

where ¢ : £ — (€)X is the quotient morphism by an integrable subbundle
IC of the tangent vector bundle T'(£%™) of £™ with rank 1 (Definition 2.18). In
particular, ¢ is a purely inseparable finite morphism of degree 3.

(IT) Suppose that P = (p, H) is a point of £ N £42. Then the morphism
7: (%)X — P induces a surjective homomorphism

(Op.a)" = (Ogemyc qp))".

Moreover, the scheme C} is smooth of dimension 1 at P, and the morphism Cy — A
has a critical point of Eg-type at P (Definition 2.3).

In the case where (n,m) = (1,2), the locus £%™ is always empty. In this case,
we have the following result. Let X C P? be a smooth projective plane curve. The
first projection C — X is then an isomorphism with the inverse morphism given by
p— (p,Tp(X)), where T,(X) C P? is the tangent line to X at p. The projection
C — P = (P?)V is therefore identified with the Gauss map

v : X — P

that maps p € X to T,,(X) € P. The image of yx is the dual curve XV of X. A
point P = (p,T,,(X)) of C is a point of £ if and only if T,,(X) is a flex tangent line
to X at p, and P is a point of £42 if and only if 7},(X) is an ordinary flex tangent
line to X at p.

(III) Suppose that vx induces a separable morphism from X to XV. Then £
is of dimension 0. Let P = (p,T,(X)) be a point of £. Then the length of O¢ p is
divisible by 3. Suppose that p is an ordinary flex point of X. Then vx is formally
isomorphic at p to the morphism

T : t — (uv)= (3 ¢ 43112
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from Spec k[[t]] to Spec k[[u, v]], where | := length O¢ p/3. Hence the singular point
T,(X) of XV is formally isomorphic to the plane curve singularity defined by

J}SH_l 4 yS + l‘2ly2 =0.

Suppose that all flex points of X C IP? are ordinary. Let ¢; be the number of critical
points of Tj-type in the morphism vx. Then we have

(1.1) ity =d-2+2g,

where d is the degree of X C P? and g is the genus of X.

Remark 1.3. The critical point of T-type is a critical point of Fg-type.

Remark 1.4. By the Monge-Segre-Wallace criterion, the condition that X be sepa-
rable over XV by 7y is equivalent to the condition that the plane curve X C P? is
reflexive. See [7, 9, 11, 19] for the properties of non-reflexive curves.

Remark 1.5. If char k > 3 or char k = 0, and if the dual curve X" has only ordinary
nodes and ordinary cusps as its singularities, then the number of the ordinary cusps
is equal to 3(d — 2 + 2g).

The simplest example of the result (III) is as follows. Let E C P? be a smooth
cubic curve. We fix a flex point O € F, and regard F as an elliptic curve with the
origin O. Since char(k) # 2, the dual curve EV is of degree 6, and the Gauss map
~Eg induces a birational morphism from E to EV. The singular points of EV are
in one-to-one correspondence with the flex points of E via yg. On the other hand,
the flex points of £ are in one-to-one correspondence with the 3-torsion subgroup
E[3] of the elliptic curve E. We have

7/3Z x 7./]37 if char(k) # 3,
EB] = (7Z/3Z if char(k) = 3 and E is not supersingular,
0 if char(k) = 3 and F is supersingular.

Then the critical locus of v : E — P consists of

9 points of As-type if char(k) # 3,
3 points of Fg-type if char(k) =3 and E is not supersingular,
1 point of Ts-type if char(k) = 3 and E is supersingular.

The plan of this paper is as follows. In §2, we fix some notions and notation. In
83, we define the schemes D, C and £ in the setting of discriminant varieties, and
study their properties. The results in this section are valid in any characteristics
including the case where chark = 2. In §4, we assume that chark # 2, and
study the scheme £ more closely. Then we show that, in characteristic 3, the
projection from £%™ to P factors through the quotient morphism by an integrable
tangent vector bundle of rank 1 (Theorem 4.5). In §5, we prove a normal form
theorem (Theorem 5.2) on the critical points of the morphism Cy — A under the
assumption that chark # 2, and prove the result (II) above. In §6, we treat the
case where char k = 3 and (n,m) = (1,2), and prove the result (III) above, except
for the formula (1.1). In §7, we calculate the degree of £ with respect to Op(1),
count the number of the unibranched singular points on Cy, and prove (1.1).
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In the paper [22], we will study the singularity of discriminant varieties in char-
acteristic 2 in the case where dim X is even.

The author would like to thank Professor Hajime Kaji for many valuable com-
ments and suggestions.

Notation and Terminology.

(1) Throughout this paper, we work over an algebraically closed field k. A
variety is a reduced irreducible quasi-projective scheme over k. A point
means a closed point unless otherwise stated.

(2) Let X be a variety, and P a point of X. We denote by Tp(X) the Zariski
tangent space to X at P. When X is smooth, we denote by T'(X) the
tangent bundle of X.

(3) Let f : X — Y be a morphism from a smooth variety X to a smooth
variety Y, and let P be a point of X. Then f is said to be a closed
immersion formally at P if the differential homomorphism dp f : Tp(X) —
Typy(Y) of f at P is injective, or equivalently, the induced homomorphism
(Oy,s(p))" — (Ox,p)" from the formal completion (Oy,s(py)" of Oy, s(p)
to the formal completion (Ox, p)" of Ox p is surjective.

2. DEFINITIONS

2.1. Curve singularities. Let ¢ : C' — S be a morphism from a smooth curve C
to a smooth surface S. Let P be a point of C, t a formal parameter of (O¢,p)”", and
(u,v) a formal parameter system of (Og ,(p))". We have a local homomorphism

¢" 1 (Osp(p)" = kllu,v]] = (Oc.p)" = KI[t]].
Definition 2.1. We say that ¢ has a critical point of As-type at P if
©*u = at*+bt® + (terms of degree > 4) and
©*v = ct® 4 dt> + (terms of degree > 4)
with ad — bc # 0 hold.

Remark 2.2. If ¢ has a critical point of As-type at P, then it is possible to choose
t and (u,v) in such a way that

*u=t* and ¢*v =1t

The image of the germ (C, P) by ¢ is then defined by u® —v? = 0. This holds even
when char k is 2.

Definition 2.3. We say that ¢ has a critical point of Eg-type at P if

©*u at® +bt* 4 (terms of degree > 5) and
©*v = ct®+dt* + (terms of degree > 5)

with ad — be # 0 hold.

Remark 2.4. Suppose that ¢ has a critical point of Eg¢-type at P. If char k is not 2
nor 3, then, under suitable choice of ¢t and (u,v), we have

*u=1t> and ¢ v =1t
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and the image of the germ (C, P) is given by u* —v3 = 0. If char k = 3, then, under
suitable choice of ¢t and (u,v), we have either
(Cru=13 o=t or (Pu=t3+1t5 pv=t".
In the former case, the image of the germ (C, P) is given by u* — v3 = 0, while
in the latter case, the image is formally isomorphic to the germ of a plane curve
singularity defined by
4., .3 .22
oty +2y° =0.
In the notation of Artin [1] and Greuel-Kréning [4], they are denoted by E{ and
E}, respectively. See Remark 2.7 and Propositions 6.2 and 6.3.

From now until the end of this subsection, we assume that chark = 3. For
Fe (ng(p))/\, we denote by F; ) the coefficient of ¢ in the formal power series
@*F of t.

