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Abstract. We formulate and prove a generalization of Zariski-van Kam-

pen theorem on the topological fundamental groups of smooth complex al-
gebraic varieties. As an application, we prove a hyperplane section theorem
of Lefschetz-Zariski-van Kampen type for the fundamental groups of the com-
plements to the Grassmannian dual varieties.

1. Introduction

We work over the complex number field C. By a variety, we mean a reduced
irreducible quasi-projective scheme. The fundamental group π1(V ) of a variety
V is the topological fundamental group of the analytic space underlying V . The
conjunction of paths is read from left to right; that is, for paths α : I := [0, 1] → V
and β : I → V , we define αβ : I → V only when α(1) = β(0).

For a subset S of a group G, we denote by 〈S〉 the subgroup of G generated by
the elements of S. Let a group Γ act on G from the right. Then the subgroup

NΓ := 〈 {g−1gγ | g ∈ G, γ ∈ Γ} 〉
of G is normal, because h−1(g−1gγ)h = ((gh)−1(gh)γ)(h−1hγ)−1. We then put

G//Γ := G/NΓ,

and call G//Γ the Zariski-van Kampen quotient of G by Γ.

Let f : X → Y be a dominant morphism from a smooth variety X to a smooth
variety Y with a connected general fiber. There exists a non-empty Zariski open
subset Y ◦ ⊂ Y such that f is locally trivial in the C∞-category over Y ◦. We put
X◦ := f−1(Y ◦), and denote by f◦ : X◦ → Y ◦ the restriction of f to X◦. We choose
a base point b ∈ Y ◦, put Fb := f−1(b), and choose a base point b̃ ∈ Fb.

We investigate the kernel of the homomorphism

ι∗ : π1(Fb, b̃) → π1(X, b̃)

induced by the inclusion ι : Fb ↪→ X. The classical Zariski-van Kampen theorem,
which started from [29], describes Ker(ι∗) in terms of the monodromy action of
π1(Y ◦, b) on π1(Fb, b̃) under the assumption that a cross-section of f passing through
b̃ exists. The cross-section plays a double role; one is to define the monodromy
action of π1(Y ◦, b) on π1(Fb, b̃), and the other is to prevent π2(Y ) from contributing
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to Ker(ι∗). However, the cross-section rarely exists in applications. If we do not
have any cross-section, then the monodromy of π1(Y ◦, b) on π1(Fb) is not well-
defined, and moreover π2(Y ) may contribute to Ker(ι∗). (See Example 3.4.)

In this paper, we give a generalization of Zariski-van Kampen theorem (Theo-
rem 3.20), which describes Ker(ι∗) under weaker conditions on the existence of the
cross-section. Informally, our theorem states that, if there exists a cross-section on
a subspace of Y whose π2 surjects to π2(Y ), then, under additional assumptions on
the singular fibers of f , Ker(ι∗) is generated by the monodromy relations arising
from the lifted monodromy, which is defined as follows.

Since f◦ : X◦ → Y ◦ is locally trivial, the groups π1(f−1(f(x)), x) form a locally
constant system on X◦ when x moves on X◦, and hence π1(X◦, b̃) acts on π1(Fb, b̃)
from the right in a natural way. We denote this action by

(1.1) µ : π1(X◦, b̃) → Aut(π1(Fb, b̃)),

and call µ the lifted monodromy.

Combining our main result with Nori’s lemma [14] (see Proposition 3.1), we
obtain the following:

Corollary 1.1. Suppose that the following three conditions are satisfied:
(C1) the locus Sing(f) of critical points of f is of codimension ≥ 2 in X,
(C2) there exists a Zariski closed subset Ξ0 of Y with codimension ≥ 2 such that

Fy := f−1(y) is non-empty and irreducible for any y ∈ Y \ Ξ0, and
(Z) there exist a subspace Z ⊂ Y containing b and a continuous cross-section

sZ : Z → f−1(Z) of f over Z satisfying sZ(Z)∩Sing(f) = ∅ and sZ(b) = b̃
such that the inclusion Z ↪→ Y induces a surjection π2(Z, b) →→ π2(Y, b).

Let iX∗ : π1(X◦, b̃) → π1(X, b̃) be the homomorphism induced by the inclusion
iX : X◦ ↪→ X. Then Ker(ι∗) is equal to

(1.2) R := 〈 {g−1gµ(γ) | g ∈ π1(Fb, b̃), γ ∈ Ker(iX∗)} 〉,

and we have the exact sequence

1 −→ π1(Fb, b̃)// Ker(iX∗)
ι∗−→ π1(X, b̃)

f∗−→ π1(Y, b) −→ 1.

Remark 1.2. The condition (Z) is trivially satisfied if π2(Y ) = 0; for example, when
Y is an affine space AN , an abelian variety, or a Riemann surface of genus > 0.

In our previous papers [17], [23] and [24], we have given three different proofs to
a special case of Theorem 3.20, where Y is an affine space AN . Even this special
case has yielded many applications ([16, 18, 19, 20, 21, 22, 25]). Thus we can expect
more applications of the generalized Zariski-van Kampen theorem of this paper.

As an easy application, we obtain the following:

Corollary 1.3. Let f : X → Y be a morphism from a smooth variety X to a smooth
variety Y . Suppose that π2(Y ) = 0, that f is projective with the general fiber Fb

being connected, and that Sing(f) is of codimension ≥ 3 in X. Let ι : Fb ↪→ X be
the inclusion. Then the sequence

1 −→ π1(Fb)
ι∗−→ π1(X)

f∗−→ π1(Y ) −→ 1

is exact.
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As the next application, we investigate the fundamental group of the comple-
ment of the Grassmannian dual variety, and prove a hyperplane section theorem of
Zariski-Lefschetz-van Kampen type.

A Zariski closed subset of a projective space PN is said to be non-degenerate if
it is not contained in any hyperplane of PN . We denote by Grc(PN ) the Grass-
mannian variety of (N − c)-dimensional linear subspaces of PN . For a point
t ∈ (PN )∨ = Gr1(PN ) of the dual projective space, let Ht ⊂ PN denote the corre-
sponding hyperplane.

Let W be a closed subscheme of PN such that every irreducible component is of
dimension n. For c ≤ n, the Grassmannian dual variety of W in Grc(PN ) is defined
to be the locus of L ∈ Grc(PN ) such that the scheme-theoretic intersection of W
and the linear subspace L ⊂ PN fails to be smooth of dimension n − c. For a non-
negative integer k, we denote by Uk(W, PN ) the complement of the Grassmannian
dual variety of W in Grn−k(PN ); that is, Uk(W, PN ) ⊂ Grn−k(PN ) is the Zariski
open subset of all L ∈ Grn−k(PN ) that intersect W along a smooth scheme of
dimension k.

Let X ⊂ PN be a smooth non-degenerate projective variety of dimension n ≥ 2.
The fundamental group π1((PN )∨ \ X∨) = π1(Un−1(X, PN )) of the complement of
the dual variety has been studied in several papers (for example, [3, 4]). However,
there seem to be few studies on its generalization to Grassmannian varieties. We
will investigate the fundamental groups π1(Uk(X, PN )) for k = 0, . . . , n − 2.

We choose a general line Λ in (PN )∨, and consider the corresponding pencil
{Ht}t∈Λ of hyperplanes. Let A :=

∩
Ht

∼= PN−2 denote the axis of the pencil. We
put

Yt := X ∩ Ht and ZΛ := X ∩ A.

Let k be an integer such that 0 ≤ k ≤ n − 2. Regarding Grc−1(Ht) as a closed
subvariety of Grc(PN ), and Grc−2(A) as a closed subvariety of Grc−1(Ht), we have
canonical inclusions

Uk(ZΛ, A) ↪→ Uk(Yt, Ht) ↪→ Uk(X, PN ).

Since k ≤ n − 2, the space Uk(ZΛ, A) is non-empty. (When k = n − 2, the space
Un−2(ZΛ, A) is equal to the one-point set Gr0(A) = {A}.) We choose a base point

Lo ∈ Uk(ZΛ, A),

which serves also as a base point of Uk(X, PN ) and of Uk(Yt,Ht) by the natural
inclusions above. Consider the space

Uk(X, PN , Λ) := { (L, t) ∈ Uk(X, PN ) × Λ | L ⊂ Ht }

with the projection
fΛ : Uk(X, PN ,Λ) → Λ.

The fiber of fΛ over t ∈ Λ is canonically identified with Uk(Yt,Ht), and the point
Lo furnishes us with a holomorphic section

so : Λ → Uk(X, PN , Λ)

of fΛ. There exists a proper Zariski closed subset ΣΛ of Λ such that fΛ is locally
trivial over Λ \ΣΛ in the C∞-category. We choose a base point 0 ∈ Λ \ΣΛ. By the
section so, the fundamental group π1(Λ \ ΣΛ, 0) acts on π1(Uk(Y0,H0), Lo) in the
classical (not lifted) monodromy.
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Using the fact that Λ ↪→ (PN )∨ induces an isomorphism π2(Λ) ∼= π2((PN )∨), we
derive from Theorem 3.20 the following:

Theorem 1.4. Consider the homomorphism

ι∗ : π1(Uk(Y0,H0), Lo) → π1(Uk(X, PN ), Lo)

induced by the inclusion ι : Uk(Y0,H0) ↪→ Uk(X, PN ).
(1) If k ≤ n − 2, then ι∗ is surjective and induces an isomorphism

π1(Uk(Y0,H0), Lo)//π1(Λ \ ΣΛ, 0) →∼ π1(Uk(X, PN ), Lo).

(2) If k < n − 2, the monodromy action of π1(Λ \ ΣΛ, 0) on π1(Uk(Y0,H0), Lo)
is trivial. In particular, the homomorphism ι∗ is an isomorphism for k < n − 2.

Remark that this theorem resembles the classical Lefschetz hyperplane section
theorem on the homotopy groups of smooth projective varieties: namely, the inclu-
sion Y0 ↪→ X induces surjective homomorphisms πk(Y0) →→ πk(X) for k ≤ n − 1,
and isomorphisms πk(Y0) →∼ πk(X) for k < n − 1.

The isomorphism in the assertion (2) of Theorem 1.4 seems to fail to hold for
k = n − 2, as can be seen from the argument in §6 of this paper.

As the third application, we study π1(Uk(X, PN ), Lo) for k = 0. By Theorem 1.4,
it is enough to investigate the case where dim X = 2, and to study the monodromy
action of π1(Λ \ ΣΛ, 0) on π1(U0(Y0,H0), Lo), where Y0 = X ∩ H0 is a smooth
compact Riemann surface.

First we define the simple braid group SBd
g of d strings on a compact Riemann

surface C of genus g > 0. We denote by Divd(C) the variety of effective divisors of
degree d on C, and by rDivd(C) ⊂ Divd(C) the Zariski open subset consisting of
reduced divisors. We fix a base point

D0 = p1 + · · · + pd

of rDivd(C). The braid group Bd
g = B(C,D0) is defined to be the fundamental

group π1(rDivd(C), D0). (See [2].)

Definition 1.5. The simple braid group SBd
g = SB(C,D0) is defined to be the

kernel of the homomorphism B(C,D0) → π1(Divd(C), D0) induced by the inclusion
rDivd(C) ↪→ Divd(C).

Let Md
g = M(C,D0) be the topological group of orientation-preserving diffeo-

morphisms γ of C acting from the right that satisfy pi
γ = pi for each point pi of

D0. We denote by
Γ d

g = Γ (C,D0) := π0(M(C,D0))

the group of isotopy classes of diffeomorphisms in Md
g = M(C,D0), which acts on

SBd
g = SB(C,D0) from the right in a natural way.

Let C ⊂ PM be a smooth non-degenerate projective curve of degree d and genus
g > 0, and let D0 ∈ rDivd(C) be a general hyperplane section. We will investigate
π1(U0(C, PM ), D0); that is, the fundamental group of the complement of the dual
hypersurface of C.

In [8] and [23], we studied this group under conditions that d ≥ 2g + 2 and that
the invertible sheaf OC(D0) corresponds to a general point of the Picard variety
Picd(C) of isomorphism classes of line bundles of degree d.
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Using the fact that π2(Picd(C)) = 0, we derive from our main theorem (Theo-
rem 3.20) the following result, which states the same result as in [8] and [23] under
weaker conditions.

Definition 1.6. We say that C ⊂ PM is Plücker general if the dual curve ρ(C)∨ ⊂
(P2)∨ of the image ρ(C) ⊂ P2 of the general projection ρ : C → P2 has only
ordinary nodes and ordinary cusps as its singularities.

Theorem 1.7. Suppose that d ≥ g +4 and that C is Plücker general in PM . Then
π1(U0(C, PM ), D0) is isomorphic to SB(C,D0).

Let X ⊂ PN be a smooth non-degenerate projective surface of degree d, and let
{Yt}t∈Λ be a pencil of hyperplane sections of X parameterized by a general line
Λ ⊂ (PN )∨ with the base locus ZΛ := X ∩ A, where A =

∩
Ht is the axis of the

pencil {Ht}t∈Λ of hyperplanes. Let

ϕ : Y := { (x, t) ∈ X × Λ | x ∈ Ht } → Λ

be the fibration of the pencil. Then ϕ is locally trivial over Λ \ Σ′
Λ in the C∞-

category, where Σ′
Λ is the set of critical values of ϕ. Let 0 be a general point of Λ.

The corresponding member Y0 is a compact Riemann surface of genus

g := (d + H0 · KX)/2 + 1.

Note that U0(ZΛ, A) = {A}, and that each point of ZΛ yields a holomorphic section
of ϕ : Y → Λ. By the classical monodromy, we obtain a homomorphism

(1.3) π1(Λ \ Σ′
Λ, 0) → Γ d

g = Γ (Y0, ZΛ),

and hence π1(Λ \ Σ′
Λ, 0) acts on the simple braid group SBd

g = SB(Y0, ZΛ) from
the right. We denote by

ΓΛ ⊂ Γ d
g = Γ (Y0, ZΛ)

the image of the monodromy homomorphism (1.3). Combining Theorems 1.4 and 1.7,
we obtain the following:

Corollary 1.8. Let X, {Yt}t∈Λ, ZΛ = X ∩ A and ΓΛ be as above. Suppose that
g > 0, d ≥ g + 4, and that a general hyperplane section of X is Plücker gen-
eral. Then π1(U0(X, PN ), A) is isomorphic to the Zariski-van Kampen quotient
SB(Y0, ZΛ)//ΓΛ.