Definition 2.5. Let [ be a positive integer. We say that ¢ has a critical point of
T;-type at P if the following conditions are satisfied:

U, 7 0 = v >3l or 3y,

(2.1) V] 7 0 = v >3l or 3|y, and
(2.2) U[t,3]  U[t,31+1] 0 Ut,314+1]  U[t,31+2] ‘ £ 0.
V[t,3]  V[t,3141] ’ V[t,3141]  V[t,31+2]

Remark 2.6. Note that the conditions (2.1) and (2.2) do not depend on the choice
of the formal parameters ¢ and (u, v). Indeed, suppose that (u,v) satisfies (2.1). If

u = Zaijuivj and v = Zﬂijuivj
form another formal parameter system of (Og ,(py)”, then (u/,v") also satisfies (2.1),
and
“ft,g] “ft,31+1] “[t,31+2] _ { Q10 Qo1 ] [ Ult,3]  U[L,31+1]  U[t,31+2]
Vsl Vlaitr Vit B0 Bo1 V3] U3i+1]  V[t30+2]

holds. If s is another formal parameter of (O¢ p)” that relates to ¢ by

t= Z %‘Sia
then u[, .| and vy, satisfy (2.1), and we have

gt 0 0
[ Uls,3]  U[s,314+1] Uls,31+2] ] _ [ Ult,3]  Wt,31+1]  U[t,31+2] } 0 73[-&-1 0

Uls,3]  V0s,31+1] V[s,31+2] Ult,3]  Vt,31+1]  Y[t,31+2] 0 10 3142

71
Remark 2.7. The critical point of Ty-type is just the critical point of Ed-type.

Remark 2.8. In §6, we will show that, if ¢ has a critical point of Tj-type at P, then,
by choosing appropriate formal parameters ¢ and (u,v), we have

oru =131 and  ofo =5 4 3142,

and the image of the germ (C, P) by ¢ is formally isomorphic to the germ of a
plane curve singularity defined by

23 B g a2 — 0,
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2.2. Hypersurface singularities. Let X be a smooth variety of dimension n, and
let D C X be an effective divisor of X that is passing through a point P € X and
is singular at P. Let (x1,...,z,) be a formal parameter system of X at P, and let
f = 0 be the local defining equation of D at P. The symmetric bilinear form

Hf,p : TP(X) XTP(X) — k
defined by

o 0 92 f
Hyp (axam) = wi0m; D)

does not depend on the choice of the formal parameter system (x1,...,x,), and
does not depend on the choice of f except for multiplicative constants. We call
Hy p the Hessian of D at P.

Definition 2.9. We say that the singularity of D at P is non-degenerate if Hy p
is non-degenerate.

From now on to the end of this subsection, we assume that char k is not 2.

Definition 2.10. A formal parameter system (z1,...,2,) of X at P is called
admissible with respect to f if

f=a?+ -+ 22 + (terms of degree > 3)
holds in (Ox,p)" = k[[z1,...,x,]], where r is the rank of Hy p.

Remark 2.11. Since char k is not 2, any formal parameter system at P can be turned
into an admissible formal parameter system with respect to f by means of a linear
transformation of parameters.

Proposition 2.12. Suppose that the Hessian of D at P is of rank n—1. Then the
following two conditions are equivalent.

(i) There exist a local defining equation f =0 of D at P and a formal parameter
system (x1,...,x,) admissible with respect to f such that the coefficient of
o3 in f is non-zero.

(ii) For any local defining equation f = 0 of D at P and for every formal
parameter system (x1,...,x,) admissible with respect to f, the coefficient
of x2 in f is non-zero.

Proof. Let f = 0 and g = 0 be local defining equations of D at P. Suppose that
(x1,...,25) and (y1,...,Yyn) are formal parameter systems of X at P admissible
with respect to f and g, respectively. Let T be the n x n-matrix whose (i, 5)-
component is
Oy
an

Since the rank of the Hessian of D at P is n — 1, we have

(P).

where c is a non-zero constant. Therefore we have
yi
oz,

(2.3) (P)£0 < i=n.
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There exists a formal parameter series u(x1, ..., x,) with u(0,...,0) # 0 such that

f(xla"'axn) :U’(xlv"'axn)g(yl?"'ayn)

holds. Expanding u(x1,...,2,)g(Y1,- - ., Yn) in the formal power series of (z1, ..., 2,)
using (2.3), we see that the coefficient of 23 in f is equal to

w(0,...,0) (gi: (P))3

times the coefficient of y3 in g. O

Definition 2.13. We say that the singularity of D at P is of type As if the Hessian
of D at P is of rank n — 1, and the conditions (i) and (ii) in Proposition 2.12 above
are satisfied.

2.3. Degeneracy subschemes.

Definition 2.14. Let X be a variety, and let £ and F' be vector bundles on X
with rank e and f, respectively. We put r := min(e, f). For a homomorphism
o : E — F, we denote by D(0) the closed subscheme of X defined locally on X
by all r-minors of the f x e-matrix expressing o, and call D(c) the degeneracy
subscheme of o.

For P € X, let mp denote the maximal ideal of Op := Ox p, and let
op = U®OP/mP : E@Op/mp — F®Op/mp
be the linear homomorphism induced from o on the fibers over P. The support of
D(o) is equal to
{PeX | therankofopis <r}.

Definition 2.15. Let ¢ : X — Y be a morphism from a smooth variety X to a
smooth variety Y. The critical subscheme of ¢ is the degeneracy subscheme of the
homomorphism

do : T(X) — ¢"T(Y),
and is denoted by Cr(¢).

Suppose that dim X < dimY. Then a point P € X is in the support of Cr(¢)
if and only if ¢ fails to be a closed immersion formally at P. (See Notation and
Terminology (3).)

2.4. The quotient morphism by an integrable subbundle. In this subsection,
we assume that chark = p > 0. Let X be a smooth variety, and let N be a
subbundle of T'(X).

Definition 2.16. We say that N is integrable if N is closed under the pth power
operation D — DP and the bracket product

(D,D")— [D,D'] :== DD — D'D
of derivations.

Proposition 2.17 ([21] Théoreme 2). Let X be a smooth variety, and N an inte-
grable subbundle of T(X). Then there exists a unique morphism q : X — XN with
the following properties;

(i) q induces a homeomorphism on the underlying topological spaces,

(ii) q is a radical covering of height 1, and
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(iii) the kernel of dg : T(X) — ¢* T(XN) coincides with N
Moreover the variety XN s smooth, and q is a purely inseparable finite morphism
of degree p”, where r is the rank of N

Indeed, the scheme structure of XV is given on the topological space X*P un-

derlying X by putting
['(U,Ox~) :=T(U, 0x)" @M
for each affine Zariski open subset U of X*P, where I'(U, N) is considered as a mod-
ule of derivations on I'(U, Ox), and T'(U, Ox )"V N) is the sub-algebra of T'(U, Ox)
consisting of all the elements that are annihilated by every derivation in T'(U, N).
The inclusions
INU,O0x~) — T(U,0Ox)

together with the identity map on X yield the radical covering ¢ : X — XV,
See [21] for more detail.

Definition 2.18. Let X be a smooth variety, and A an integrable subbundle of
T(X). The morphism ¢ : X — XN is called the quotient morphism by N.

Remark 2.19. Let ¢ : X — XV be as in Definition 2.18. Suppose that A is of rank
r. Let P be a point of X. Then there exists a local parameter system (z1,...,z,)
of X at P such that

[ PO R B
is a local parameter system of X% at q(P). See [21, Proposition 6]. In particu-
lar, (Ox,p)" is a free module of rank p" over (Ox~, 4(py)”, and hence (Ox p)" is
faithfully flat over (Oxw 4p))"-

Remark 2.20. Let f: X — Y be a morphism from a smooth variety X to a smooth
variety Y. Suppose that the kernel K of the homomorphism df : T(X) — f*T(Y)
is a subbundle of T(X). (This assumption is always satisfied if we replace X
with a Zariski open dense subset of X.) Then K is integrable, and the morphism
f: X — Y factors canonically as

X 4L x*k - vy
where ¢ : X — XX is the quotient morphism by .

3. THE DISCRIMINANT VARIETY OF A LINEAR SYSTEM
We make no assumptions on the characteristic of the base field k in this section.

Let X be a projective variety of dimension n > 0. Let £ — X be a line bundle
on X, and M a linear subspace of H°(X, £) with dimension m + 1 > 2. We denote
by

P :=P.(M)
the projective space of one-dimensional linear subspaces of M, which is the param-
eter space of the linear system |M|. We put

X 1= X\ (Sing(X) U Bs(|M])),
where Sing(X) is the singular locus of X and Bs(|M|) is the base locus of the linear

system |M|. We denote by
v:X — pPY
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the morphism induced by the linear system |M|. Let
pri: X xP—=X and pry: X xP—P

be the projections. For a non-zero element f of M, we denote by [f] the point of
P corresponding to f, and by E[f] € |M]| the divisor of X defined by f = 0. We
then put

D[f] = D[f] N X.

In the vector bundle M ®; Op on P, there exists a tautological subbundle & —
M ®j Op of rank 1, which is isomorphic to Op(—1). Hence we have a canonical
section

of M ®; Op(1). On the other hand, the inclusion M — H°(X, £) induces a natural
homomorphism

(3.2) M®,O0x — L.
We put
L:=pr; L prs Op(1).
Composing the pull-backs of (3.1) and (3.2) to X x P, we obtain a section
(3.3) Oxxp — L.
Definition 3.1. We fix a non-zero element
o HY(X xP,L)

corresponding to (3.3), which is unique up to multiplicative constants. We denote
by D the subscheme of X x P defined by ¢ = 0, and by

pr:D—X and p;:D—P
the projections.
It is easy to see that the support of D coincides with the set
{(p,[f]) e X xP | pe Dy }.
Proposition 3.2. The scheme D is smooth.

Proof. Since the linear system |M| has no base points on X, the first projection
p1 : D — X is a smooth morphism with fibers being hyperplanes of P. Since X is
smooth, so is D. O

Definition 3.3. Let C denote the critical subscheme Cr(pz) of p2 : D — P.
Let U be a Zariski open subset of X xP. Assume that there exists a trivialization
T LU S Oxup|U

of the line bundle £ over U. Let © be a section of T(X x P) over U, which is
regarded as a derivation on T'(U, Ox «p). Since D is defined by o = 0, the element

T (O(() P € TUND,LeOp)

does not depend on the choice of the trivialization 7. Hence we denote it by (6c) | D.
It is obvious that, if two sections © and ©' of T'(X x P) over U are mapped to
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the same element in T(UND,T(X x P)® Op), then we have (0c) | D = (0'0) | D.
Therefore we have a natural homomorphism
do : T(X xP)®Op — L@ Op

of vector bundles on D defined by

O|D ~ (B0)|D.
We then denote by N

dox : piT(X) = L& Op
the restriction of do to the direct factor p3 T'(X) of
T(XxP)®@O0p =p; T(X) & p5T(P).

Proposition 3.4. (1) The critical subscheme C of pa : D — P coincides with the
degeneracy subscheme D(dox) of dox.

(2) A point (p,[f]) of D is contained in C if and only if the divisor Dy of X is
singular at p € X.

Construction 3.5. In order to prove Proposition 3.4, we introduce a formal pa-
rameter system of D at a point P = (p,[f]) € D. We choose a formal parameter
system (z1,...,2,) of X at p € X. Since the linear system |M| has no base points
on X, we can choose a global section § of £ such that 3(p) # 0. Then we can
choose a basis (b, ..., by) of M in such a way that

bO = f7 bm = ﬂ7
and that the functions

(bz:bl/ﬁ (i:O,...,m—l)

on X defined locally at p satisfy

¢o(p) == dm-1(p) = 0.

Let (y1,...,Ym) be the affine coordinate system of P such that a point (¢1,...,¢m)
corresponds to the one-dimensional linear subspace of M spanned by

b0+61b1+"'+cmbm e M.
Then [f] = [bo] € P is the origin (0,...,0).
We will regard ¢y, ..., ¢m—1 as formal power series of (z1,...,2,) so that we
will write ¢;(0) instead of ¢;(p), for example. We put
¢ = ¢O + yl(bl +- 4+ ym71¢m71 + Ym-
Then we have
(3.4) oc=c®B3 for some c € k>

in £ ®o, (Op)", where Op is the local ring Oxxp,p. Hence D is given by ® =0

locally at P. Since

0o
8@/7(0’0) =1,

we see that

(5777) = (617' <. 7fn7771»- . anm—l) = (pikxlw .. 7p>{znap;yla B ap;ym—l)

is a formal parameter system of D at P.
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Proof of Proposition 3.4. Let P = (p,[f]) be a point of D. We use the formal
parameter system (£,7n) of D at P and the affine coordinate system (y1,...,¥m) of
P with the origin [f] given in Construction 3.5. We write the pull-back p5y., of ym
to D as a formal power series of (§,7):

pzym = gm(§7 77) in (OD,P)A = k[[gv "7“

Then the Jacobian matrix of ps : D — P is as follows:

0 Im—l

9gm Ogm .
L 851 o agn _
because piy; =n; for i = 1,...,m — 1 and p3y, = gm(&,n). Hence the degenerate
subscheme C of ps : D — P is defined locally at P by the ideal

agm agm A
(%, ) c (Op) = Kl

On the other hand, by (3.4), the degeneracy subscheme of dox : p} T(X) — L&Op
is defined locally at P by the ideal

0P 0P
(3-6) < 87:“ D PIRIEIEIEY E
By the definition of g,,, we have

(b(fh ce 75717771’ s 777m—17gm(€777)) =0.
Applying 9/0¢; to this identity, we obtain
0P 0P Ogm,
+ — CGIm g,
8xi D 8ym D 85,
Because 0® /0y, = 1, the ideals (3.5) and (3.6) coincide in (Op, p)”. Therefore the
assertion (1) is proved. Because
0P 0o
0,0) = 0
8:@ ( ’ ) aﬂfz ( ),

the origin P € D is contained in the subscheme C of D defined by the ideal (3.6) if
and only if we have

(3.5)

D> C (Op.p)".

0¢o o
92, ) oz, V)
that is, the divisor Djs = {¢o = 0} is singular at p. Thus the assertion (2) is also
proved. O
Corollary 3.6. The subscheme C of X x P is defined by
o= 0% _  _ 9% _
o0x1 oxy,

locally at a point P = (p, [f]) of D, where ® is the function on X x P defined locally
at P given in Construction 3.5.

Note that the expected dimension of C is m — 1.
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Proposition 3.7. The subscheme C is smooth of dimension m — 1 at a point
P = (p,[f]) of C if one of the following holds;

(i) the singularity of Dy at p is non-degenerate, or

(ii) the morphism ¥ : X — PV induced by the linear system |M| is a closed
immersion formally at p.

Proof. We use the formal parameter system (z1,...,2Zn,41,...,Ym) of X x P at
P given in Construction 3.5. By Corollary 3.6, the subscheme C is smooth of
dimension m — 1 at the origin P if and only if the (n +m) X (n + 1)-matrix

[ O¢o
S 0) 2
: 9 o
O0x;0x; 0) Gig=1,.m) "
dgo
7z, V)
J =
0
D
0 i=1,...,m—
axj( ) (j :11 7777777 n 1) m
0
i 1 0 0 |
is of rank n 4+ 1. Here we have used the following equalities:
0,0) = 0 —(0,0) =
8;161»(’ ) 8%()7 ayj(’ ) {1 if j =m,
and
o (00 826 o (0d 09; 0) ifj<m
(50 ) 0.00= 220, (52) 0.0 =4 o |
axj 8@- 8.%]6])1 6yj 6%‘1 0 lfj = m.

Suppose that the condition (i) holds. Then the Hessian matrix

9 ¢o

(7pt0)

;0%
of Diy at p is non-degenerate, and hence the matrix J is of rank n + 1. Suppose
that the condition (ii) holds. Then there exist n divisors Dy,..., D, € |M| that
pass through p, are smooth at p, and intersect transversely at p. The local defining
equations of these D; at P are linear combinations of ¢1,..., ¢,,—1, because the
divisor D) = {¢o = 0} is singular at p and the divisor corresponding to b,, does
not pass through p. Hence the (m — 1) X n-matrix

(50

is of rank n, and thus J is of rank n + 1.

=1,...m—1, 7=1,...,

O

Assumption 3.8. From now on until the end of the paper, we assume that m > n,
and that the locus

X°:={pe€ X | the morphism ¥ : X — PV is a closed immersion formally at p }



14 ICHIRO SHIMADA

is dense in X.

Note that if X is smooth and the linear system |M| is very ample, then X°
coincides with X.

Definition 3.9. We put
C°:=CN(X°xP),
and denote by
m:C°—>X° and m:C°— P
the projections.

Proposition 3.10. The scheme C° is a smooth irreducible closed subscheme of
X° x P with dimenston m — 1.