A motivation of the study of the fundamental group π1(U0(X, PN )) for a surface
X ⊂ PN is the conjecture of Auroux, Donaldson, Katzarkov and Yotov [1] about
the fundamental group π1(P2 \B) of the complement of the branch curve B ⊂ P2 of
the general projection X → P2, which had been intensively studied by Moishezon,
Teicher, Robb. The weakening of the conditions from our previous works ([8], [23])
to the present result (Theorem 1.7) is important with respect to this application.
See Remark 6.4.

The plan of this paper is as follows. In §2, we state some elementary facts about
Zariski-van Kampen quotients. In §3, we prove the generalized Zariski-van Kampen
theorem (Theorem 3.20). We then prove its variant (Theorem 3.33), and deduce
Corollaries 1.1 and 1.3. The main ingredient of the proof is the notion of free loop
pairs of monodromy relation type (Definitions 3.23 and 3.24), and Proposition 3.29.
Using these results, we prove Theorem 1.4 in §4, and Theorem 1.7 in §5. In the
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last section, we explain the relation between π1(U0(X, PN )) and the conjecture of
Auroux, Donaldson, Katzarkov, Yotov.

Conventions and Notation
(1) The constant map to a point P is denoted by 1P .
(2) We denote by I ⊂ R the interval [0, 1], by ∆ ⊂ C the open unit disc, and

by ∆̄ ⊂ C the closed unit disc.
(3) For a continuous map δ : ∆̄ → T to a topological space T , we denote by

∂εδ : I → T

the loop given by t 7→ δ(exp(2π
√
−1t)).

2. Zariski-van Kampen quotient

Definition 2.1. Let G be a group, and let S be a subset of G. We denote by 〈S〉G
or simply by 〈S〉 the smallest subgroup of G containing S, and by 〈〈S〉〉G or simply
by 〈〈S〉〉 the smallest normal subgroup of G containing S.

We let a group Γ act on a group G from the right. The following are easy:

Lemma 2.2. For any γ ∈ Γ, the subgroup 〈{g−1gγ | g ∈ G}〉G of G is normal.
Hence, for any subset Σ ⊂ Γ, the subgroup 〈{g−1gσ | g ∈ G, σ ∈ Σ}〉G is normal.

Lemma 2.3. Let S be a subset of G, and let Σ be a subset of Γ. If G = 〈S〉G and
Γ = 〈Σ〉Γ, then we have

〈〈{s−1sσ | s ∈ S, σ ∈ Σ}〉〉G = 〈{g−1gσ | g ∈ G, σ ∈ Σ}〉G = 〈{g−1gγ | g ∈ G, γ ∈ Γ}〉G.

Definition 2.4. We define G o Γ to be the group with the underlying set G × Γ
and with the product defined by

(g, γ)(h, δ) := (g ·
(
h(γ−1)

)
, γδ).

We then define homomorphisms i : G → G o Γ, p : G o Γ → Γ and s : Γ → G o Γ
by i(g) := (g, 1), p(g, γ) := γ and s(γ) := (1, γ). Then we obtain an exact sequence

(2.1) 1 −→ G
i−→ G o Γ

p−→ Γ −→ 1

with the cross-section s of p, and the action g 7→ gγ of γ ∈ Γ on G coincides with
the inner-automorphism g 7→ s(γ)−1gs(γ) by s(γ) ∈ GoΓ on the normal subgroup
G = i(G) of G o Γ.

The following two lemmas are elementary:

Lemma 2.5. Let G be a group. Suppose that we are given an exact sequence

(2.2) 1 −→ G
i′−→ G p′

−→ Γ −→ 1

with a cross-section s′ : Γ → G of p′ that is a homomorphism of groups. Suppose
also that the action of γ ∈ Γ on g ∈ G is equal to the inner-automorphism by s′(γ);
that is, we have i′(gγ) = s′(γ)−1i′(g)s′(γ) for any g ∈ G and γ ∈ Γ. Then there
exists an isomorphism G ∼= G o Γ such that the exact sequences (2.1) and (2.2)
coincide and the cross-section s corresponds to s′ by this isomorphism.

Lemma 2.6. The composite homomorphism

G
i−→ G o Γ −→ (G o Γ)/〈〈s(Γ)〉〉GoΓ

is surjective, and its kernel is equal to 〈{g−1gγ | g ∈ G, γ ∈ Γ}〉; that is, the Zariski-
van Kampen quotient G//Γ is isomorphic to (G o Γ)/〈〈s(Γ)〉〉.
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3. Fundamental groups of algebraic fiber spaces

Let X and Y be smooth varieties, and let f : X → Y be a dominant morphism.
We denote by Sing(f) ⊂ X the Zariski closed subset of the critical points of f . For
a point y ∈ Y , we put

Fy := f−1(y).

Let α : T → Y be a continuous map from a topological space T . Then a continuous
map α̃ : T → X is said to be a lift of α if f ◦ α̃ = α.

We fix, once and for all, a proper Zariski closed subset

Σ ⊂ Y

such that f◦ : X◦ → Y ◦ is locally trivial in the C∞-category, where

Y ◦ := Y \ Σ, X◦ := f−1(Y ◦) and f◦ := f |X◦ : X◦ → Y ◦.

(In particular, Sing(f) is contained in f−1(Σ).) It follows from Hironaka’s resolution
of singularities that such a proper Zariski closed subset Σ ⊂ Y exists. We then fix
base points

b ∈ Y ◦ and b̃ ∈ Fb ⊂ X◦,

and consider the homomorphisms

ι∗ : π1(Fb, b̃) → π1(X, b̃) and f∗ : π1(X, b̃) → π1(Y, b)

induced by the inclusion ι : Fb ↪→ X and the morphism f : X → Y , respectively.
The aim of Zariski-van Kampen theorem is to describe Ker(ι∗).

The following result of Nori [14] will be used throughout this paper:

Proposition 3.1. Suppose that Fb is connected, and that there exists a Zariski
closed subset Ξ′ ⊂ Y of codimension ≥ 2 such that Fy \ (Fy ∩ Sing(f)) ̸= ∅ for any
y ∈ Y \ Ξ′. Then f∗ : π1(X, b̃) → π1(Y, b) is surjective, and its kernel is equal to
the image of ι∗ : π1(Fb, b̃) → π1(X, b̃).

Proof. See Nori [14, Lemma 1.5] and [23, Proposition 3.1]. ¤

Let α̃ : I → X◦ be a path, and we put α := f◦ ◦ α̃. Then α̃ induces an iso-
morphism π1(Fα(0), α̃(0)) →∼ π1(Fα(1), α̃(1)), which depends only on the homotopy
class (relative to ∂I) of the path α̃. Hence we can write this isomorphism as

[α̃]∗ : π1(Fα(0), α̃(0)) →∼ π1(Fα(1), α̃(1)).

The lifted monodromy

µ : π1(X◦, b̃) → Aut(π1(Fb, b̃))

introduced in §1 (see (1.1)) is obtained by applying this construction to the loops
in X◦ with the base point b̃. By the definition, we have the following:

Proposition 3.2. For any [α̃] ∈ π1(X◦, b̃) and g ∈ π1(Fb, b̃), we have

ι◦∗(g
µ([α̃])) = [α̃]−1 · ι◦∗(g) · [α̃]

in π1(X◦, b̃), where ι◦∗ : π1(Fb, b̃) → π1(X◦, b̃) is the homomorphism induced by the
inclusion ι◦ : Fb ↪→ X◦.

First we prove the following:
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>

γ

∧ α̃

>

γ′

∧α̃ φ
pr2−→ ∧

•

•

α

Figure 3.1. The extension φ

Proposition 3.3. Suppose that a loop α̃ : (I, ∂I) → (X◦, b̃) is null-homotopic in
(X, b̃). Then g−1gµ([α̃]) ∈ Ker(ι∗) for any g ∈ π1(Fb, b̃).

Proof. We put α := f◦ ◦ α̃, and ⊔ := (I × {0}) ∪ (∂I × I). Let g ∈ π1(Fb, b̃) be
represented by a loop γ : (I, ∂I) → (Fb, b̃). We define φ⊔ : ⊔ → X◦ by

φ⊔(s, 0) := γ(s), φ⊔(0, t) := α̃(t), and φ⊔(1, t) := α̃(t).

Then we have f◦ ◦φ⊔ = (α ◦pr2)|⊔, where pr2 : I × I → I is the second projection.
Since ⊔ is a strong deformation retract of I×I and f◦ is locally trivial, the extension
of (α◦pr2)|⊔ : ⊔ → Y ◦ to α◦pr2 : I×I → Y ◦ lifts to an extension from φ⊔ : ⊔ → X◦

to a continuous map φ : I × I → X◦ that satisfies φ|⊔ = φ⊔ and f◦ ◦ φ = α ◦ pr2.
(See Figure 3.1.) Then the loop

γ′ := φ|I×{1} : (I, ∂I) → (Fb, b̃)

represents gµ([α̃]). Since φ|{0}×I = α̃ and φ|{1}×I = α̃, we have

[γ]−1[α̃][γ′][α̃]−1 = 1

in π1(X◦, b̃). Since [α̃] = 1 in π1(X, b̃) by the assumption, we have [γ]−1[γ′] = 1 in
π1(X, b̃). ¤

By Proposition 3.3, the normal subgroup R defined by (1.2) is contained in
Ker(ι∗). However R is not equal to Ker(ι∗) in general. We give two examples.

Example 3.4. Let L → P1 be a line bundle of degree d > 0, and let L× ⊂ L be
the complement of the zero-section. Since the projection f : X = L× → Y = P1 is
locally trivial, we can put Σ = ∅, and hence R = {1}. However, the kernel of

ι∗ : π1(Fb) = π1(C×) ∼= Z → π1(L×) ∼= Z/dZ

is non-trivial. Indeed, Ker(ι∗) is equal to the image of the boundary homomorphism
π2(P1) → π1(C×) in the homotopy exact sequence.

Example 3.5. Consider the morphism

f : X = C2 → Y = C

given by f(x, y) := xy. We can put Σ = {0}, and hence the fundamental group
of X◦ = C2 \ {xy = 0} is isomorphic to Z2. The general fiber Fb is isomorphic to
P1 minus two points, and the lifted monodromy action of π1(X◦) on π1(Fb) ∼= Z is
trivial. Therefore we have R = {1}, while we have Ker(ι∗) = π1(Fb) ∼= Z.
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Our ultimate goal is to show that the three conditions in Corollary 1.1 is sufficient
for R = Ker(ι∗) to hold.

From now on, we suppose that f : X → Y satisfies the first two of the three
conditions in Corollary 1.1; namely, we assume the following:

(C1) Sing(f) is of codimension ≥ 2 in X, and
(C2) there exists a Zariski closed subset Ξ0 ⊂ Y of codimension ≥ 2 such that

Fy is non-empty and irreducible for any y ∈ Y \ Ξ0.

Remark 3.6. By the conditions (C1) and (C2), the following hold:
(C0) for y ∈ Y ◦, the fiber Fy is connected, and
(C3) there exists a Zariski closed subset Ξ1 ⊂ Y of codimension ≥ 2 such that

Fy \ (Fy ∩ Sing(f)) is non-empty and connected for every y ∈ Y \ Ξ1.
In particular, we see that f∗ is surjective and Im(ι∗) = Ker(f∗) holds by Nori’s
lemma (Proposition 3.1).

Let Σ1, . . . , ΣN be the irreducible components of Σ with codimension 1 in Y . There
exists a proper Zariski closed subset Ξ ⊂ Σ with the following properties. We put

Y ♯ := Y \ Ξ, Σ♯
i := Σi \ (Σi ∩ Ξ) = Σi ∩ Y ♯, Σ♯ := Σ \ Ξ = Σ ∩ Y ♯.

(Ξ0) The codimension of Ξ in Y is ≥ 2.
(Ξ1) The Zariski closed subsets Ξ0 ⊂ Y in the condition (C2) and Ξ1 ⊂ Y in

the condition (C3) are contained in Ξ.
(Ξ2) Each Σ♯

i is a smooth hypersurface of Y ♯, and Σ♯ is a disjoint union of
Σ♯

1, . . . , Σ
♯
N ; that is, Ξ contains all the irreducible components of Σ with

codimension ≥ 2 in Y and the singular locus of Σ.
(Ξ3) For each y ∈ Σ♯

i , there exist an open neighborhood U ⊂ Y ♯ of y in Y ♯ and
an analytic isomorphism

φ : (U,U ∩ Σ) ∼−→ ∆m−1 × (∆, 0), where m = dimY ,

with the following properties. Let ψ : U → ∆m−1 be the composite of
φ : U ∼= ∆m−1 × ∆ and the projection ∆m−1 × ∆ → ∆m−1. Then

Ψ := ψ ◦ f : f−1(U) → ∆m−1

is smooth, and the commutative diagram

f−1(U)
f−→ U

Ψ ↘ ↙ ψ

∆m−1

is a trivial family of C∞-maps over ∆m−1 in the C∞-category.

Because of the choice of Ξ, for any point y ∈ Σ♯
i , there exists an open disc ∆ ⊂ Y ♯

with the following properties:

(∆♯1) ∆ ∩ Σ = {y}, and ∆ intersects Σ♯
i transversely at y,

(∆♯2) f−1(∆) is a complex manifold,
(∆♯3) f |f−1(∆) : f−1(∆) → ∆ is a one-dimensional family of complex analytic

spaces that is locally trivial in the C∞-category over ∆ \ {y}, and
(∆♯4) the central fiber Fy := f−1(y) is an irreducible hypersurface of f−1(∆),

and Fy \ (Fy ∩ Sing(f)) is non-empty and connected.
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Moreover the diffeomorphism type of f |f−1(∆) : f−1(∆) → ∆ depends only on the
index i of Σi.

We put

X♯ := f−1(Y ♯), f ♯ := f |X♯ : X♯ → Y ♯, Θ♯
i := (f ♯)−1(Σ♯

i) and Θ♯ := (f ♯)−1(Σ♯).

Then each Θ♯
i is an irreducible hypersurface of X♯, and Θ♯ is a disjoint union of

Θ♯
1, . . . , Θ

♯
N . Note that we have X◦ = X♯ \ Θ♯.

Remark 3.7. By the condition (C1), the Zariski closed subset f−1(Ξ) of X is also
of codimension ≥ 2, and hence the inclusions induce isomorphisms π1(X♯, b̃) ∼=
π1(X, b̃) and π1(Y ♯, b) ∼= π1(Y, b).

We introduce notions of transversal discs, leashed discs and lassos.

Definition 3.8. Let H ⊂ M be a reduced hypersurface of a complex manifold M
of dimension m, and let H1, . . . ,Hl be the irreducible components of H. We fix a
base point bM ∈ M \ H .

(1) Let N be a real k-dimensional C∞-manifold with 2 ≤ k ≤ 2m (possibly with
boundaries and corners), and let φ : N → M be a continuous map. Let p be a point
of N that is not in the corner of N . If k = 2, we further assume that p /∈ ∂N . We
say that φ : N → M intersects H at p transversely if the following hold:

(φ1) φ(p) ∈ H \ Sing(H), and
(φ2) there exist local coordinates (u1, . . . , uk) of N at p and local coordinates

(v1, . . . , v2m) of the C∞-manifold underlying M at φ(p) such that
• p = (0, . . . , 0), φ(p) = (0, . . . , 0),
• if p ∈ ∂N , then N is given by uk ≥ 0 locally at p,
• H is locally defined by v1 = v2 = 0 in M , and
• φ is given by (u1, . . . , uk) 7→ (v1, . . . , v2m) = (u1, . . . , uk, 0, . . . , 0).

We say that φ : N → M intersects H transversely if φ−1(H) is disjoint from the
corner of N (when k = 2, we assume that φ−1(H) ∩ ∂N = ∅) and φ intersects H
transversely at every point of φ−1(H).

If φ intersects H transversely, then φ−1(H) is a real (k − 2)-dimensional sub-
manifold of N . If k > 2, then the boundary of φ−1(H) is equal to φ−1(H) ∩ ∂N ,
while if k = 2, then φ−1(H) is a finite set of points in the interior of N .

(2) A continuous map δ : ∆̄ → M is called a transversal disc around Hi if
δ−1(H) = {0}, δ(0) ∈ Hi and δ intersects H transversely at 0. In this case, the
sign of δ is the local intersection number (+1 or −1) of δ with Hi at δ(0).

(3) An isotopy between transversal discs δ and δ′ around Hi is a continuous map

h : ∆̄ × I → M

such that, for each t ∈ I, the restriction δt := h|∆̄×{t} : ∆̄ → M of h to ∆̄ × {t} is
a transversal disc around Hi, and such that δ0 = δ and δ1 = δ′ hold.

(4) A leashed disc around Hi with the base point bM is a pair ρ = (δ, η) of a
transversal disc δ : ∆̄ → M around Hi and a path η : I → M \ H from δ(1) =
∂εδ(0) = ∂εδ(1) to bM . (Recall that ∂εδ is the loop given by t 7→ δ(exp(2π

√
−1t)).

See Convention (3).) The sign of a leashed disc ρ = (δ, η) is the sign of δ.
(5) The lasso λ(ρ) associated with a leashed disc ρ = (δ, η) is the loop η−1·(∂εδ)·η

in M \ H with the base point bM .
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(6) An isotopy of leashed discs around Hi with the base point bM is the pair of
continuous maps

(h∆̄, hI) : (∆̄, I) × I → (M,M \ H)
such that, for each t ∈ I, the restriction of (h∆̄, hI) to (∆̄, I)×{t} is a leashed disc
around Hi with the base point bM .

Remark 3.9. The isotopy class of a leashed disc ρ is denoted by [ρ]. If [ρ] = [ρ′],
then [λ(ρ)] = [λ(ρ′)] holds in π1(M \ H, bM ).

The following is obvious:

Proposition 3.10. (1) Any two transversal discs around Hi with the same sign
are isotopic.

(2) The homotopy classes of lassos associated with all the leashed discs around
Hi with a fixed sign form a conjugacy class in π1(M \ H, bM ).

(3) The kernel of the homomorphism π1(M \ H, bM ) → π1(M, bM ) induced by
the inclusion is generated by the homotopy classes of all lassos around H1, . . . ,Hl.

We apply these notions to the hypersurfaces

Σ♯ = Σ♯
1 ∪ · · · ∪ Σ♯

N of Y ♯, and Θ♯ = Θ♯
1 ∪ · · · ∪ Θ♯

N of X♯.

Definition 3.11. (1) A transversal lift of a transversal disc δ : ∆̄ → Y ♯ around Σ♯
i

is a lift δ̃ : ∆̄ → X♯ of δ with δ̃(0) /∈ Sing(f) such that δ̃ intersects the irreducible
hypersurface Θ♯

i transversely at 0.
(2) Let ρ = (δ, η) be a leashed disc around Σ♯

i with the base point b. A transversal
lift of ρ is a pair ρ̃ = (δ̃, η̃) such that δ̃ : ∆̄ → X♯ is a transversal lift of δ : ∆̄ → Y ♯

and η̃ : I → X◦ is a lift of η : I → Y ◦ such that η̃(0) = δ̃(1) and η̃(1) = b̃.

Remark 3.12. Any transversal lift of a transversal disc (resp. a leashed disc) around
Σ♯

i is a transversal disc (resp. a leashed disc) around Θ♯
i . Moreover the lifting does

not change the sign.

Definition 3.13. (1) Let δ0 and δ1 be two transversal discs on Y ♯ around Σ♯
i , and

let h : ∆̄ × I → Y ♯ be an isotopy of transversal discs from δ0 to δ1. A lift of the
isotopy h is a continuous map

h̃ : ∆̄ × I → X♯

such that, for each t ∈ I, the restriction δ̃t := h̃|∆̄×{t} is a transversal lift of
the transversal disc δt := h|∆̄×{t} on Y ♯. In particular, we have f ◦ h̃ = h and
h̃(∆̄ × I) ∩ Sing(f) = ∅. Moreover h̃ is an isotopy of transversal discs around Θ♯

i

from δ̃0 to δ̃1. By abuse of notation, we sometimes say that the isotopy δ̃t is the
transversal lift of the isotopy δt, understanding that t is the homotopy parameter.

(2) Let ρ0 and ρ1 be two leashed discs on Y ♯ around to Σ♯
i , and let (h∆̄, hI) :

(∆̄, I) × I → (Y ♯, Y ◦) be an isotopy of leashed discs from ρ0 to ρ1. A lift of the
isotopy (h∆̄, hI) is a pair of continuous maps

(h̃∆̄, h̃I) : (∆̄, I) × I → (X♯, X◦)

such that, for each t ∈ I, the restriction ρ̃t := (h̃∆̄, h̃I)|(∆̄,I)×{t} is a transversal lift
of the leashed disc ρt := (h∆̄, hI)|(∆̄,I)×{t} on Y ♯.

The following are obvious from the condition (∆♯4):
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Proposition 3.14. Every transversal disc around Σ♯
i has a transversal lift on X♯.

Moreover, every isotopy δt of transversal discs around Σ♯
i from δ0 to δ1 lifts to an

isotopy δ̃t from a given transversal lift δ̃0 of δ0 to a given transversal lift δ̃1 of δ1.

Remark 3.15. Every leashed disc on Y ♯ around Σ♯
i has a transversal lift on X♯.

Moreover, every isotopy ρt of leashed discs on Y ♯ has a lift ρ̃t on X♯ from a given
transversal lift ρ̃0 of ρ0, but the ending lift ρ̃1 cannot be arbitrarily given.

Definition 3.16. Let ρ be a leashed disc on Y ♯ around Σ♯
i , and let ρ̃ be a transversal

lift of ρ. Then we have the lasso λ(ρ̃), which is a loop in X◦ with the base point b̃.
Recall that µ is the lifted monodromy. We put

N(ρ̃) := 〈 {g−1gµ([λ(ρ̃)]) | g ∈ π1(Fb, b̃)} 〉π1(Fb,b̃).

Proposition-Definition 3.17. Let ρ′ be a leashed disc on Y ♯ isotopic to ρ, and
let ρ̃′ be a transversal lift of ρ′. Then we have

N(ρ̃) = N(ρ̃′).

Therefore, for an isotopy class [ρ] of leashed discs on Y ♯, we can define a normal
subgroup N [ρ] of π1(Fb, b̃) by choosing a transversal lift ρ̃ of a representative ρ of
[ρ], and putting

N [ρ] := N(ρ̃).

Proof. By Remarks 3.9 and 3.15, the isotopy from ρ to ρ′ lifts to an isotopy from ρ̃
to some lift ρ̃′1 of ρ′, and we have [λ(ρ̃)] = [λ(ρ̃′1)] in π1(X◦, b̃). (However [λ(ρ̃′1)] and
[λ(ρ̃′)] may be distinct in general.) Therefore it is enough to show that N(ρ̃(1)) =
N(ρ̃(2)) holds for any two transversal lifts ρ̃(1) = (δ̃(1), η̃(1)) and ρ̃(2) = (δ̃(2), η̃(2))
of a single leashed disc ρ = (δ, η) on Y ♯. We can assume that the transversal disc
δ : ∆̄ → Y ♯ around Σ♯

i is an embedding of a complex manifold. We denote by ∆̄ρ

the image of δ, and by ∆ρ the interior of ∆̄ρ. We can further assume that ∆̄ρ is
sufficiently small, and that

Eρ := f−1(∆ρ)
is a smooth complex manifold by the condition (∆♯2). We then put

Eρ = f−1(∆̄ρ), E
×
ρ = f−1(∆̄×

ρ ),

where ∆̄×
ρ := ∆̄ρ \ {δ(0)} = ∆̄ρ ∩ Y ◦. We also put q := δ(1) = η(0) ∈ ∂∆̄ρ and

q̃(1) := δ̃(1)(1) = η̃(1)(0) ∈ Fq, q̃(2) := δ̃(2)(1) = η̃(2)(0) ∈ Fq.

Since f is locally trivial over η(I) ⊂ Y ◦ and ⊓ = (∂I × I) ∪ (I × {1}) is a strong
deformation retract of I × I, there exists a continuous map Ω : I × I → X◦ such
that the following hold for any s, t ∈ I:

f(Ω(s, t)) = η(t), Ω(s, 1) = b̃, Ω(0, t) = η̃(1)(t), Ω(1, t) = η̃(2)(t).

(See Figure 3.2.) Then, for each t ∈ I, the map s 7→ Ω(s, t) is a path in Fη(t) from
η̃(1)(t) to η̃(2)(t). We denote by ω : I → Fq the path in Fq from q̃(1) to q̃(2) defined
by ω(s) := Ω(s, 0). Then we have the following commutative diagram:

π1(Fb, b̃)
∼←−

[η̃(1)]∗
π1(Fq, q̃

(1))
iq∗−→ π1(Eρ, q̃

(1))
∥ [ω]∗↓ ≀ [ω]∗↓ ≀

π1(Fb, b̃)
∼←−

[η̃(2)]∗
π1(Fq, q̃

(2))
iq∗−→ π1(Eρ, q̃

(2)),
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>
ω

∧ η̃(2)

>

1b̃

∧η̃(1) Ω
f−→ ∧ η

q•

b•

Figure 3.2. The map Ω

where iq : Fq ↪→ Eρ is the inclusion. Hence, in order to prove N(ρ̃(1)) = N(ρ̃(2)), it
is enough to show the following equality:

[η̃(1)]−1
∗ (N(ρ̃(1))) = Ker(iq∗ : π1(Fq, q̃

(1)) → π1(Eρ, q̃
(1))).

Since f |Eρ
: Eρ → ∆̄ρ is locally trivial over ∆̄×

ρ with the general fiber being
connected by (C0), and since there exists a cross-section

sδ̃(1) : ∆̄ρ → Eρ

of f |Eρ
given by the transversal lift δ̃(1) of δ, we have an exact sequence

1 −→ π1(Fq, q̃
(1))

iq∗−→ π1(E
×
ρ , q̃(1))

(f |
E×

ρ
)∗

−→ π1(∆̄×
ρ , q) −→ 1

with the cross-section
s : π1(∆̄×

ρ , q) → π1(E
×
ρ , q̃(1))

of (f |
E

×
ρ
)∗ that maps the positive generator [∂εδ] of π1(∆̄×

ρ , q) ∼= Z to [∂εδ̃
(1)] ∈

π1(E
×
ρ , q̃(1)). By the cross-section sδ̃(1) of f |Eρ

over ∆̄ρ, we have the classical
monodromy action of π1(∆̄×

ρ , q) on π1(Fq, q̃
(1)). By the definition, the action of

[∂εδ] ∈ π1(∆̄×
ρ , q) is equal to

g 7→ gµ([∂εδ̃(1)]) = [∂εδ̃
(1)]−1 · g · [∂εδ̃

(1)] for g ∈ π1(Fq, q̃),

where the product is taken in π1(E
×
ρ , q̃(1)) and π1(Fq, q̃

(1)) is regarded as a normal

subgroup of π1(E
×
ρ , q̃(1)) by iq∗. Hence, by Lemma 2.5, π1(E

×
ρ , q̃(1)) is isomorphic

to the semi-direct product π1(Fq, q̃
(1)) o π1(∆̄×

ρ , q) constructed by the monodromy
action. On the other hand, by the condition (∆♯4), the central fiber Fδ(0) of Eρ →
∆̄ρ is an irreducible hypersurface of Eρ, and hence the kernel of

j∗ : π1(E
×
ρ , q̃(1)) → π1(Eρ, q̃

(1))

induced by the inclusion j : E
×
ρ ↪→ Eρ is generated by the conjugacy class of lassos

around Fδ(0). (See Proposition 3.10.) Since ∂εδ̃
(1) = λ(δ̃(1)) is a lasso around

Fδ(0), the kernel of j∗ is equal to the normal subgroup 〈〈{[∂εδ̃
(1)]}〉〉 = 〈〈Im(s)〉〉. By

Lemmas 2.3 and 2.6, the kernel of the composite

π1(Fq, q̃
(1))

iq∗−→ π1(E
×
ρ , q̃(1))

j∗−→ π1(Eρ, q̃
(1)) = π1(E

×
ρ , q̃(1))/〈〈Im(s)〉〉
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is equal to
N ′ := 〈{ g−1gµ([∂εδ̃(1)]) | g ∈ π1(Fq, q̃

(1)) }〉.
Since [η̃(1)]∗(gµ([∂εδ̃(1)])) = ([η̃(1)]∗(g))µ([λ(ρ̃(1))]) for any g ∈ π1(Fq, q̃

(1)), we see that
[η̃(1)]∗ induces an isomorphism N ′ →∼ N(ρ̃(1)). ¤

Proposition 3.18. Let γ̃ : (I, ∂I) → (X◦, b̃) be a loop, and we put γ := f ◦ γ̃.
Then, for any leashed disc ρ = (δ, η) on Y ♯ around Σ♯

i, we have

(N [ρ])µ([γ̃]) = N [(δ,ηγ)].