Proof. The fact that C° is smooth of dimension m — 1 follows from Proposition 3.7
and the definition of X°. We will prove the irreducibility of C°. For each point
p € X°, there exists a unique n-dimensional linear subspace L, C PV passing
through ¥(p) such that the image of the injective homomorphism d,¥ : T,(X°) —
Ty (p)(PY) coincides with Ty, (Lp) C Ty (PY). The fiber of 7 : C° — X° over
p coincides with the linear subspace

{HeP | L,CH}
of P. Hence C° is irreducible. O

Remark 3.11. The above proof of Proposition 3.10 shows that, if m = n + 1, then
m : C° — X° is an isomorphism with the inverse morphism given by p — (p, Ly).
In this case, the morphism 79 : C° — P is identified with the Gauss map X° — P
of the morphism ¥ : X° — PV.

Definition 3.12. Let £ denote the critical subscheme Cr(mg) of 73 : C° — P.

Definition 3.13. We will construct the universal Hessian
H:mT(X°) Qo m T(X°) — L ® Oco

on C°. Let U be a Zariski open subset of X°. Making U smaller if necessary, we may
assume that there exist regular functions (uq,...,u,) on U that form a coordinate
system on U, and that there exists a trivialization £|U = Oy of £ over U. Let V
be a Zariski open subset of P over which the line bundle Op (1) is trivialized. Let
@y« denote the regular function on U x V' obtained from the fixed global section
o of £ via a trivialization 7 : £ | (U x V) 2 Op . We define H on C°N (U x V) by

aui an 8u18uj

It is easy to see that this definition does not depend on the choice of the coordinate
system (u1,...,u,) on U and the trivializations of the line bundles, because the
functions ®yxy and 0Py xy /duy, ..., OPyxy/Ou, are constantly equal to zero
on C° N (U x V) by Corollary 3.6. Therefore we can define H globally on C°. We
denote by

H: 7f T(X°) — Lo T(X°)Y

the homomorphism induced from H.
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The following proposition is a scheme-theoretic refinement of [14, Proposition
3.3]. See also the Hessian criterion of Hefez and Kleiman ([17, Theorem (12)], [8,
Theorem 3.2]).

Proposition 3.14. The critical subscheme € of my : C° — P coincides with the
degeneracy subscheme D(H™) of H".

Construction 3.15. In order to prove Proposition 3.14, we introduce a formal
parameter system of C° at a point P = (p,[f]) € C°. We use the same notation

as in Construction 3.5. Since p € X°, we can assume that the vectors by,..., b,
among the basis by, ..., b, of M define divisors that pass through p, are smooth
at p, and intersect transversely at p. Then we can take (¢1,...,¢,) as the formal
parameter system (z1,...,2,) of X° at p; that is, we have

¢1 =T1y -y (bn:wna

and hence we have

® = ¢0 + T+ YTy + yn+1¢n+1 + -0+ ym—1¢m—1 + Ym-
By a further linear transformation of the basis by, ..., b,,, we can also assume that

a¢i(0):0 for i=n+1,....m—1 and j=1,...,n
81‘]‘

hold; that is, the functions ¢,41,...,¢m—1 have no linear terms as formal power
series of x1,...,x,. By Corollary 3.6, the local defining equations of C° in X° x P
at P = (p,[f]) are as follows.

o + Y121 + 0+ YnTn +yn+1¢n+1 + o Ym—1Pm—1 +Ym =0,

0o Obni1 Obm—1
N _ = O
o, + U1 + Ynt1 o1y + + Ym—1 911 R
8¢0 8an—i-l a(bm—l
haaY B —0.
oz, + Yn + Yn+1 i + + Ym—1 9z
We see that
(U, 0) = (U1, + e vy Unyy Untdy - o 5 Ome1) 2= (M1 X1, o ooy T Ty T Yty -+ s ToYm—1)

is a formal parameter system of C° at P = (p, [f]).

Proof of Proposition 3.14. Let P = (p,[f]) be a point of C°. We use the formal
parameter system (u,v) of C° at P and the affine coordinate system (y1,...,%m)
of P with the origin [f] given in Construction 3.15. We put

V)= Ty (G=1,...,m).
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Since v; = v; for j =n+1,...,m
form

A, (4,j=1,...,n)

— 1, the Jacobian matrix of mo

Im—n—l

OV
L Ou 1

0Ym
ouy,

ES

:C° — P is of the

Hence the defining ideal of the critical subscheme & of 7y at P is generated by all

n-minors of the (n 4+ 1) X n matrix

[ on on ]
ouq ouy,
ay . .
| om
an ouq ou,,
o Ym Y
L aul 6‘un ]
Since @ |C° = 0, we have
(37) 950 +y1u1 + - YaUn + 'Un—&-lqgn—&-l 4
where
bi = di(Ut, ... Up) = T O
Applying 9/0u; to (3.7), we obtain
0 y "~ 0y Om
(3.8) ¢°+ +Z wt Y v, ¢“ i
p=n-+1
Since (0®/dz;)|C° =0 fori=1,...,n, we have
- S -
8¢0 a¢u _

because (9¢p;/dx;)|C = dbj/du;.

obtain
Om _
Oou; Z

Thus we have

8u1

=0.

+ 'Um—la)m—l +Ym =0,

Combining the identities (3.8) and (3.9), we

5%
8u1
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Therefore the defining ideal of £ at P is generated by

a;
det A := det

n (Oco p)". On the other hand, we have

92D 9%y "’i 029,

(310) 81‘18117]‘ Ce - 8u18uj 17)H 8’&18’&3

Applying 9/0u; to (3.9), we obtain

Pbo | 0w N~ 0%
11 —r =
(3.11) Ou;0u (“)uj + Z Y Ou;0u 0-

=n-+

Combining (3.10) and (3.11), we obtain

82(1) 6")@
12 =— .

(3 ) 8mi8mj Ce an
We denote by

S1

G| . | _( 00
T : - 8:52830] Ce
Sn

the n x n matrix representing the universal Hessian H locally at P. From (3.12),
we obtain

S, = —ay; (ZZI,,’II)
Hence det A and det S generate the same ideal in (Oco, p)”". Therefore £ coincides
with D(H") locally at P. O

Corollary 3.16 ([14] Proposition 3.3). The morphism ma : C° — P is a closed
immersion formally at a point (p,[f]) € C° if and only if the singularity of the
divisor Dy of X° at p € X° is non-degenerate.

Corollary 3.17. The subscheme £ of X° x P is defined by
0P 0P 0%®
coo = — = det =0
31‘1 8$n ¢ (89518%)

locally at a point P = (p,[f]) of C°, where ® is the function on X° x P defined
locally at P given in Construction 3.15.

Remark 3.18. By Corollaries 3.6 and 3.17, the scheme & is of codimension < 1 in
C°. It was observed by Wallace [24] that, in positive characteristics, £ and C° may
coincide. For example, let X be the Fermat hypersurface

X xt X =0

of degree ¢ + 1 in P"*!, where ¢ = [” is a power of the characteristic [ > 0 of k,
and let M be the complete linear system |O«(1)|. Then, at every point p of X,
the divisor Tp()?) NX of X has a degenerate singular point at p, and hence £ = C°
holds. In this case, the morphism C° — P is purely inseparable of degree ¢™ onto
its image. See [14, Example 3.4] or [23] for the details.
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4. THE SCHEME &
In this section, we assume that char k is not 2.

Construction 4.1. Let P = (p,[f]) be a point of £, and let r be the rank of
the Hessian of Dy at p. By Corollary 3.16, we have r» < n. We choose a formal
parameter system (21, ..., Zn, Y1, - ., Ym) of X°xP at P given in Construction 3.15.
Since char k # 2, we can assume that the functions

(bl :x17 crt ¢n:xn
form an admissible formal parameter system with respect to ¢y at p € X° by a
linear transformation of the basis by, ..., by, of M. (See Remark 2.11). Thus we

have
¢o = 23 + -+ 22 + (terms of degree > 3) in (Oxo )" = k[[z1,...,2,]]
Definition 4.2. Let
w1 :€—X° and wy:E — P
be the projections. We put
EM:={Pef | &£ issmooth of dimension m — 2 at P },
which is a Zariski open subset of £, and let
wit &M - X° and wi" &M P
be the restrictions of w; and ws to £5™. Note that, if £ is non-empty, then the

image of the projection 7y : C° — P is a hypersurface.
We also put

&4 == {(p,[f]) € € | the singularity of the divisor Dy at p is of type As }.