Proof. Let g be an element of π1(Fb, b̃), and let h denote gµ([γ̃]). Then, for a
transversal lift ρ̃ = (δ̃, η̃) of ρ, we have

(g−1gµ([λ(ρ̃)]))µ([γ̃]) = h−1hµ([γ̃]−1[λ(ρ̃)][γ̃]).

Since γ̃−1λ(ρ̃)γ̃ = γ̃−1η̃−1 · ∂εδ̃ · η̃γ̃ is a lasso associated with the transversal lift
(δ̃, η̃γ̃) of the leashed disc (δ, ηγ), we obtain the proof. ¤

Corollary 3.19. If N [ρ] = 1 holds for one leashed disc ρ around Σ♯
i, then we have

N [ρ] = 1 for any leashed disc ρ around Σ♯
i.

We can now state the main result of this section.

Theorem 3.20. Suppose that the conditions (C1), (C2) and the following condi-
tion (Z) are satisfied:

(Z) There exists a continuous cross-section sZ : Z → f−1(Z) of f over a
subspace Z ⊂ Y satisfying b ∈ Z, sZ(b) = b̃, sZ(Z) ∩ Sing(f) = ∅ and such
that the inclusion Z ↪→ Y induces a surjection π2(Z, b) →→ π2(Y, b).

Let L be the set of isotopy classes of all leashed discs on Y ♯ around Σ♯
1, . . . , Σ

♯
N .

Then Ker(ι∗) is equal to

N := 〈
∪

[ρ]∈LN [ρ] 〉π1(Fb,b̃).

Remark 3.21. If π2(Y ) = 0, then the condition (Z) is always satisfied, because we
can put Z = {b} and sZ(b) = b̃.

For the proof, we define the notion of free loop pairs of monodromy relation type.
Let S1 denote the oriented circle.

Definition 3.22. Let T be a topological space. A free loop on T is a continuous
map ϕ : S1 → T . A homotopy from a free loop ϕ to a free loop ϕ′ is a continuous
map Φ : S1 × I → T such that Φ|S1×{0} = ϕ and Φ|S1×{1} = ϕ′. The homotopy
class of a free loop ϕ is denoted by [ϕ]FL.

Suppose that T is path-connected, and let bT be a base point of T . Then the
natural map [α] 7→ [α]FL induces a bijection from the set of conjugacy classes of
π1(T, bT ) to the set of homotopy classes of free loops on T .

Let D be a topological space homeomorphic to ∆̄, let bD be a point of D, and
let ∂D be the boundary of D with an orientation.

Definition 3.23. A free loop pair is a pair

(ψ, (ψ|∂D)∼) : (D, ∂D) → (Y ◦, X◦)

of a continuous map ψ : D → Y ◦ and a lift (ψ|∂D)∼ : ∂D → X◦ of the restriction
ψ|∂D : ∂D → Y ◦ of ψ to ∂D.
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Let (ψ, (ψ|∂D)∼) : (D, ∂D) → (Y ◦, X◦) be a free loop pair. Consider the pull-
back

ψ∗(f◦) : ψ∗(X◦) := X◦ ×Y ◦ D → D

of the locally trivial map f◦ : X◦ → Y ◦ by ψ. Since D is contractible, we have a
contraction c : ψ∗(X◦) → Fψ(bD), which is the homotopy inverse of the inclusion
Fψ(bD) ↪→ ψ∗(X◦). Then the cross-section

s(ψ|∂D)∼ : ∂D → ψ∗(X◦)

of ψ∗(f◦) over ∂D obtained from (ψ|∂D)∼ : ∂D → X◦ defines a homotopy class
[(ψ|∂D)∼]FL of free loops on Fψ(bD) via the contraction c, and hence a conjugacy
class C(ψ, (ψ|∂D)∼) of π1(Fψ(bD), b̃

′), where b̃′ ∈ Fψ(bD) is an arbitrary base point.
Remark that C(ψ, (ψ|∂D)∼) does not depend on the choice of the contraction c.

Definition 3.24. We choose a path α̃ in X◦ from b̃ ∈ Fb to b̃′ ∈ Fψ(bD). We say
that the free loop pair

(ψ, (ψ|∂D)∼) : (D, ∂D) → (Y ◦, X◦)

is of monodromy relation type around Σ♯
i if the pull-back of the conjugacy class

C(ψ, (ψ|∂D)∼) ⊂ π1(Fψ(bD), b̃
′) by the isomorphism [α̃]∗ : π1(Fb, b̃) →∼ π1(Fψ(bD), b̃

′)
is contained in N [ρ] for some leashed disc ρ on Y ♯ around Σ♯

i .

Remark 3.25. It is obvious that this definition does not depend on the choice of the
orientation of ∂D. It also follows from Proposition 3.18 that this definition does
not depend on the choice of the path α̃ connecting b̃ ∈ Fb and b̃′ ∈ Fψ(bD).

Definition 3.26. A homotopy of free loop pairs is a pair of continuous maps

(h, (h|∂D)∼) : (D, ∂D) × I → (Y ◦, X◦)

such that, for each u ∈ I, the restriction of (h, (h|∂D)∼) to (D, ∂D) × {u} is a free
loop pair.

Remark 3.27. Suppose that two free loop pairs are homotopic. If one is of mon-
odromy relation type around Σ♯

i , then so is the other.

Remark 3.28. Let ψu : D → Y ◦ be a homotopy of continuous maps from ψ0 to ψ1

parametrized by u ∈ I. Since f◦ is locally trivial, the homotopy ψu|∂D : ∂D → Y ◦

lifts to a homotopy (ψu|∂D)∼ : ∂D → X◦ that starts from any given lift (ψ0|∂D)∼

of ψ0|∂D and hence we obtain a homotopy (ψu, (ψu|∂D)∼) of free loop pairs starting
from a given (ψ0, (ψ0|∂D)∼). (The ending lift (ψ1|∂D)∼ cannot be arbitrarily given.)

Proposition 3.29. Let δ0 and δ1 be two transversal discs on Y ♯ around Σ♯
i, and let

h : ∆̄×I → Y ♯ be an isotopy of transversal discs from δ0 = h|∆̄×{0} to δ1 = h|∆̄×{1}.
Let D be a closed subset of ∂∆̄ × (I \ ∂I) homeomorphic to ∆̄, and put

T := ∂(∆̄ × I) \ (D \ ∂D),

so that ∂T = ∂D. Suppose that we are given a lift

(h|T )∼ : T → X♯

of h|T : T → Y ♯ such that the restrictions

δ̃0 := (h|T )∼|∆̄×{0} : ∆̄ → X♯ and δ̃1 := (h|T )∼|∆̄×{1} : ∆̄ → X♯
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δ1

δ0

δ̃1

δ̃0

Σ♯
iΘ♯

i

hL
(h|T )∼

−→
f

h

Figure 3.3. (h|T )∼ and hL

are transversal lifts of δ0 and δ1, respectively. Then the free loop pair

(h|D, (h|T )∼|∂D) : (D, ∂D) → (Y ◦, X◦)

is of monodromy relation type around Σ♯
i.

Remark 3.30. In Figure 3.3, the closed subset D is the region surrounded by the
dashed curve on the right tube ∆̄ × I.

Proof of Proposition 3.29. First note that, since h is an isotopy of transversal discs,
the image of ∂∆̄ × I by h is contained in Y ◦, and hence we have h|D(D) ⊂ Y ◦.

By Remarks 3.27 and 3.28, we can assume that D ∩ ({1} × I) = ∅ by moving
D by a homeomorphism of ∂∆̄ × I homotopic to the identity. We consider the
continuous map

τ : I2 → ∂∆̄ × I

given by τ(s, t) := (exp(2π
√
−1s), t). Then we have D ⊂ τ(I2 \ ∂I2) and τ(∂I2) ⊂

T . Under a suitable homeomorphism between D and I2, the inclusion D ↪→ ∂∆̄×I
is homotopic to τ . We put

H0 := h ◦ τ : I2 → Y ◦

and define a lift (H0|∂I2)∼ of H0|∂I2 by

(H0|∂I2)∼ := (h|T )∼ ◦ (τ |∂I2) : ∂I2 → X◦.
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< (1, 0)

∨

(1, 1)>(0, 1)

∧

the base point (0, 0) •

I2

Figure 3.4. An orientation of ∂I2

By Remarks 3.27 and 3.28 again, it is enough to prove that the free loop pair

(H0, (H0|∂I2)∼) : (I2, ∂I2) → (Y ◦, X◦)

is of monodromy relation type around Σ♯
i . For simplicity, we put

q := δ0(1) = h(1, 0) = H0(0, 0) = H0(1, 0), and

q̃ := δ̃0(1) = (h|T )∼(1, 0) = (H0|∂I2)∼(0, 0) = (H0|∂I2)∼(1, 0) ∈ Fq.

By Proposition 3.14, we have an isotopy

hL : ∆̄ × I → X♯

of transversal discs around Θ♯
i from δ̃0 = (h|T )∼|∆̄×{0} to δ̃1 = (h|T )∼|∆̄×{1} that

is a lift of the isotopy h : ∆̄ × I → Y ♯;

f ◦ hL = h.

In Figure 3.3, the left tube is hL, while the barrel with a hole is (h|T )∼. We put

δt := h|∆̄×{t} : ∆̄ → Y ♯ and δ̃t := hL|∆̄×{t} : ∆̄ → X♯.

Then δ̃t is a transversal lift of δt. Next we put

k0 := h|{1}×I : I → Y ◦,

which is a path on Y ◦ from q = δ0(1) to δ1(1), and

k̃0 := (h|T )∼|{1}×I = (H0|∂I2)∼|{0}×I = (H0|∂I2)∼|{1}×I ,

which is a lift of k0 from q̃ = δ̃0(1) to δ̃1(1). Note that, with the base point (0, 0)
and the orientation of ∂I2 given in Figure 3.4, the map (H0|∂I2)∼ : ∂I2 → X◦ is
equal to

k̃0 · ∂εδ̃1 · k̃−1
0 · ∂εδ̃

−1
0

as a loop with the base point q̃ = (H0|∂I2)∼(0, 0) ∈ Fq. We define a homotopy

Hu : I2 → Y ◦ (u ∈ I)

with u being the homotopy parameter by Hu(s, t) := H0(s, (1 − u)t), and will
construct a homotopy (Hu|∂I2)∼ : ∂I2 → X◦ that covers the homotopy Hu|∂I2 and
starts from (H0|∂I2)∼ above. We define

K : I × I → Y ◦

by K(t, u) := k0((1 − u)t), and put ku := K|I×{u} for u ∈ I. Then ku gives a
homotopy with parameter u ∈ I from k0 to the constant map k1 = 1q. We then
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>

k̃0

∧ u 7→ δ̃1−u(1)

>
k̃1

∧1q̃ K̃

Figure 3.5. The map K̃

∂εδ1

∂εδ0

∂εδ1−u

∂εδ̃1

∂εδ̃0

∂εδ̃1−u

k0k̃0

k̃u

−→
f

qq̃

Figure 3.6. The loop (Hu|∂I2)∼

define a lift (K|⊔)∼ : ⊔ → X◦ of K|⊔ : ⊔ → Y ◦, where ⊔ := (∂I × I) ∪ (I × {0}),
by the following:

(K|⊔)∼(t, u) :=


q̃ if t = 0,
k̃0(t) if u = 0,
δ̃1−u(1) = hL(1, 1 − u) if t = 1.

Since f◦ is locally trivial, the lift (K|⊔)∼ extends to a lift K̃ : I × I → X◦ of K.
(See Figure 3.5.) Then we obtain a lift

k̃u := K̃|I×{u},

of ku, which is a path from q̃ ∈ Fq to the point δ̃1−u(1) = hL(1, 1 − u) of Fδ1−u(1).
(See Figure 3.6.) We then define a lift
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∂εδ̃0 k̃1

>

∂εδ̃0

∧ k̃1

>
∂εδ̃0

∧k̃1

Figure 3.7. Two figures for (H1|∂I2)∼ = k̃1 · ∂εδ̃0 · k̃−1
1 · ∂εδ̃

−1
0

(Hu|∂I2)∼ : ∂I2 → X◦ (u ∈ I)

of Hu|∂I2 as a loop by
k̃u · ∂εδ̃1−u · k̃−1

u · ∂εδ̃
−1
0 ,

where ∂I2 is oriented and segmented as Figure 3.4 above. Then (Hu, (Hu|∂I2)∼) is
a homotopy of free loop pairs parametrized by u ∈ I. By Remarks 3.27 and 3.28
again, it is enough to prove that the free loop pair

(H1, (H1|∂I2)∼) : (I2, ∂I2) → (Y ◦, X◦)

is of monodromy relation type around Σ♯
i . Note that

(H1|∂I2)∼ = k̃1 · ∂εδ̃0 · k̃−1
1 · ∂εδ̃

−1
0 ,

(see Figure 3.7), and that the lift k̃1 of the constant map k1 = 1q is a loop in Fq

with the base point q̃. Since H1(s, t) = H0(s, 0) = ∂εδ0(s) for any t, the pull-back

H∗
1 (f◦) : H∗

1 (X◦) → I2

of f◦ : X◦ → Y ◦ by H1 is the product of the pull-back

(∂εδ0)∗(f◦) : (∂εδ0)∗(X◦) → I

of f◦ by ∂εδ0 : I → Y ◦ and the identity map of the second factor I. Let
s(H1|∂I2)∼ : ∂I2 → H∗

1 (X◦) = (∂εδ0)∗(X◦) × I

be the cross-section of H∗
1 (f◦) over ∂I2 obtained from (H1|∂I2)∼. We will describe

the image of the free loop s(H1|∂I2)∼ by a contraction

c′ : H∗
1 (X◦) → Fq.

We construct the contraction c′ as the composite of the projection

pr1 : (H1|∂I2)∼ → (∂εδ0)∗(X◦)

onto the first factor and a contraction c : (∂εδ0)∗(X◦) → Fq. Let

σ : ∂I2 → (∂εδ0)∗(X◦)

be the composite of s(H1|∂I2)∼ with the projection pr1. The fibers F
(0)
q and F

(1)
q

of (∂εδ0)∗(f◦) : (∂εδ0)∗(X◦) → I over 0 ∈ I and 1 ∈ I are canonically identified
with Fq. Let q̃(0) ∈ F

(0)
q and q̃(1) ∈ F

(1)
q be the points corresponding to q̃ ∈ Fq.