In the following, Proposition 4.3 concerns with both the cases of characteristic 3
and characteristic # 3, Proposition 4.4 treats the case where chark # 3, and
Theorem 4.5 is a result in characteristic 3.

Proposition 4.3. If P = (p,[f]) is a point of E™, then the rank of the Hessian
Hg, p of the divisor Diy) at p isn — 1.

Conversely, let P = (p, [f]) be a point of £, and suppose that the rank of Hg, p
isn—1. Let (x1,...,Zn,Y1,.-.,Ym) be the formal parameter system of X° x P at
P given in Construction 4.1. Let a; (i = 1,...,n) be the coefficient of ;2 in ¢y,
and let b; (j =n+1,...,m—1) be the coefficient of 22 in ¢;. Then P € ES™ holds
if and only if at least one of

ag,y...,0n-1, 3ana bn-‘rla R bm—l
18 not zero.

Proposition 4.4. Suppose that char k # 3. Then we have
42 = £\ Cr(dwi™).
Theorem 4.5. Suppose that chark = 3. We denote by K the kernel of the homo-
morphism
dws™ : T(E) — wy™ T (P).
Then K is an integrable subbundle of T(E™) with rank 1. Let
gsm _1, (gsm))C . P
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be the canonical factorization of wi™, where q is the quotient morphism by IC. Then
we have

g2 nE™) c (&K Cr(r).

Proof of Propositions 4.3, 4.4 and Theorem 4.5. Let P = (p,[f]) be a point of &,
and let r be the rank of the Hessian Hy, , of Dy at p. We use the formal parameter

system (21,...,Zn,Y1,.-.,Ym) of X° x P at P given in Construction 4.1. For a for-
mal power series F of (z1,...,Tn,Y1,---,Ym), we denote by FUI the homogeneous
part of degree 1 of F. Then we have
(I)[l] = Ym,
od\ M .
<8mi) = 2z;+y; (i=1,...,7),
o\ M
<§xz> = (i=r+1,...,n),
and
920 1] 0 " ifr<n-1,
det = o2\
0 ifr<mn-—1,

2(a1x1 + -+ ap—1Tp—1 + 3apTpt+ .
+bn+1yn+l +"'+bm71ym71) ifr=mn-1
By Corollary 3.17, the Zariski tangent space Tp(€) to £ at P is identified with the
linear space defined by these n + 2 linear forms in the (n + m)-dimensional linear
space with coordinates (x1,...,2Zn,y1,.-.,Ym). Hence Proposition 4.3 is proved.
If chark # 3 and P € £42, then P € £ because 3a, # 0. Suppose that
P € &™. The kernel of the linear homomorphism

dpw;m : Tp((‘:sm) — T[f](P)

is identified with the intersection of the linear space defined by the n + 2 linear
forms above and the linear space defined by

Y=o =y =0,

Hence Ker(dpws™) is of dimension 0 if and only if 3a,, # 0. Thus Proposition 4.4
is proved.

We now assume that chark = 3. Suppose that P = (p, [f]) € €. The kernel
of the linear homomorphism dpw5™ is of dimension 1 and is generated by

(;ﬂn)lj e Tp(&E™).

Since this holds at every point P of £5™, we see that the sub-sheaf K = Ker(dwi™)
of T(£%™) is a subbundle of rank 1. The integrability of X follows trivially from the
definition. From now on, we further assume that P € £42; that is, a,, # 0. The
fiber

Z = (@3™) " ([f])
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of w§™ passing through P is defined by
_O0¢g  Odo Pdo \
Po = o1 Oz, det 0x;0x; =0

in X° x {[f]} = X° locally at P. We will calculate dimj Oz p. Since wj™ factors
through the radical covering q : £5™ — (£5™)X of degree 3, we have

dimk OZ,P Z 3.

We put
&=z Z (i=1,...,n—1) and t:=z,|Z.

Using the identity 0¢g/0x1 = -+ = 9¢g/dxn—1 = 0 on Z and Lemma 4.6 below,
we can write §; in formal power series of ¢ as follows:

& = a;t® + (terms of degree >3) (i=1,...,n—1).

Making substitutions z; = &; for ¢ = 1,...,n — 1 and z,, = t in ¢y, we obtain a
formal power series

b0 | Z = ant® + (terms of degree > 4).
Since a,, # 0, we obtain dimy Oz p < 3. Therefore dimy Oz p = 3 holds. We put

A = (Ogsm,P)/\7 B = (O(gsm)K’q(P))/\, C = (Op’[f])/\,

and let m4, mp, mg be their maximal ideals, respectively. From dim; Oz p = 3
and Remark 2.19, we have

dlmk(A/ch) =3= dlmk(A/mBA)
Since mg B C mp, we obtain

mBA = mCA.

Since A is faithfully flat over B, we obtain mp = m¢ B, which implies that C' — B
is surjective. Hence 7 is a closed immersion formally at ¢(P). Thus Theorem 4.5 is

proved. (|
Lemma 4.6. Let Fy(u,t), ..., Fn(u,t) be formal power series of variables (u,t) =
(u1,...,un,t) such that F1(0,0) =--- = Fn(0,0) = 0 and det J # 0, where

OF; OF,

—(0,0) ... ——(0,0

8u1( ’ ) 8uN( ’ )

J=| o r

6FN aFN

—(0,0) ... ——(0,0

o0, (0,0) auN( ,0)
We put

w = min{ ord;—o(F;(0,t)) | i=1,...,N },
and let «; be the coefficient of t* in F;(0,t). We put
B aq
. — -1
Bn aN
Then we can solve the equation

Fi(u,t)=---=Fn(u,t) =0



DUAL VARIETIES IN CHARACTERISTIC 3 21

with indeterminates uy, ..., uy in k[[t]] as follows:
u; = Bit! + (terms of degree > p) (i=1,...,N).
Proof. Obvious. O

The following Corollary of Proposition 4.3 plays a crucial role in the proof of
Theorem 5.2.

Corollary 4.7. Suppose that chark = 3. If P € £5™, then at least one of
Aty ..., a/nflabn+17 cee bmfl
is not zero. In particular, if (n,m) = (1,2), then 5™ = ().

Remark 4.8. Suppose that the Hessian Hy, , of Dy at p is of rank n — 1. Then

the condition that at least one of aq,...,a,_1,3a, be non-zero is independent of
the choice of the admissible formal parameter system (z1,...,z,) of X at p with
respect to ¢g. The condition that at least one of b,41,...,b,-1 be non-zero is

equivalent to the condition that there exists a divisor D € P passing through p and
having a non-degenerate singular point at p.

Next we will give a sufficient condition for £42 and £5™ to be dense in &.

Proposition 4.9. Forp € X°, let m;, C O, denote the mazimal ideal of the local
ring Op := Oxo p, and let L, denote the Op-module L ® O,. Suppose that the
evaluation homomorphism

vp : M — Lp/miL, = Op/m}

is surjective at every point p of X°. Then & is irreducible, and 42 and £™ are
dense in £.

Proof. The space mg /mg is regarded as the space of symmetric bilinear forms on
the Zariski tangent space T),(X°) = (m),/m2)". The determinant of the symmetric
matrix cuts out the irreducible subscheme D of degenerate symmetric bilinear forms
in m?/m?3. By Proposition 3.14, there exists a closed variety DcC m2/m) C Op/mj,
which is a cone over D C m?/m? in the subspace m?/m3 of O, /m3 and is invariant
under the multiplications by elements of k™, such that

@y (p) = Pulv, (D))

By the definition of hypersurface singularities of type As, and by Proposition 4.3,
there exist Zariski open dense subsets D“2 and D™ of D, which are invariant under
the multiplications by elements of k™, such that

@' (p)NEM =Pu(v,'(D*) and @i (p) N E™ = Pu(v, ! (D™)).