Then (H1|∂I2)∼|{0}×I (resp. (H1|∂I2)∼|{1}×I) gives rise to a loop k̃
(0)
1 in F

(0)
q with

the base point q̃(0) (resp. a loop k̃
(1)
1 in F

(1)
q with the base point q̃(1)). Each of them
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>

k̃
(0)
1

•q̃(0)

>

k̃
(1)
1

• q̃(1)

• •

>

s∂εδ̃0

?(∂εδ0)∗(f◦)

>

∂εδ0

Figure 3.8. The loop σ = (k̃(0)
1 ) · (s∂εδ̃0) · (k̃(1)

1 )−1 · (s∂εδ̃0)−1

corresponds to the loop k̃1 by the obvious identifications (Fq, q̃) = (F (0)
q , q̃(0)) =

(F (1)
q , q̃(1)). On the other hand, the loop ∂εδ̃0 gives rise to a cross-section

s∂εδ̃0 : I → (∂δ0)∗(X◦)

of (∂εδ0)∗(f◦) that connects q̃(0) and q̃(1). The loop σ on (∂εδ0)∗(X◦) is then equal
to the conjunction

(k̃(0)
1 ) · (s∂εδ̃0) · (k̃(1)

1 )−1 · (s∂εδ̃0)−1.

(See Figure 3.8.) We denote by S ⊂ (∂εδ0)∗(X◦) the image of the section s∂εδ̃0,
and choose a contraction

c : ((∂εδ0)∗(X◦), S) → (F (0)
q , q̃(0)) = (Fq, q̃)

to the fiber over 0 ∈ I that contracts the section S to the point q̃. We put

γ := µ([∂εδ̃0]) ∈ Aut(π1(Fq, q̃)).

By the definition of the lifted monodromy, the loop

(s∂εδ̃0) · (k̃(1)
1 ) · (s∂εδ̃0)−1

on ∂εδ
∗
0(X◦) is contracted by c to a loop in Fq that represents

[k̃1](γ
−1) ∈ π1(Fq, q̃),

while the loop k̃
(0)
1 on F

(0)
q obviously represents [k̃1] ∈ π1(Fq, q̃). Therefore, by the

contraction c, the loop σ on (∂εδ0)∗(X◦) is mapped to a loop that represents

[k̃1]([k̃1](γ
−1))−1 = (κ−1κγ)−1,

where κ := ([k̃1](γ
−1))−1. Hence the conjugacy class of π1(Fq, q̃) corresponding to

the free loop pair (H1, (H1|∂I2)∼) is contained in the normal subgroup N(∂εδ̃0) =
N [∂εδ0] generated by the monodromy relations along [∂εδ0]. ¤
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Corollary 3.31. We put

T := { (x, y, z) ∈ R3 | x2 + y2 ≤ 1, z ∈ I },
Aζ := { (x, y, z) ∈ T | z = ζ }, and

Υ := { (x, y, z) ∈ T | x2 + y2 = 1 } ∪ A1 = ∂ T \ A◦
0,

where A◦
0 is the interior of the closed disc A0. Let ϕ : T → Y ♯ be a continuous map

such that ϕ(T) ∩ Σ♯ ⊂ Σ♯
i and

ϕ−1(Σ♯
i) = { (x, 0, z) ∈ T | x2 + (z − 1)2 = 1/2 }

hold, and such that ϕ|A1 : A1 → Y ♯ intersects Σ♯ transversely at (±1/
√

2, 0, 1).
Suppose that we have a lift (ϕ|Υ)∼ : Υ → X♯ of ϕ|Υ : Υ → Y ♯ that intersects Θ♯

i

transversely at the two points (±1/
√

2, 0, 1). Let (ϕ|Υ)∼|∂A0 : ∂A0 → X◦ be the
restriction of (ϕ|Υ)∼ to ∂Υ = ∂A0. Then the free loop pair

(ϕ|A0 , (ϕ|Υ)∼|∂A0) : (A0, ∂A0) → (Y ◦, X◦)

is of monodromy relation type around Σ♯
i.

Corollary 3.32. Let δ : ∆̄ → Y ♯ be a transversal disc around Σ♯
i, and let δ̃ and δ̃′

be two transversal lifts of δ. We put q := δ(1) and q̃ := δ̃(1) ∈ Fq, q̃′ := δ̃′(1) ∈ Fq.
Suppose that we are given a path γ0 : I → Fq from q̃ to q̃′. Then we can deform
γ0 to a path γt on F∂εδ(t) from ∂εδ̃(t) to ∂εδ̃

′(t); that is, we have a continuous map
Γ : I × I → X♯ such that

f(Γ(s, t)) = ∂εδ(t), Γ(s, 0) = γ0(s), Γ(0, t) = ∂εδ̃(t), Γ(1, t) = ∂εδ̃
′(t),

and γt := Γ|I×{t}. Consider the path γ1 on Fq from q̃ to q̃′. The conjunction γ0γ−1
1

is a loop on Fq, which we write γ0γ−1
1 : D → Fq, where D is homeomorphic to ∆̄.

Then the free loop pair

(1q, γ0γ−1
1 ) : (D, ∂D) → (Y ◦, X◦)

is of monodromy relation type around Σ♯
i.

Now we start the proof of Theorem 3.20.

Proof of Theorem 3.20. By Proposition 3.3, we have N [ρ] ⊂ Ker(ι∗) for any [ρ] ∈
L, because the lasso λ(ρ̃) is null-homotopic in X for any transversal lift ρ̃ of ρ.
Therefore N ⊂ Ker(ι∗) follows.

Let a loop γ : (I, ∂I) → (Fb, b̃) represent an element [γ] of Ker(ι∗). We will show
that [γ] ∈ N . There exists a homotopy

h : (I2,⊓) → (X, b̃)

from γ to 1b̃ in X stationary on ∂I; that is, h|I×{0} = γ and h|⊓ = 1b̃, where
⊓ := (∂I × I) ∪ (I × {1}) ⊂ I2. By the condition (C1), we can perturb h so that

(3.1) h(I2) ∩ Sing(f) = ∅

holds. Since (f ◦ h)|∂I2 = 1b, the map f ◦ h : I2 → Y represents an element of
π2(Y, b). By the condition (Z), we have a continuous map

l : (I2, ∂I2) → (Z, b)
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>
γ

∧

∧

1b̃

>

1b̃

∧

∧

1b̃

h

sZ ◦ iZ ◦ l

>
1b̃

Figure 3.9. The map h′

such that [f ◦ h] + [iZ ◦ l] = 0 holds in π2(Y, b), where iZ : Z ↪→ Y is the inclusion.
We then consider the continuous map sZ ◦ iZ ◦ l : (I2, ∂I2) → (X, b̃). Replacing h

with h′ : (I2,⊓) → (X, b̃) defined by

h′(x, y) :=

{
h(x, 2y) if 2y ≤ 1,
sZ ◦ iZ ◦ l(x, 2y − 1) if 2y ≥ 1,

we have

(3.2) [f ◦ h] = 0 in π2(Y, b).

(See Figure 3.9.) Moreover, since sZ(Z)∩Sing(f) = ∅ by the condition (Z), we still
have (3.1). Then any small perturbation of f◦h can be lifted to a small perturbation
of h. Since Ξ is of codimension ≥ 2 in Y , we can assume that (f ◦ h)(I2)∩Σ ⊂ Σ♯,
and that f ◦ h intersects Σ♯ transversely (see Definition 3.8). We put

(f ◦ h)−1(Σ♯) = {P1, . . . , Pn} ⊂ I2 \ ∂I2.

We will construct a continuous map

j : V := I2 \ (D◦
1 ∪ · · · ∪ D◦

m) → X♯

with the following properties:

(j1) D1, . . . , Dm are mutually disjoint closed discs in I2 \ (∂I2 ∪ {P1, . . . , Pn}),
and D◦

µ is the interior of Dµ; in particular, V contains P1, . . . , Pn in its
interior,

(j2) j(∂I2) = {b̃},
(j3) f ◦ j = f ◦ h|V holds, and hence we have j−1(Θ♯) = {P1, . . . , Pn},
(j4) j intersects Θ♯ transversely at the points Pν for ν = 1, . . . , n, and
(j5) for each Dµ, the free loop pair

((f ◦ h)|Dµ , j|∂Dµ) : (Dµ, ∂Dµ) → (Y ◦, X◦)

is of monodromy relation type.

By (3.2), there exists a homotopy

H : (I2 × I,B) → (Y, b)
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from f ◦ h to 1b that is stationary on ∂I2; that is, H|I2×{0} = f ◦ h and H|B = 1b,
where

B := (∂I2 × I) ∪ (I2 × {1}) ⊂ I2 × I.

Since Ξ is of real codimension ≥ 4 in Y , we can perturb H and assume the following:
(H1) H(I2 × I) ∩ Σ is contained in Σ♯,
(H2) H intersects Σ♯ transversely (in the sense of Definition 3.8), so that

L := H−1(Σ♯)

is a disjoint union of smooth real curves, and
(H3) the projection prL : L → I to the second factor of I2 × I has only ordinary

critical points in L; that is, prL is a Morse function on L.
We have

∂L = L ∩ (I2 × {0}) = (f ◦ h)−1(Σ♯) = {P1, . . . , Pn}.
Let L1, . . . , Lk be the connected components of L. Then each Lκ is a curve con-
necting two points of {P1, . . . , Pn}, or a curve without boundary. In particular, the
cardinality n of the points (f ◦ h)−1(Σ♯) is even.

We denote by p+
1 , . . . , p+

l (resp. p−1 , . . . , p−m) the critical points in L \ ∂L of the
projection prL : L → I at which the Morse function prL attains a local maximum
(resp. a local minimum), and call them the positive (resp. negative) critical points
of prL. (See Figure 3.10, in which L is drawn in thick curve.)

Let T and Aζ be as in Corollary 3.31. For each negative critical point p−µ , we
can choose a continuous map

τµ : T → I2 × I

with the following properties:
(τ1) each τµ is a homeomorphism onto its image Tµ := τµ(T), and T1, . . . , Tm

are mutually disjoint,
(τ2) there exists a strictly increasing function tµ : I → I with tµ(0) = 0 that

makes the following diagram commutative;

T
τµ−→ I2 × I

↓ ↓
I

tµ−→ I,

where the vertical arrows are the projections onto the last factors,
(τ3) τ−1

µ (∂(I2 × I)) = A0 and τµ(A0) ⊂ (I2 \ ∂I2) × {0},
(τ4) τ−1

µ (L) = {(x, 0, z) ∈ T |x2 + (z − 1)2 = 1/2} and τµ(1/2, 0, 1/2) = p−µ , so
that p−µ is the only critical point of prL in Tµ ∩ L, and

(τ5) H ◦ (τµ|A1) : A1 → Y ♯ intersects Σ♯ transversely at (±1/
√

2, 0, 1) ∈ A1.
We put

T := T1 ∪ · · · ∪ Tm.

(In Figure 3.10, each Tµ is depicted by dashed curves.) We also put

T◦ := {(x, y, z) ∈ T |x2 + y2 < 1, z < 1}

(the union of the interior of T and the bottom open disc), and

T ◦
µ := τµ(T◦), T ◦ := T ◦

1 ∪ · · · ∪ T ◦
m and J := (I2 × I) \ T ◦.
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M: the points p+
λ , O: the points p−µ .

Figure 3.10. L and T

Note that J is the closure of (I2 × I) \ T . Then

L′ := L ∩ J

is a disjoint union of smooth real curves L′
1, . . . , L

′
l, and each connected component

L′
λ of L′ contains exactly one positive critical point p+

λ in L′
λ \∂L′

λ. Moreover, each
L′

λ has two boundary points Qλ and Q′
λ, each of which is either one point among

{P1, . . . , Pn} or one of τµ(±1/
√

2, 0, 1) for some µ. If Qλ is one of P1, . . . , Pn, let
D(Qλ) be a sufficiently small closed disc on I2 × {0} with the center Qλ. If Qλ is
one of τµ(±1/

√
2, 0, 1)), let D(Qλ) be a sufficiently small closed disc on τµ(A1) with

the center Qλ. We choose a closed disc D(Q′
λ) with the center Q′

λ in the same way.
Note that H|D(Qλ) : D(Qλ) → Y ♯ and H|D(Q′

λ) : D(Qλ) → Y ♯ are the transversal
discs around the irreducible component Σ♯

i(λ) of Σ♯ that contains H(p+
λ ). Then, for

each λ = 1, . . . , l, we have a tubular neighborhood

mλ : ∆̄ × I → J

of L′
λ in J with the following properties:

(m1) each mλ is a homeomorphism onto its image Mλ, and M1, . . . ,Ml are mu-
tually disjoint,

(m2) m−1
λ (L′) = {0} × I and mλ({0} × I) = L′

λ,
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Figure 3.11. Two of Mλ ∪ Wλ

(m3) mλ is differentiable and locally a submersion at each point of {0} × I, and
(m4) m−1

λ (∂J) = ∆̄ × ∂I and mλ(∆̄ × {0}) = D(Qλ), mλ(∆̄ × {1}) = D(Q′
λ).

Then the composite H ◦ mλ : ∆̄ × I → Y ♯ is an isotopy between the transversal
discs H|D(Qλ) and H|D(Q′

λ). We put

M := M1 ∪ · · · ∪ Ml.

Let cλ ∈ I be the real number such that mλ(0, cλ) = p+
λ . We choose a point p+′

λ on
mλ(∂∆̄ × {cλ}) ⊂ ∂Mλ and a path

wλ : I → J

from p+′
λ to a point p+′′

λ of I2 × {1} with the following properties:

(w1) each wλ is a homeomorphism onto its image Wλ, and W1, . . . ,Wl are mu-
tually disjoint,

(w2) w−1
λ (M) = {0}, w−1

λ (∂J) = {1}, and
(w3) the composite pr2 ◦wλ : I → I of wλ with the second projection I2 × I → I

is strictly increasing.

We put
W := W1 ∪ · · · ∪ Wl.

In Figure 3.11, two of Mλ ∪Wλ are illustrated. The ceiling is I2 ×{1}, from which
Wλ are dangling, and the tubes are Mλ.

The following fact is the crucial point in the construction of j : V → X♯:

(3.3) B ∪ M ∪ W is a strong deformation retract of J .
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We choose transversal lifts (H|D(Qλ))∼ and (H|D(Q′
λ))∼ of the transversal discs

H|D(Qλ) and H|D(Q′
λ) around Σ♯

i(λ), respectively. Then the isotopy H ◦ mλ : ∆̄ →
Y ♯ between H|D(Qλ) and H|D(Q′

λ) lifts to an isotopy between (H|D(Qλ))∼ and
(H|D(Q′

λ))∼, which yields a lift (H|Mλ
)∼ of H|Mλ

. Hence we obtain a lift

(H|M )∼ : M → X♯

of H|M . We define a lift (H|B)∼ of H|B to be the constant map 1b̃. Then we can
lift the path H ◦wλ to a path from (H|M )∼(p+′

λ ) to (H|B)∼(p+′′
λ ) = b̃, and thus we

obtain a lift
(H|W )∼ : W → X♯

of H|W . Joining these three lifts together, we obtain a lift

(H|B∪M∪W )∼ : B ∪ M ∪ W → X♯

of H|B∪M∪W . By the fact (3.3), we can extend the lift (H|B∪M∪W )∼ to a lift

(H|J)∼ : J → X♯

of H|J , because the pull-back (H|J)∗(f ♯) of f ♯ : X♯ → Y ♯ by H|J : J → Y ♯ is
locally trivial over the complement of the interior of M in J .

Recall that the floor I2 ×{0} of the source space I2 × I of H is the source space
I2 of f ◦ h. For µ = 1, . . . ,m, we put

Dµ := τµ(A0).

These D1, . . . , Dm satisfy the condition (j1). Then

V := I2 \ (D◦
1 ∪ · · · ∪ D◦

m)

is identified with J ∩ (I2 × {0}). We put

j := (H|J)∼|V ,

which is a lift of f ◦ h|V = H|V . Hence j satisfies (j3). It is obvious that j
satisfies (j1) and (j2). Since (H|M )∼ is constructed as a union of isotopies of
transversal discs around Θ♯, the continuous map

j|M∩V = (H|M )∼|M∩V : M ∩ V → X♯

intersects Θ♯ transversely at each Pν . Therefore j satisfies (j4). By the properties
(τ4) and (τ5) of τµ and Corollary 3.31, we see that j satisfies (j5). Thus the
hoped-for continuous map j : V → X♯ is constructed.

For ν = 1, . . . , n, we choose a sufficiently small closed disc Dm+ν with the center
Pν in I2 \∂I2 in such a way that the m+n closed discs D1, . . . , Dm+n are mutually
disjoint.

For each µ = 1, . . . ,m + n, we choose a path

αµ : I → I2

from a point Rµ = (ρµ, 0) ∈ I × {0} to a point Sµ ∈ ∂Dµ with the following
properties:

(α1) 0 < ρ1 < · · · < ρm+n < 1,
(α2) each αµ is injective and the images αµ(I) (µ = 1, . . . ,m + n) are mutually

disjoint, and
(α3) α−1

µ (∂I2) = {0}, α−1
µ (Dµ) = {1}, and α−1

µ (Dµ′) = ∅ if µ ̸= µ′.
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D1

ρ1

D2

ρ2

D3

ρ3

D4

ρ4

D5

ρ5

D6

ρ6

Figure 3.12. The paths αµ

In Figure 3.12, the paths αµ are illustrated by thick curves. Then there exists a
continuous map

ℓ : I2 → I2

with the following properties, where I := I = [0, 1] ⊂ R. (We use the boldface I to
distinguish the source plane I2 and the target plane I2 of ℓ.)

(ℓ1) ℓ induces a homeomorphism from I2 \ ∂I2 to

I2 \

(
∂I2 ∪

m+n∪
µ=1

(Dµ ∪ αµ(I))

)
,

(ℓ2) if (x, y) ∈ ⊓ := (∂I × I) ∪ (I × {1}), then ℓ(x, y) = (x, y), and
(ℓ3) there exist real numbers cµ, dµ, d′µ, c′µ ∈ I for µ = 1, . . . ,m + n with

0 < c1 < d1 < d′
1 < c′1 <

< c2 < d2 < d′
2 < c′2 <

. . .
< cm+n < dm+n < d′m+n < c′m+n < 1

such that the following hold:
– ℓ(cµ, 0) = ℓ(c′µ, 0) = Rµ ∈ I × {0}, ℓ(d′

µ, 0) = ℓ(dµ, 0) = Sµ ∈ ∂Dµ,
– ℓ|[cµ,dµ]×{0} is equal to αµ via a parameter change [cµ, dµ] ∼= I, and

ℓ|[d′
µ,c′µ]×{0} is equal to α−1

µ via a parameter change [d′µ, c′µ] ∼= I,
– ℓ|[dµ,d′

µ]×{0} is the loop that goes from Sµ to Sµ along ∂Dµ clockwise,
and
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cµ dµ c′µd′µ

Rµ

Sµ

Dµ

ℓ

I × {0}

I × {0}

Figure 3.13. The map ℓ

– ℓ|[c′µ−1,cµ]×{0} is equal to the path [ρµ−1, ρµ] → I × {0} given by t 7→
(t, 0) via a parameter change [c′µ−1, cµ] ∼= [ρµ−1, ρµ], where we put
ρ0 := 0, c′0 := 0 and ρm+n+1 := 1, cm+n+1 := 1.

(See Figure 3.13.) Since the image of ℓ is contained in V and is disjoint from
{P1, . . . , Pn}, we have continuous maps

j ◦ ℓ : I2 → X◦ and h ◦ ℓ : I2 → X◦

to X◦. They satisfy
f◦ ◦ j ◦ ℓ = f◦ ◦ h ◦ ℓ

by the property (j3). By the properties (j2) and (ℓ2), they also satisfy

j ◦ ℓ|⊓ = 1b̃ and h ◦ ℓ|⊓ = 1b̃.

We then define G : I2 × I → Y ◦ by the composition

G : I2 × I
pr1−→ I2 f◦◦j◦ℓ=f◦◦h◦ℓ−→ Y ◦,

where pr1 is the first projection. We put

C := (I2 × ∂I) ∪ (⊓ × I) ⊂ I2 × I,

and define a lift
(G|C)∼ : C → X◦

of G|C : C → Y ◦ by the following:

(G|C)∼(x, y, z) :=


h(ℓ(x, y)) if z = 0,
j(ℓ(x, y)) if z = 1,
b̃ if (x, y, z) ∈ ⊓ × I.
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Since f◦ : X◦ → Y ◦ is locally trivial and C is a strong deformation retract of I2×I,
the map (G|C)∼ extends to a lift

G̃ : I2 × I → X◦

of G : I2 × I → Y ◦. By construction, for (x, y) ∈ I2, the restriction of G̃ to
{(x, y)} × I is a path in the fiber

Ff◦h◦ℓ(x,y) = Ff◦j◦ℓ(x,y)

from the point h ◦ ℓ(x, y) to the point j ◦ ℓ(x, y). For x ∈ I, we put

F[x] := Ff◦h◦ℓ(x,0) = Ff◦j◦ℓ(x,0), and ξ[x] := G̃|{(x,0)}×I : I → F[x].

Suppose that x /∈
∪m+n

µ=1 [cµ, c′µ], so that

(x′, 0) := ℓ(x, 0) ∈ I × {0}.

By (j2), we see that F[x] is equal to Fb and ξ[x] is a path in Fb from h(x′, 0) = γ(x′)
to j(x′, 0) = b̃. Moreover, we have ξ[0] = ξ[1] = 1b̃ because G̃|⊓×I = 1b̃. Therefore,
for µ = 0, 1, . . . ,m + n, the path

γµ := γ|[ρµ,ρµ+1] = h|[ρµ,ρµ+1]×{0} : [ρµ, ρµ+1] → Fb

is homotopic to the path ξ[c′µ]ξ
−1
[cµ+1]

in Fb, because the boundary of G̃|[c′µ,cµ+1]×{0}×I

is the loop ξ[c′µ] ·1b̃ ·ξ
−1
[cµ+1]

·γ−1
µ in Fb, where [c′µ, cµ+1] × {0} × I ∼= I2 is oriented and

segmented as in Figure 3.4. Since γ is the conjunction γ0γ1 . . . γm+n, the homotopy
class [γ] ∈ π1(Fb, b̃) is equal to

[ ξ[c′0]
ξ−1
[c1]

ξ[c′1]
ξ−1
[c2]

. . . ξ[c′m+n]ξ
−1
[cm+n+1]

] = [ξ−1
[c1]

ξ[c′1]
] · [ξ−1

[c2]
ξ[c′2]

] · · · · · [ξ−1
[cm+n]ξ[c′m+n]].

(See Figure 3.14.) Note that ξ−1
[cµ]ξ[c′µ] is a loop in Fb with the base point b̃. It

is enough to show that each [ξ−1
[cµ]ξ[c′µ]] ∈ π1(Fb, b̃) is contained in N [ρ] for some

transversal disc ρ around an irreducible component of Σ♯.

Consider the path
α̃µ := j ◦ αµ : I → X◦

from b̃ to q̃µ := j(Sµ) ∈ Fqµ , where qµ := f(j(Sµ)) = f(h(Sµ)), and the induced
isomorphism

[α̃µ]∗ : π1(Fb, b̃) →∼ π1(Fqµ , q̃µ).

This isomorphism maps [ξ−1
[cµ]ξ[c′µ]] ∈ π1(Fb, b̃) to

[ξ−1
[dµ]ξ[d′

µ]] ∈ π1(Fqµ , q̃µ).

(See Figure 3.15.) We consider ξ−1
[dµ]ξ[d′

µ] as a free loop ∂∆̄ → Fqµ in Fqµ . It is
enough to show that the free loop pair

(1qµ , ξ−1
[dµ]ξ[d′

µ]) : (∆̄, ∂∆̄) → (Y ◦, X◦)

is of monodromy relation type.

Suppose that µ > m, so that Dµ is a disc with the center Pµ−m ∈ (f ◦h)−1(Σ♯).
Then (1qµ , ξ−1

[dµ]ξ[d′
µ]) is of monodromy relation type by Corollary 3.32. Suppose
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γµ

ξ[cµ]

ξ[c′µ]

ξ[cµ+1] ξ[c′µ+1]

b̃

Figure 3.14. The paths γµ and ξ[cµ], ξ[c′µ]

b̃

ξc[µ] ξ[c′µ]

ξ[dµ] ξ[d′
µ]

α̃µ

q̃µ
j|∂Dµ

h|∂Dµ

Figure 3.15. Deformation of the loop along α̃µ

that µ ≤ m. By (j5), it is enough to show that the free loop pair (1qµ , ξ−1
[dµ]ξ[d′

µ]) is
homotopic to the free loop pair

((f ◦ h)|Dµ , j|∂Dµ) : (Dµ, ∂Dµ) → (Y ◦, X◦)
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> (d′µ, 0)

∧

(d′µ, 1)<the base point (dµ, 1)

∨

(dµ, 0)

•

[dµ, d′µ] × Iξ−1
[dµ] ξ[d′

µ]

h ◦ lµ

(j ◦ lµ)−1

Figure 3.16. The orientation of ∂([dµ, d′µ] × I)

under a suitable homeomorphism ∆̄ ∼= Dµ. We put

lµ := ℓ[dµ,d′
µ]×{0} : [dµ, d′µ] → ∂Dµ.

Consider the continuous map

ζµ : [dµ, d′
µ] × I → X◦

given by ζµ(x, t) := ξ[x](t). With the base point and the orientation on the boundary
of [dµ, d′µ] × I given in Figure 3.16, the boundary of ζµ is equal to the loop

ξ−1
[dµ] · (h ◦ lµ) · ξ[d′

µ] · (j ◦ lµ)−1

with the base point q̃µ. Since the free loop h ◦ lµ is the boundary of h|Dµ , it is
null-homotopic in X◦. Hence the free loop ξ−1

[dµ] · ξ[d′
µ] is homotopic to the free loop

j ◦ lµ in X◦. It can be easily seen that we can construct a homotopy of free loops
from j|∂Dµ

= j ◦ lµ to ξ−1
[dµ] · ξ[d′

µ] in X◦ as a lift of the restriction to ∂Dµ of a
contraction from f(h(Dµ)) to qµ, because f(h(Dµ)) ⊂ Y ◦ holds for µ ≤ m. Hence
(1qµ , ξ−1

[dµ]ξ[d′
µ]) is homotopic to ((f ◦ h)|Dµ , j|∂Dµ). ¤

The following is a semi-classical version of Theorem 3.20.

Theorem 3.33. Suppose that the conditions (C1) and (C2) are satisfied. Suppose
also that there exist a reduced connected curve C (possibly singular and/or reducible
and not necessarily closed) on Y and a continuous cross-section

sC : C → f−1(C)

of f over C with the following properties:
• C◦ := C ∩ Y ◦ is non-empty and connected, and the inclusion C◦ ↪→ Y ◦

induces a surjection π1(C◦, b) →→ π1(Y ◦, b), where b ∈ C◦ is a base point,
• the inclusion C ↪→ Y induces a surjection π2(C, b) →→ π2(Y, b),
• sC(C) ∩ Sing(f) = ∅, and
• for each irreducible component Σi of Σ with codimension 1 in Y , there exists

a point pi ∈ C ∩ Σi satisfying the following:
– C and Σ are smooth at pi, and C intersects Σi transversely at pi,
– the cross-section sC is holomorphic at pi.
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By the cross-section sC , we have the classical monodromy action

π1(C◦, b) → Aut(π1(Fb, b̃)), where b̃ := sC(b) ∈ Fb := f−1(b),

which we denote by g 7→ gu for u ∈ π1(C◦, b). Then Ker(ι∗) is equal to

NK := 〈 {g−1gu | g ∈ π1(Fb, b̃), u ∈ K} 〉,
where K ⊂ π1(C◦, b) is the kernel of π1(C◦, b) → π1(C, b) induced by the inclusion.

Proof. First of all, remark that the condition (Z) is satisfied with C and sC being
Z and sZ in the condition (Z), and hence Ker(ι∗) is equal to N .

Let γ : (I, ∂I) → (C◦, b) be a loop that represents an element u of K. We have
a homotopy (stationary on ∂I) h on C from γ to 1b. Then sC ◦h is a homotopy on
X from sC ◦γ to 1b̃. By definition, the classical monodromy action by u is equal to
the lifted monodromy action by [sC ◦γ] ∈ π1(X◦, b̃). Since sC ◦γ is null-homotopic
in X, we see that g−1gu = g−1gµ([sC◦γ]) is contained in Ker(ι∗) by Proposition 3.3.
Thus NK ⊂ Ker(ι∗) is proved.