Therefore, if v, is surjective at every point p € X°, then £ is irreducible, and A2
and £ are dense in &. d

Corollary 4.10. Let A be a very ample line bundle on a smooth projective variety
X. If£L =A% and M = H°(X, L), then & is irreducible, and £42 and E™ are
dense in E.
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5. A GENERAL PLANE SECTION OF THE DISCRIMINANT HYPERSURFACE
In this section, we still assume that char k is not 2.

Definition 5.1. Let P = (p,[f]) be a point of £, and let A C P be a general
plane passing through the point m3(P) = [f] of P. We denote by

ma s Cp — A
the restriction of m5 : C° — P to
Cp =7y (A) C C°.

Note that, if £5™ is not empty, then the image of s : C° — P is a hypersurface,
and hence m2(C°) N A is a projective plane curve.

Theorem 5.2. Let P = (p,[f]) be a point of £™ N EA2, and let A be a general
plane in P passing through [f]. Then C is smooth of dimension 1 at P € Cy.

(1) Suppose that chark # 3. Then the morphism wp : Cn — A has a critical
point of As-type at P.

(2) Suppose that chark = 3. Then the morphism wy : Cx — A has a critical
point of Eg-type at P.

Proof. We use the formal parameter system

(z,y) = (T1,- -, Tn, Y1, -+, Ym)

of X° x P at P = (p,[f]) € £™ given in Construction 4.1. Since A C P is a general
plane passing through the origin [f], we can take

u:=y,|A and v:i=y,|A

as affine coordinates of A with the origin [f]. The linear embedding A — P is given
by

(5.1) Yn = U, Ym = U, yi = ayu+ Giv (i #n,m),

where «; and 3; (i # n,m) are general elements of k. For a formal power series
F = F(z,y) of (z,y), we denote by Fy the formal power series of

(SC,U,’U) = (Ila s ,In,u,’U)
obtained by making the substitutions (5.1) in F. In other words, we put
Fa(z,u,v) := F|(X° x A).

For simplicity, we put

02
v (“)xz '
Then C, is defined in X° x A by the equations
¢Az¢l,/\:"':@n,/\:0
locally at P. The linear parts @R], <I>[117]A7 ey (I)E}A of these formal power series are
given as follows:
@%] = v,
@Elj\ = 2x; + ayu + Giv (i <n),

s

‘I)E]A = u.

)
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Therefore C is smooth of dimension 1 at P, and the variable
t:=x,|Cx

is a formal parameter of Cy at P. Hence we can write the functions u|Cy, v|Cx
and z; |Cx (i <n) on Cy as formal power series of ¢ with no constant terms:

ulCy = Ut) = X)L, 0.1,
v|Cy = V(@) = S VY,
Z; |CA = Xz(t) = Ziozl Xi7,, 7l (’L < n)

In order to prove the assertions (1) and (2), it is enough to calculate the coefficients
U, and V, up to v = 3 and up to v = 4, respectively.

The coefficients are calculated by the following algorithm. Let (S) be a set of
substitutions of the form

u = Pu(t),
() v = Pyt),

where P,, P, and P,, are polynomials in ¢ with coefficients in k¥ and without
constant terms. For a formal power series F' of (z,y), we denote by s(F,S) the
formal power series of ¢ obtained from Fj = F(z,u,v) by making the substitutions
(S) and z, =t:

S$(F,8) := FA(Puy (t), ..., Py, _,(t),t, Pu(t), Py(t)).
We also denote by ¢(F, S,1) the coefficient of ¢! in s(F,S).

The (I + 1)-st step of the algorithm. Suppose that we have calculated the
coefficients U,,, V,, and X; , for v < [ in such a way that, by making the substitutions

v = Py =x'_ U,
S v = Ply=x,_ vt
e, = Pl =" X, t*  (i<n)
and z, =t to the formal power series @5, Py a,..., Py 4 defining Cp in X° x A,
we obtain
C((I), Sl, )\) = C((I)l, Sl, )\) == C(CI)n, Sl, )\) =0
for A <. We then put
uw = PU (t) + Upyp t111,
(S+1) v = PIE) + Vi ¢4,
xr; = ngl] + Xii+1 il (i < n),

and solve the equations
C(@,Sl_i_l,l -+ 1) = C((pl,SH_l,l -+ 1) == C(q)n,SH_l,l -+ 1) =0
with indeterminates being the new coefficients Uj11, Vi41 and X; 41 (i < n).

A monomial M of x = (z1,...,x,) is said to be of degree [A, u] if M is of degree
Ain (z1,...,2,-1) and of degree u in x,. For a formal power series F' of x, we
denote by FM# the homogeneous part of degree [\, u]. Let M be a monomial of
(z,y), or of (x,u,v). We say that M is of degree [\, u,v] if M is of degree [\, u] in
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x, and is of degree v in y = (y1,...,Ym) or in (u, v), respectively. Let F' be a formal
power series of (z,y), or of (z,u,v). We denote by Forr] the homogeneous part
of F with degree [A, i, v]. Since the embedding A < P is linear, we obviously have

(FRorrly = (Fy)Pomv]

for a formal power series F' of (z,y). If the substitutions

u = P,(t),
(S)Ys v = PRt),
x;, = Pp,(t) (1 <mn)

satisfy
ordi—g P,(t) > A, ordi—g P,(t) > A, and ordieg Py, (t) > B (i <n),

then we have
(RS )= > c(FR S,

BApu+Av<i
Recall that
d = ¢0 + Y11 R Yndn + yn+1¢n+1 + -+ ym—l¢7n—1 + Ym,

where ¢g, dni1,-..,Pm—1 are formal power series of © = (21,...,2,) such that
90" =oni = =i =0,
g = ol = ¢°” 90" = onit = = o =0,
T N
Recall also that ai,...,an,bn41,...,bn_1 are defined in Proposition 4.3 by

1,2 0,3 ;
o = (@z + -+ agi@an)e?, ¢y = agad,

and
¢£02]—bx (J=n+1,...,m—1).

By the assumption P € £42, we have

an # 0.
We define eq,...,e, and f1,..., f, by
[1 3 _ =(e1x1 -+ ep12n )T, [00’4] = ez,
[14 :(f1$1+"'+fn—13?n—1)$i7 05] = foy.
We also define homogeneous polynomials A;(z1,...,z,-1) (i <n) of degree 1 and

B(x1,...,x,-1) of degree 2 by
2,1] 2,1
1oyt oo

Ai = , = .
T, Ox; ox,
Then we obtain Table 5.1.
Step 1. We put
u = U1 t,
(Sl) v = Vi t7

xr; = Xth (’L<7’L)
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(A, p, v F=9 F=®; (i<n) F=9,
0,0, 0] 0 0 0

[0,0,1] Ym Yi Yn

[0,1,0] 0 0 0

[0,1,1] YnTn — 2 (Z;ﬂ;nlﬂ bjyj) T,
[0,2,0] 0 a;z2 3a,x?
[0,3,0] anr? e den3
[0,4,0] enth fixd 5 fowik
[1,0,0] 0 2x; 0

[1,1,0] 0 Aoy oy T 1) Ty | 2 (Z;le aixi> T,
1,2, 0] (z;;‘f a,-xZ) 2 — 0if chark = 3
[2,0,0] S ta? — B(0, -, n—1)
ifr>1 0 0 0

TABLE 5.1. FM#Y for F = ®, ®; (i < n) and @,

Then we have

C(F, Sl, ].) =

> e(FP S T)

Atp+r<1

for any formal power series F' of (z,y). Therefore we obtain equations

Vi =

Hence we get

Step 2. We put

Then we have

Therefore we obtain equations

Hence we get

Us

0, 2Xi1+oU +58V1 =0 (i <n),
U1=V1:Xi71=0 (Z<TL)
u = U2 t2,
(S2)8 v = Vat?
xr; = XZ‘,Q 2 (l < ’/L)
o(F,S5,2)= > o(FP8)2).
22+ p+2v<2
Vo =0,
a;Us + B;Vo + a; + 2X¢72 =0 (Z < n),
Us +3a, =0.
-3 Qp, V2 = 07 Xi72 = (3anai — ai)/2

U, =0.