In order to prove N = Ker(ι∗) ⊂ NK , it is enough to show that, for any leashed
disc ρ = (δ, η) around an irreducible component Σ♯

i of Σ♯ in Y ♯, the normal subgroup
N [ρ] is contained in NK . We have a point pi of C∩Σi at which C and Σ are smooth
and intersect transversely. Let

δi,C : ∆̄ ↪→ C

be a sufficiently small closed disc on C such that δi,C(0) = pi. Since sC is holo-
morphic at pi and sC(pi) /∈ Sing(f) by the assumption, Θ := f−1(Σ) is smooth
at sC(pi), and sC ◦ δi,C intersects Θ at sC(pi) transversely. If pi ∈ Ξ, then we
perturb δi,C to a C∞-map δ′i,C : ∆̄ → Y ♯ such that δi,C |∂∆̄ = δ′i,C |∂∆̄. If pi /∈ Ξ,
then we put δ′i,C := δi,C . Then δ′i,C is a transversal disc around Σ♯

i such that
δ′i,C(∂∆̄) ⊂ C◦. Since sC(pi) /∈ Sing(f), we can lift the perturbation from δi,C to
δ′i,C to a perturbation from sC ◦ δi,C to

δ̃′i,C : ∆̄ ↪→ X♯

in such a way that

δ̃′i,C |∂∆̄ = sC ◦ δ′i,C |∂∆̄ = sC ◦ δi,C |∂∆̄,

and that δ̃′i,C is a transversal lift of δ′i,C around Θ♯
i . The transversal disc δ of

the given leashed disc ρ = (δ, η) is isotopic to δ′i,C (Proposition 3.10). Hence ρ is
isotopic to a leashed disc

ρ′ = (δ′i,C , η′)
for some path η′ on Y ◦ from δi,C(1) = δ′i,C(1) ∈ C◦ to b. Since C◦ is connected,
there exists a path ζ on C◦ from b to η′(0) = δi,C(1). Then ζη′ is a loop on
Y ◦ with the base point b. Since the inclusion C◦ ↪→ Y ◦ induces a surjection
π1(C◦, b) →→ π1(Y ◦, b), there exists a loop ξ on C◦ with the base point b that is
homotopic to ζη′ in Y ◦. Then ρ = (δ, η) is isotopic to the leashed disc

ρC := (δ′i,C , ζ−1ξ).

Note that ζ−1ξ is a path on C◦. Since δ̃′i,C(1) = sC(δ′i,C(1)), the pair

ρ̃C := (δ̃′i,C , sC ◦ (ζ−1ξ))
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is a leashed disc, which is a transversal lift of ρC . Hence N [ρ] is generated by the
monodromy relations g−1gµ([λ(ρ̃C)]) along [λ(ρ̃C)]. Note that the lasso λ(ρC) is a
loop on C◦ that is null-homotopic in C, so that we have [λ(ρC)] ∈ K. Because
sC ◦ λ(ρC) = λ(ρ̃C), the generators g−1gµ([λ(ρ̃C)]) of N [ρ] are contained in NK . ¤

We give a sufficient condition under which N [ρ] = 1 holds for one (and hence
any) leashed disc ρ around Σ♯

i . (See Corollary 3.19.)

Suppose that X is the complement to a reduced hypersurface W in a smooth
variety X, and that f is the restriction to X of a projective morphism f̄ : X →
Y . For y ∈ Y , we put F y := f̄−1(y), and denote by Wy the scheme-theoretic
intersection of F y with W . Let Sing(f̄) ⊂ X be the Zariski closed subset of critical
points of f̄ .

Proposition 3.34. We assume the conditions (C1) and (C2). Suppose that, for a
general point y of Σi, the intersection F y ∩ Sing(f̄) is of codimension ≥ 2 in F y

and Wy \ (Wy ∩ Sing(f̄)) is a reduced hypersurface of F y \ (F y ∩ Sing(f̄)). Then
N [ρ] = 1 holds for a leashed disc ρ around Σ♯

i.

Proof. Let y0 be a general point y0 of Σi, and let U ⊂ Y be a sufficiently small
contractible neighborhood of y0. Since f̄ is projective, there exists an embedding
over U of f̄−1(U) into PN × U ;

f̄−1(U) ↪→ PN × U
↘ ↙

U.

By this embedding, we consider each F y for y ∈ U as a closed subscheme of PN

of dimension dimX − dim Y . We choose a general linear subspace P ⊂ PN of
codimension dim F y − 1. By the assumption dim(F y ∩ Sing(f̄)) ≤ dimF y − 2 for
any y ∈ U ∩ Σi, we have (P × U) ∩ Sing(f̄) = ∅ and we can assume that P ∩ F y is
a smooth projective curve for any y ∈ U . By the assumption on Wy, we see that
P ∩Wy is a reduced divisor of P ∩F y whose degree is independent of y ∈ U . Hence
the family

P ∩ Fy = P ∩ (F y \ Wy) (y ∈ U)

of punctured Riemann surfaces is trivial (in the C∞-category) over U . Let δ : ∆̄ →
Y ♯ be a transversal disc around Σ♯

i such that δ(∆̄) ⊂ U . Then we have a transversal
lift δ̃ : ∆̄ → X♯ of δ such that δ̃(z) ∈ P ∩ Fδ(z) holds for any z ∈ ∆̄. We put

q := δ(1), q̃ := δ̃(1) ∈ P ∩ Fq.

The lifted monodromy of [∂εδ̃] on π1(P ∩ Fq, q̃) is trivial. On the other hand, the
inclusion P ∩ Fq ↪→ Fq induces a surjective homomorphism

π1(P ∩ Fq, q̃) →→ π1(Fq, q̃)

by the Lefschetz-Zariski hyperplane section theorem. (See, for example, [5] or [6]).
Hence the lifted monodromy of [∂εδ̃] on π1(Fq, q̃) is also trivial. ¤

We prove the two corollaries stated in Introduction.

Proof of Corollary 1.1. Since the lasso of any transversal lift of a leashed disc on
Y ♯ around Σ♯

i is null-homotopic in X, we have N ⊂ R. Hence Corollary 1.1
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follows from Theorem 3.20, Proposition 3.3 and Nori’s lemma (Proposition 3.1 and
Remark 3.6). ¤

Proof of Corollary 1.3. It is enough to show that f satisfies the condition (C2), and
that, for each Σi, N [ρ] = 1 holds for a leashed disc ρ around Σ♯

i .
Since f is projective and the general fiber is connected, every fiber of f is non-

empty and connected. Suppose that Fy is reducible for a general point y of some
irreducible hypersurface Σ′ of Y . Let ∆ ⊂ Y be a small open disc intersecting Σ′

transversely at y such that f−1(∆) is smooth. Then Fy is a reducible hypersurface
of f−1(∆). Since Fy is connected and projective, there exist distinct irreducible
components F ′

y and F ′′
y of Fy that intersect. Since F ′

y ∩ F ′′
y is of codimension 2 in

f−1(∆), we obtain a contradiction to the assumption that Sing(f) is of codimension
≥ 3 in X. Thus the condition (C2) is satisfied.

Let y be a general point of Σi. By the assumption that Sing(f) is of codimen-
sion ≥ 3 in X, we see that Fy ∩ Sing(f) is of codimension ≥ 2 in Fy. Applying
Proposition 3.34 to the case where W = ∅ and X = X, we obtain N [ρ] = 1 for a
leashed disc ρ around Σ♯

i . ¤

4. Proof of Theorem 1.4

Proof of Theorem 1.4. We assume k ≤ n − 2, where n is the dimension of the
smooth non-degenerate projective variety X ⊂ PN . We put

Uk(X, PN , (PN )∨) := { (L, t) ∈ Uk(X, PN ) × (PN )∨ | L ⊂ Ht },

and consider the projection

f(PN )∨ : Uk(X, PN , (PN )∨) → (PN )∨.

Then the fiber of f(PN )∨ over t ∈ (PN )∨ is canonically identified with Uk(Yt,Ht),
where Yt = X ∩ Ht. The morphism

fΛ : Uk(X, PN , Λ) → Λ

defined in Introduction is the pull-back of f(PN )∨ by the inclusion Λ ↪→ (PN )∨.
Consider the following diagram:

Uk(X, PN , Λ) ↪→ Uk(X, PN , (PN )∨)
pr1−→ Uk(X, PN )

fΛ ↓ ¤ ↓ f(PN )∨

Λ ↪→ (PN )∨,

where pr1 is the projection onto the first factor. The fiber of pr1 over L ∈ Uk(X, PN )
is isomorphic to a linear subspace {t ∈ (PN )∨ |L ⊂ Ht} of (PN )∨, and hence pr1 is
smooth and proper (and thus locally trivial) with simply-connected fibers. There-
fore Uk(X, PN , (PN )∨) is smooth and irreducible, and pr1 induces an isomorphism

(4.1) π1(Uk(X, PN , (PN )∨), so(0)) ∼= π1(Uk(X, PN ), Lo).

The fiber of f(PN )∨ over t ∈ (PN )∨ is a Zariski open subset of Grn−1−k(Ht). Hence
f(PN )∨ is smooth. There exists a Zariski closed subset Ξ′′ of (PN )∨ of codimension
≥ 2 such that, if t ∈ (PN )∨ \Ξ′′, then Yt has only isolated singular points. (See [9],
for example.) Then Uk(Yt,Ht) is non-empty and irreducible for t ∈ (PN )∨ \ Ξ′′.
Therefore f(PN )∨ satisfies the conditions (C1) and (C2). In particular, by Nori’s
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lemma (Proposition 3.1), we see that the inclusion of the general fiber induces a
surjective homomorphism

(4.2) ι∗ : π1(Uk(Y0,H0), Lo) →→ π1(Uk(X, PN , (PN )∨), so(0)).

On the other hand, in virtue of the general line Λ ⊂ (PN )∨ and the holomorphic
section so over Λ, we see that f(PN )∨ satisfies the conditions of Theorem 3.33, and
hence ι∗ induces an injective homomorphism

(4.3) π1(Uk(Y0,H0), Lo)//π1(Λ \ ΣΛ, 0) ↪→ π1(Uk(X, PN , (PN )∨), so(0)).

Combining (4.1), (4.2) and (4.3), we complete the proof of Theorem 1.4(1).
In particular, the inclusion Uk(Y0,H0) ↪→ Uk(X, PN ) induces a surjective homo-

morphism on the fundamental groups. If k < n − 2, then we can apply this result
to the inclusion Uk(ZΛ, A) ↪→ Uk(Y0,H0), and obtain a surjection

π1(Uk(ZΛ, A), Lo) →→ π1(Uk(Y0,H0), Lo).

By construction, this homomorphism is equivariant under the classical monodromy
action of π1(Λ \ ΣΛ, 0) given by the cross-section so. Since π1(Λ \ ΣΛ, 0) acts on
π1(Uk(ZΛ, A), Lo) trivially, we obtain the proof of Theorem 1.4(2). ¤

5. The simple braid group

Let C be a compact Riemann surface of genus g > 0, and let D0 = p1 + · · ·+ pd

be a reduced effective divisor on C of degree d, which we use as a base point of the
space rDivd(C) of reduced divisors of degree d on C. Let Picd(C) be the Picard
variety of isomorphism classes [L] of line bundles L of degree d on C. We denote
by

λ̄ : Divd(C) → Picd(C)
the natural morphism, and consider the induced homomorphism

λ̄∗ : π1(Divd(C), D0) → π1(Picd(C), λ̄(D0)) = H1(C, Z).

Proposition 5.1. Suppose that d ≥ g. (1) We have Sing(λ̄) = λ̄−1(λ̄(Sing(λ̄))).
(2) If d ≥ 2g − 1 then Sing(λ̄) = ∅. If d ≤ 2g − 2 then dimSing(λ̄) ≤ g − 1 and
dim λ̄(Sing(λ̄)) ≤ 2g − 2 − d.

Proof. Note that λ̄ is surjective because d ≥ g. For D ∈ Divd(C), we have

λ̄−1(λ̄(D)) = |OC(D)| ∼= Pd−g+s(D),

where s(D) := h0(C,KC(−D)). Hence D ∈ Sing(λ̄) if and only if s(D) > 0, and
therefore the assertion (1) follows, and moreover, we have

dim λ̄(Sing(λ̄)) ≤ dimSing(λ̄) − (d − g + 1).

On the other hand, we have s(D) > 0 if and only if D is a sub-divisor of a member
of the (g − 1)-dimensional linear system |KC |. Since deg KC = 2g − 2, we obtain
the proof. ¤
Remark 5.2. Suppose d ≥ g. Then Sing(λ̄) is the locus of special divisors of degree
d on C, and λ̄(Sing(λ̄)) is the locus of special line bundles of degree d on C.

Proposition 5.3. Suppose that d ≥ g. Then λ̄∗ is an isomorphism.

Proof. The general fiber of λ̄ is isomorphic to Pd−g. By Proposition 5.1, the as-
sumption d ≥ g implies that λ̄(Sing(λ̄)) ⊂ Picd(C) is of codimension ≥ 2. Hence
Proposition 5.3 follows from Nori’s lemma (Proposition 3.1). ¤



36 ICHIRO SHIMADA

Proposition 5.4. (1) Suppose that d ≥ g + 2. Then there exists a Zariski closed
subset Ξ1 ⊂ Picd(C) of codimension ≥ 2 such that the complete linear system |L|
is base-point free for any [L] ∈ Picd(C) \ Ξ1.

(2) Suppose that d ≥ g+4. Then there exists a Zariski closed subset Ξ2 ⊂ Picd(C)
of codimension ≥ 2 such that |L| is very ample for any [L] ∈ Picd(C) \ Ξ2.

Proof. Suppose that d ≥ g + 2, and let L be a line bundle of degree d. If |L| has
a base point p, then L(−p) is a special line bundle, and hence [L] ∈ Picd(C) is
contained in the image of the morphism

(5.1) λ̄′(Sing(λ̄′)) × C → Picd(C)

given by ([M ], p) 7→ [M(p)], where λ̄′ : Divd−1(C) → Picd−1(C) is the natural
morphism. Since dim λ̄′(Sing(λ̄′)) ≤ 2g − d − 1 by Proposition 5.1, the image
of (5.1) is of codimension ≥ 2.