(1 < n).

25
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Step 3. We put

u = U; 2+ Us t3,
(Sg) (% = V3 ts,
xr; = Xi,g 2 + Xi73 13 (Z < n)

Then we have
o(F,S5,3)= Y c(FP Sy3).
22+p+2v<3

Putting F' = ® in this formula, we obtain an equation
Vs +Us +a, =0.

Hence we get

V3 = 2an.
Therefore we have
uw|Cy = —3ant> + (terms of degree > 3),
v|Cp = 2a,t® + (terms of degree > 4).

Thus the assertion (1) in char k # 3 is proved.
From now on, we assume char k = 3. Then we have
Uy =3a, =0, Xi’gzai (i<n),

and the substitutions (S3) become as follows:

u = U3 t3,
(Sg) v = V3 t3,
T, = X»L',Q 2 + Xi73 t3 (Z < n)
Therefore we have
o(F,S5,3)= Y  c(F* 5y3).

22 +p+3v<3

Hence we get equations

Vs +a, =0,

a;Us+ [iVa+ei+2X;3+A;(X12,...,Xn-12) =0
n—1

U3+en+2(ZaiX@2) =0.
i=1

Thus we obtain

n—1
U3:2en+Za?, Vs =2a,,
i=1
and
n—1
Xiz=o;Us+ BiVs + 5 = a;(2e, + Z a?) + 2 Bian + =
i—1

(i <n),

(i <n),

where Z1,...,5,_1 do not depend on the parameters o nor §; (j # n,m).
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Step 4. We put

u = U; 3+ Uy t4,
(S v = Vt? + Vit
xr; = XLQ 2 + Xi,S 3+ Xi74 tt (’L < TL)

We have
o(F.Sa4)= > c(FP 5,4,
2X+p+3v<4
Putting ' = ® and F = ®,, into this formula, we obtain equations
n—1 n—1
Vi+Us + e, + Z a; X0+ Z)@ =0, and

i=1 i=1

m—1 n—1
Uy +2 Z bj(ajUg + ﬁng) + 2fn +2 Z aiXi73 + B(Xl,g, - 7X1'L—1,2) =0.
j=n+1 i=1

From the first equation, we obtain
n—1
V4:—U3—en—22a?20.
i=1

Since V3 = 2a,, # 0, the critical point P of 7wy is of Fg-type if and only if Uy # 0.
From the second equation, we obtain

n—1 m—1 n—1 m—1
U4:U3(Zaiozi+ Z bjOéj)+V?,<Zaiﬂi+ Z bj/Bj)+T7
i=1 j=n+1 i=1 j=n+1
where T does not depend on the parameters «; nor 3; (j # n,m). From Corol-
lary 4.7 and the assumption P € £, at least one of a1,...,an—1, bpt1,...,bm—1
is not zero. Since V3 = 2a,, # 0, by choosing 51, ..., Bn—1,08n+1s---,Om—1 general
enough, we have Uy # 0. g

6. THE DUAL CURVE OF A PLANE CURVE IN CHARACTERISTIC 3
Throughout this section, we suppose that chark = 3 and (n,m) = (1,2).

Recall that, in the case (n,m) = (1,2), the projection m; : C° — X° is an
isomorphism, and 7o : C° — P is identified with the Gauss map (Remark 3.11).

Theorem 6.1. (1) The critical subscheme £ of wy : C° — P is of dimension 0 if
and only if mo is separable onto its image.

(2) Suppose that T is separable onto its image. Then, at every point P of £, the
length of Og p is a multiple of 3. Let P = (p,[f]) be a point of £42. Then w2 has
a critical point of Tj-type at P, where | := length O¢ p/3.

Proof. If w5 is inseparable onto its image, then the generic point of C° is contained
in £, and hence dim€ = dimC°® = 1. Conversely, suppose that s is separable
onto its image. Let P = (p,[f]) be a point of £. We use the formal parameters
(z1,y1,y2) of X° x P given in Construction 4.1. We put

oo oo o
_ 3 4 _ 3v 3v+1 3v+2
o =c3T] +caxy+-- = E 3, T +E C3u41 T +§ Cavga2 @y 7.
v=1 v=1 v=1
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Then C° is defined locally at P by the equations
do+ 171 +y2 =0 and ¢ +y = 0.

Therefore
t:= X1 |CO
is a formal parameter of C° at P, and ms : C° — P is given by
Ty = —¢p|C° = =) et + ) gttt
(6.1)
mye = (Ghrr— o) [C° = = eat™ + D gyttt

Since 79 is separable, there exists a positive integer v such that ¢z, 19 # 0. By Corol-
lary 3.17, the scheme & is defined on C° by

9*® > 5

T3 | =8 1C0 == ezt =0.
2 o

oz} |C o

Therefore dimp £ is 0, and the length of Og p is equal to 3/, where

l:=min{ v | e3p42 #0 }.
If P € £42, then c3 # 0. Therefore, from (6.1), we see that 75 has a critical point
of T)-type at P. O

In the rest of this section, we will investigate normal forms of a critical point of
T;-type. Let ¢ : C — S be a morphism given in §2.1.

Proposition 6.2. Suppose that ¢ has a critical point of T;-type at P € C. Then
there exist a formal parameter t of (Oc.p)" and a formal parameter system (u,v)
of (Os,o(p))" such that ¢ is given by

oru =t and  pfo =3 + 312,

Proof. Let t and (u,v) be arbitrary formal parameters of (Oc,p)" and (Og ,(p))",
respectively. For F' € (Og ,(p))", we denote by Fjy,,) the coefficient of t” in p*F €
(Oc,p)" = k[[t]]. For A,B € (O¢c,p)", we write A = B+[> NJif A— B is contained
in the Nth power of the maximal ideal of (O¢, p)”. By the definition of the critical
point of T;-type, we have

Pru = upgt® +up et - gt g st g gt 4[> 314 3],
O v = vy gtd + v e tSt o st 4 o st 4 v st T4 [> 31+ 3],

and the coefficients uy ) and vy ) satisfy (2.2). Since (up 3y, vp,3)) 7# (0,0), we can
assume that

(6.2) upz =0 and wvpg =1
by a linear transformation of (w,v). If r > 2, then we have
(V) 70 and v #0 mod3 = v >3l+4.
Therefore, replacing u with
u—cov? — - — et
with appropriate coefficients cs, ..., ¢;, we can assume that

@ u = up gzt T 4 up gt T+ [> 30+ 3).
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By (6.2) and the condition (2.2), we have up 341] # 0. Therefore there exists a
formal parameter s of (O¢ p)” such that

QP*U — 83l+1.

By ujs,3 = 0 and the condition (2.2), we can assume
V3 =1 and v 341 =0
by a linear transformation of (u,v). If r > 2, then we have
(V" )s) #0 and v #0 mod3 == v >3l+5.
Therefore, replacing v with
’U-dg’l}z—"'—dl'[}l

with appropriate coefficients ds, ..., d;, we can assume that

v =35>+ v[s,3l+2}53l+2 +[> 31+ 3].

By the condition (2.2) again, we have v, 349 # 0. Replacing (u,v,s) with
(au, Bu,~yvs) with appropriate «, 8,7 € k™, and denoting s by ¢, we obtain

3L and

eu =
v = 3432 4 [>31+3]
We put
T:={3a+@l+1)b | a,beZ>p},
and fix functions
my T — Zsy and mg : T — Zxg
such that
3mi(v)+ (Bl+ 1)ma(v) =v
holds for every v € T'. It is easy to see that a non-negative integer v is in 7" if and
only if
(v <3l and v =0 mod 3)
or (Bl<v<6l+1 and v #2 mod 3)
or (614+1<vw)
holds. Therefore, replacing v with
v — Z e um2 M) ymav)
v>3143, veT

with coefficients e, chosen appropriately, we obtain

ofu = L and
-1

QO*'U _ t3+t3l+2 +2Aut3l+3u+2
pn=1

with Ay, ..., 4;_1 € k. If the coefficients A,, are all zero, then the proof is finished.
Assume that A, # 0 for some p < I, and put

m:=min{ p | A, #0}.
We put

/
u =u— A,uv™.
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Then we have
(p*u/ — t3l+1 o Amt31+3m+1 4 [Z 6l + 3m]
There exists a formal parameter s of (O¢ p)” such that

SD*'U// — 53l+1.