Suppose that d ≥ g + 4. If a base-point free line bundle L of degree d is not
very ample, then there exist points p, q of C such that h0(L(−p− q)) = h0(L(−p))
holds, and hence L(−p − q) is a special line bundle of degree d − 2. We complete
the proof by the same argument as above. ¤

We denote by
λ : rDivd(C) → Picd(C)

the restriction of λ̄ to rDivd(C), and consider the homomorphism

λ∗ : B(C, d) := π1(rDivd(C), D0) → H1(C, Z) = π1(Picd(C))

induced by λ. From Proposition 5.3, we obtain the following:

Corollary 5.5. Suppose that d ≥ g. Then the simple braid group SB(C,D0)
defined in Definition 1.5 is equal to the kernel of the homomorphism λ∗.

Let σ : (I, ∂I) → (rDivd(C), D0) be a loop. Then there exist paths σi : I → C
for i = 1, . . . , d such that σi(0) = pi and such that σ(t) = σ1(t) + · · · + σd(t) for
all t ∈ I. The homology class λ∗([σ]) ∈ H1(C, Z) is represented by the 1-cycle
obtained as the conjunction of the paths σ1, . . . , σd.

Let Γd(C) ⊂ Divd(C) be the big diagonal in Divd(C) = Cd/Sd, where Sd

is the symmetric group acting on the Cartesian product Cd of d copies of C by
permutation of the components. We have

rDivd(C) = Divd(C) \ Γd(C).

For [L] ∈ Picd(C), we put

Γ(L) := Γd(C) ∩ λ̄−1([L]) and |L|red := λ−1([L]) = |L| \ Γ(L),

where λ̄−1([L]) is identified with |L|.

Remark 5.6. Suppose that L is very ample, and let CL ⊂ Pd−g+s(L) denote the im-
age of the embedding of C by |L|. Then, under the identification |L| ∼= (Pd−g+s(L))∨,
Γ(L) is equal to the dual hypersurface C∨

L of CL, and hence it is of degree

d∨ := 2(d + g − 1).
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Proposition 5.7. Suppose that d ≥ g + 4. If [L] ∈ Picd(C) is general, then the
inclusion |L|red ↪→ rDivd(C) induces as isomorphism

π1(|L|red, D0) ∼= SB(C,D0),

where D0 is a point of |L|red.

Proof. We put Ξ := λ̄(Sing(λ̄)) ∪ Ξ2, where Ξ2 is the Zariski closed subset in
Proposition 5.4. Then Ξ is a Zariski closed subset of codimension ≥ 2 in Picd(C)
and λ̄−1(Ξ) is of codimension ≥ 2 in Divd(C) by Proposition 5.1. Moreover λ̄−1(Ξ)
contains Sing(λ̄), and L′ is very ample if [L′] /∈ Ξ. We consider the restriction

f : X := rDivd(C) \ λ−1(Ξ) → Y := Picd(C) \ Ξ

of λ to X = rDivd(C) \ λ−1(Ξ). We have

π1(Y, [L]) = π1(Picd(C), [L]) = H1(C, Z),

π1(X,D0) = π1(rDivd(C), D0) = B(C,D0),

π2(Y ) = π2(Picd(C)) = 0.

By the last equality, the morphism f satisfies (Z). Since f is smooth with every
fiber being non-empty Zariski open subsets of Pd−g, the conditions (C1) and (C2)
are also satisfied. Therefore we can apply Theorem 3.20. Using Proposition 3.34
and Remark 5.6, the lifted monodromy action of π1(X◦, D0) on π1(|L|red, D0) is
trivial. Combining this result with Corollary 1.1, we see that π1(|L|red, D0) is equal
to the kernel of the homomorphism B(C,D0) → H1(C, Z) induced by f , which is
SB(C,D0) by Corollary 5.5. ¤

Now we prove our third main result.

Proof of Theorem 1.7. We denote by L the line bundle on C ⊂ PM corresponding
to the hyperplane section, and let CL ⊂ PN be the image of the embedding of C
by |L|. Then C ⊂ PM is the image of a projection CL → PM with the center being
disjoint from CL ⊂ PN . Let ρ : C → P2 be a general projection. By this sequence
of the linear projections PN ··→ PM ··→ P2, we have the canonical embeddings of
linear subspaces

(P2)∨ ↪→ (PM )∨ ↪→ (PN )∨.

Let ρ(C)∨ ⊂ (P2)∨, C∨ ⊂ (PM )∨ and (CL)∨ ⊂ (PN )∨ be the dual hypersurfaces of
ρ(C) ⊂ P2, C ⊂ PM and CL ⊂ PN , respectively. Then we have

ρ(C)∨ = (P2)∨ ∩ C∨ = (P2)∨ ∩ (CL)∨, C∨ = (PM )∨ ∩ (CL)∨.

We will consider the homomorphisms

π1((P2)∨ \ ρ(C)∨) → π1((PM )∨ \ C∨) → π1((PN )∨ \ (CL)∨)

induced by the inclusions. Since C ⊂ PM is Plücker general by the assumption, the
degree d∨ of ρ(C)∨, the number δ∨ of ordinary nodes on ρ(C)∨ and the number κ∨

of ordinary cusps on ρ(C)∨ are given by the Plücker formula;

d∨ = 2d + 2g − 2, δ∨ = 2d2 + 4dg + 2g2 − 10d − 14g + 12, κ∨ = 3d + 6g − 6.

(See [30, Chap. 7], for example.) In particular, the section ρ(C)∨ of (CL)∨ by
(P2)∨ ⊂ (PN )∨ is equisingular to the general plane section of (CL)∨. By the
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classical Zariski hyperplane section theorem ([5], [6], [31]), we see that the inclusion
induces an isomorphism

π1((P2)∨ \ ρ(C)∨) ∼= π1((PN )∨ \ (CL)∨).

On the other hand, the scheme-theoretic intersection of (CL)∨ and (P2)∨ in (PN )∨

is reduced, and hence the scheme-theoretic intersection of C∨ and (P2)∨ in (PM )∨

is also reduced, and thus the inclusion induces a surjective homomorphism

π1((P2)∨ \ ρ(C)∨) →→ π1((PM )∨ \ C∨).

Therefore we conclude that the inclusions induce isomorphisms

π1((P2)∨ \ ρ(C)∨) ∼= π1((PM )∨ \ C∨) ∼= π1((PN )∨ \ (CL)∨).

Remark that (PM )∨\C∨ is equal to U0(C, PM ), and (PN )∨\(CL)∨ is equal to |L|red.
Therefore it is enough to show that π1(|L|red) or π1((P2)∨ \ρ(C)∨) is isomorphic to
the simple braid group SBg

d. Note that, since [L] is not necessarily a general point
of Picd(C), we cannot apply Proposition 5.7. We overcome this difficulty using
Harris’ theorem [7].

Note that ρ(C) is a plane curve of degree d with δ := (d−1)(d−2)/2−g ordinary
nodes and no other singularities. Let P∗(H0(P2,O(d))) be the space of all plane
curves of degree d, and let Sd,δ ⊂ P∗(H0(P2,O(d))) be the locus of reduced plane
curves Γ ⊂ P2 of degree d such that Sing Γ consists of only δ ordinary nodes. In [7],
Harris gave an affirmative answer to the Severi problem, in virtue of which we
know that Sd,δ is irreducible. We then denote by S◦

d,δ ⊂ Sd,δ the locus of Γ ∈ Sd,δ

such that the dual curve Γ∨ has only ordinary nodes and ordinary cusps as its
singularities. Then S◦

d,δ is a Zariski open subset of Sd,δ containing ρ(C).

Let C ′ be an arbitrary compact Riemann surface of genus g, and let [L′] be a
general point of Picd(C ′). Since d ≥ g + 4, we see from Proposition 5.4 that |L′|
is very ample of dimension d − g. We denote by C ′

L′ ⊂ Pd−g the image of the
embedding C ′ ↪→ Pd−g by |L′|, and consider the general projection ρ′ : C ′

L′ → P2.
Then ρ′(C ′

L′) is a point of Sd,δ. Since Sd,δ is irreducible, we can connect the two
points ρ(C) ∈ Sd,δ and ρ′(C ′

L′) ∈ Sd,δ by an irreducible closed curve T ⊂ Sd,δ. We
put T 0 := T ∩ S◦

d,δ, which is a Zariski open subset of T containing ρ(C). When
Γ moves on S◦

d,δ the dual curves Γ∨ form an equisingular family of plane curves.
Therefore we have

(5.2) π1((P2)∨ \ ρ(C)∨) ∼= π1((P2)∨ \ Γ∨) for any Γ ∈ T 0.

On the other hand, by Propositions 5.4 and 5.7, there exists a Zariski open dense
subset T 1 ⊂ T containing ρ′(C ′

L′) such that the complete linear system |OΓ(1)| of
a hyperplane section of Γ ⊂ P2 is very ample on the normalization Γ∼ of Γ for any
Γ ∈ T 1, that dim |OΓ(1)| = d − g for any Γ ∈ T 1, and that

(5.3) π1((P2)∨ \ Γ∨) ∼= π1(|OΓ(1)|red) ∼= SBd
g for any Γ ∈ T 1.

Here we have used the classical Zariski hyperplane section theorem again. Since
T 0 ∩ T 1 ̸= ∅, we complete the proof of Theorem 1.7 by combining the isomor-
phisms (5.2), (5.3). ¤
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6. The conjecture of Auroux, Donaldson, Katzarkov and Yotov

Let X ⊂ PN be a smooth non-degenerate projective surface of degree d, and let
B ⊂ P2 be the branch curve of a general projection X → P2. The fundamental
group π1(P2 \ B) has been studied intensively by Moishezon, Teicher and Robb
([10], [11], [12], [13], [28], [27], [15], . . . . . . ). In many examples, it has turned
out that π1(P2 \ B) is rather “small”. In [1, Conjectures 1.3 and 1.6], Auroux,
Donaldson, Katzarkov and Yotov formulated the following conjecture (not only for
algebraic surfaces but also for symplectic 4-manifolds), and confirmed it for some
new examples.

Note that there exist natural homomorphisms

π1(P2 \ B) → Sd and π1(P2 \ B) → H1(P2 \ B) ∼= Z/deg(B)Z.

For a smooth projective surface X and a line bundle L on X, we denote by

λ(X,L) : H2(X, Z) → Z2

the homomorphism given by λ(X,L)(α) := (α ∪ c1(L), α ∪ c1(KS + 3L)), where ∪
denotes the cup-product.

Conjecture 6.1. Let L be an ample line bundle of a smooth projective surface S,
and let Xm ⊂ PN(m) be the image of the embedding of S by the complete linear
system |L⊗m|. We denote by Bm ⊂ P2 the branch curve of a general projection
Xm → P2. Let G0

m be the kernel of the natural homomorphism

π1(P2 \ Bm) → Sd × Z/deg(Bm)Z.

Suppose that S is simply-connected and that m is large enough. Then the abelian-
ization of G0

m is isomorphic to (Z2/ Im(λ(X,mL)))d−1, and the commutator subgroup
[G0

m, G0
m] is a quotient of (Z/2Z)2.

For a smooth non-degenerate projective surface X ⊂ PN , the fundamental groups
π1(U0(X, PN )) and π1(P2 \B) are related as follows. Note that the target space P2

of the general projection X → P2 is identified with the closed subvariety

{ L ∈ Gr2(PN ) | L contains the center of the projection }

of Gr2(PN ), and P2 \ B is identified with the pull-back of U0(X, PN ) by this em-
bedding P2 ↪→ Gr2(PN ).

Proposition 6.2. The inclusion P2 \ B ↪→ U0(X, PN ) induces a surjective homo-
morphism π1(P2 \ B) →→ π1(U0(X, PN )).

Proof. Consider the incidence variety

{ (L,M) ∈ Gr2(PN ) × Gr3(PN ) | L ⊃ M } pr1−→ Gr2(PN )

pr2 ↓

Gr3(PN ),

where pr1 and pr2 are the natural projections, and put

U := pr−1
1 (U0(X, PN )).
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Since pr1 is smooth with every fiber being isomorphic to PN−2, we see that U is
smooth, irreducible, and that pr1 |U induces an isomorphism π1(U) ∼= π1(U0(X, PN )).
For M ∈ Gr3(PN ), the target space ΠM of the projection

ρM : X → ΠM

with the center M is the fiber of pr2 over M , and we have

ΠM \ BM
∼= (pr2 |U )−1(M) = pr−1

2 (M) ∩ U ,

where BM ⊂ ΠM is the branch curve of ρM . Hence it is enough to show that the
inclusion of the general fiber of pr2 |U over M induces a surjective homomorphism

(6.1) π1((pr2 |U )−1(M)) →→ π1(U).

Since pr2 is smooth, so is pr2 |U . Moreover the locus of all M ∈ Gr3(PN ) such that
(pr2 |U )−1(M) = ∅ is contained in a Zariski closed subset of codimension ≥ 2 in
Gr3(PN ). Hence Nori’s lemma (Proposition 3.1) implies the surjectivity (6.1). ¤

Thus we see that the group π1(U0(X, PN )) is “smaller” than π1(P2 \ B). In
view of Corollary 1.8 and Conjecture 6.1, we expect that the image ΓΛ of the
monodromy (1.3) should be “large”.

The group ΓΛ is generated by the Dehn twists associated with the ordinary nodes
of the singular members of the pencil {Yt}t∈Λ. Hence the group ΓΛ and its action
on SB(Y0, ZΛ) can be visualized by drawing on Y0 the reduced divisor ZΛ and the
vanishing cycles for the singular members of the pencil.

As for the largeness of ΓΛ, we have the following result of Smith [26, Theorem
1.3 and Corollary 4.3].

Theorem 6.3 (Smith). The vanishing cycles of the Lefschetz fibration Y → Λ fill
up the fiber Y0; that is, their complement is a bunch of discs. Moreover distinct
points of ZΛ are on distinct discs.

The second assertion follows from the argument in the proof of [26, Theorem 5.1],
and the fact that the homology classes of the sections of Y → Λ corresponding to
the points of ZΛ are distinct.

Remark 6.4. In the calculation of π1(U0(Xm, PN(m))) by means of Corollary 1.8,
the assumption d ≥ g + 4 is satisfied when m is large enough. Indeed, the degree d
of Xm is given by d = m2L2, while the genus g of the general hyperplane section
Y0 of Xm is given by g = (m2L2 + mL · KX)/2 + 1.
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