Then we have

s=1t— A, t3" T 4+ [>3m + 2],
and therefore

t=s5+ Aps®™ 4[> 3m +2].
Let R, (r > 3m + 1) be the coefficients in

3 =5+ Z R,s%".
r>3m+1

Because 3l + 2 = —1 mod 3, we have

£372 A, 32 (> 81 4 3 4 3] = $¥42 4[> 31+ 3m + 3.

Therefore we obtain
l+m
v =35+ Z R,s% + 872 4[> 31+ 3m + 3].
r=3m-+1
If r > 3m + 1, then we have

(V" )sp) #0 and v #0 mod3 = v >3(r—1)+31+22>3l+3m+3.

Therefore, replacing v with
I+m

v— Z RlW"

r=3m+41
with appropriate coefficients R,,, we can assume that

o*v =8+ 32 4[> 31+ 3m + 3].

Replacing v with
v — Z fyumg(y)vml(lz)

v>3l+3m+3, veT
with appropriate coefficients f, and denoting «’ by u and s by ¢, we get

Yru g3t and
-1
w43 43142 431432
v o= 0+t + Z At
p=m+1
with new coefficients A7 ,,..., A;_;. Thus we have

min{ g | A, #0} > m=min{p | A, #0}.
Therefore, after repeating this process finitely often, we obtain formal power series
with the desired properties. O
Proposition 6.3. Suppose that ¢ has a critical point of T;-type at P € C. Then
the image of the germ (C, P) by ¢ is formally isomorphic to the germ of a plane
curve singularity defined by

(63) $3l+1 + yB + $2ly2 =0.
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Proof. Let C; C A? be the affine curve defined by the equation (6.3), and let
v a —

be the normalization in a neighborhood of O := (0,0). Let P € Ci be a point such
that v(P) = O. It is enough to show that v~1(0) consists of a single point P (that
is, C; is locally irreducible at O), and that the composite of v and the inclusion
C) — A? has a critical point of Tj-type at P.

We denote by D,, ,, the affine curve defined by
xm+1 + y3 + InyQ = 0.

We have C; = Dg; 9. Let 8 : (A%)~ — A? be the blowing-up at O. The proper
transform of D, ,, (m > 3,n > 2) by § is isomorphic to D,,_3.,—_1, and the proper
birational morphism
'(/)m,n = ﬁ | Dm—37n—1
is given by (z,y) — (x,zy). We also have
Urmin(0) = {O}.
Since
DO,l : x+y3+:rly2 =0
is smooth at O, the curve D3; o; = (] is locally irreducible at O, and the composite
vt Do, Vot D3 141 vorge .. oy D301 = C)

is the normalization of C; in a neighborhood of O. We put

t:= Y ‘ DO,la
which is a formal parameter of Dy ; at O. Then

x| Doy =—t3— (=1)' 342 ¢ (terms of degree > 31 4 3).

Since
v*(z|Cy) = x| Doy = —t3— (=)' 32 4 (terms of degree > 31 +3) and
vi(y|C) = (2'y) | Doy = (=1)1#3F! + (terms of degree > 31 + 3),

we see that the composite of v : Dy ; — C; and the inclusion C; — A2 has a critical
point of Tj-type at O € Dy . (]
7. THE DEGREE OF &

For a smooth projective variety V, we denote by Ax(V) = A4mV=E(V) the
abelian group of rational equivalence classes of k-cycles of V', and by A.(V) the
Chow group of V. For a closed subscheme W of V, let [W] € A.(V) be the class
of W. We denote by

/ cA(V) = Z
v
the degree map ), np[P|— Y pnp.
In this section, we assume the following:
(7.1) X=X=X°

that is, X is smooth, the linear system |M| on X has no base points, and the
morphism ¥ : X — PV induced by |M| is a closed immersion formally at every
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point of X. We have C = C°. For simplicity, we denote by X for X or X° and by
C for C°. We also assume that

(7.2) £ is of codimension 1 in C.

Then C and £ are closed subschemes of dimensions m — 1 and m — 2, respectively,
in the smooth projective variety X x P. The purpose of this section is to calculate

degC := / ci(pry Op(1)™'N[C] and degé& := / c1(pri Op(1)™ 2N [E].
XxP XxP

For a € A%(X) and 3 € A*(P), we denote by the same letters a € A%(X x P)
and 3 € A’(X x P) the pull-backs of a and 3 by the projections. We put
h:=c1(0p(1)) and A= (L).
It is easy to see that, if « € A%(X) and 8 € A*(P), then

0 ifa<n
pntm)=(a+d) ~ 3 — )
/XxP b (fXa)~(fth7bﬂﬂ) if a =n.

By the definition of the divisor D of X x P, we have

Oxxp(D) = L = prj L@ prj Op(1).
Therefore

[D]=A+h) N [X xP] in A, (X xP).

By Proposition 3.4, the subscheme C of D is defined as the degeneracy subscheme
of the homomorphism

(dox)” : (L®Op)Y — (P} T(X))".
Using Thom-Porteous formula [3, Chapter 14], we have

n

€] = AP (AT(X)¥ = L)) N [D] = ((A +h) Y (1) a(X)(A + h)"i> N[X xP]
=0
in A.(X xP). In particular, we obtain the following well-known formula ([14, 15]):

degC = Zn: {(1)i(n —i+ 1)/
=0

ci(X)A" "N [X]} :
X

By Proposition 3.14, the divisor £ of C is defined as the degeneracy subscheme of
the symmetric homomorphism

H:mT(X) » Lo T(X)V

By Harris-Tu-Pragacz formula ([5, Theorem 10], [20, Theorem 4.1], see also [10]),
we have

€l=2c (ﬂ‘T(X)v ® \/Z@ Oc ) ni[c € AY0).
Hence we obtain the following. (Compare with [2, Formula (2.2)].)
Proposition 7.1. In A.(X x P), we have
€] = (—2c(X)+nA+nh)N[C]
(—2¢1(X) +nX + nh)(A+ h) Zn:(—l)ici(X)()\ + h)"—i> N [X x PJ.
i=0

?
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Therefore we obtain

degé = nzn:o (*1)nij(j+1)(]‘+2> /ch_j(X))\j N [X] -

2

S (1) + 1)/ ene s (X)er (XN A [X].
j=1 X
Example 7.2. Suppose that chark = 3. Let X be a smooth projective curve of
genus g, and let |M| be a 2-dimensional linear system on X without base points
such that the induced morphism ¥ : X — PV = P? is a closed immersion formally
at every point of X. Let
y:X = PPV =P

be the Gauss map of ¥. For a point p € X, let p1,, denote the multiplicity at p of
the divisor ¥*(v(p)). Suppose that

(i) pp < 3 at every point p € X, and

(ii) there exists p € X such that p, = 2.
Then v : X — P is separable onto its image. Hence £ is of dimension 0, and every
critical point of vy is of T;-type by Theorem 6.1. Let ¢; be the number of the critical
points of Tj;-type. Then we have

length O deg &
it = g3 £ = § z/()\—cl(X))ﬁ[X]zdeg‘ll*(’)]pz(l)—Q—i—Qg.
X

Therefore the formula (1.1) is proved.

In characteristic 3, the morphism £%™ — P factors through the finite morphism
Esm — (&)X of degree 3 by Theorem 4.5. If £5™ is dense in &, then deg & must
be divisible by 3. If we take £ to be a cube of a very ample line bundle, then the
assumptions (7.1) and (7.2) are satisfied and €™ is dense in € by Corollary 4.10.
Therefore we obtain the following non-trivial divisibility relation among the Chern
numbers of a smooth projective variety in characteristic 3:

Corollary 7.3. Let X be a smooth projective variety of dimension n in character-
istic 3. Then the integer

/X(ncn(X) +2¢-1(X) 1 (X)) N [X]

is divisible by 3.

In fact, this divisibility relation follows from the Hirzebruch-Riemann-Roch the-
orem by the argument of Libgober and Wood. See [18, Remark 2.4].
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