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1. INTRODUCTION

First, we fix some notions and notation.

By a lattice, we mean a finitely generated free Z-module A equipped with a non-
degenerate symmetric bilinear form

(,) : AxA — Z.

The discriminant disc(A) € Z of a lattice A is the determinant of a symmetric matrix
expressing the bilinear form. A lattice A is said to be even if (v,v) € 2Z holds for
every v € A. Let A and A’ be lattices. A homomorphism A — A’ of Z-modules
is called an isometry if it preserves the symmetric bilinear forms. By definition, an
isometry is injective. Let A — A’ be an isometry. We denote by

(A — At

the orthogonal complement of A in A’. A sublattice A C A’ is called primitive if A’/A
is torsion-free. For a lattice A, we denote by A[—1] the lattice obtained from A by
multiplying the symmetric bilinear form by —1.

Let F' be a number field. We denote by Zg the integer ring of F', and by
g Spec Zp — SpecZ

the natural projection.

Let k be a field of characteristic 0. We denote by Emb(k, C) the set of embeddings
0 :k — Cof kinto C. For a variety X over k and an embedding 0 € Emb(k, C),
we define a complex variety X7 by the following diagram of the fiber product:

X — X
! O |
SpecC <, Spec k.
Two complex varieties X and X’ are said to be conjugate if there exists o €
Emb(C, C) such that X7 is isomorphic to X’ over C. It is obvious that the rela-

tion of being conjugate is an equivalence relation. If is easy to see that a complex
algebraic surface conjugate to a K3 surface is also a K3 surface.



For a K3 surface X defined over a field k, we denote by NS(X') the Néron-Severi
lattice of X ® k, where k is the algebraic closure of k; that is, NS(X) is the lattice
of numerical equivalence classes of divisors on X ® k with the intersection pairing.

Definition 1.1. A K3 surface X defined over a field of characteristic 0 is said to be
singular if rank(NS(X)) = 20.

Definition 1.2. A K3 surface X defined over a field of characteristic p > 0 is said
to be supersingular if rank(NS(X)) = 22.

By the Hodge index theorem, if X is singular or supersingular, then
d(X) := disc(NS(X))
is a negative integer.

Shioda and Inose [27] showed that every singular K3 surface is defined over a
number field. Let X be a singular K3 surface defined over a number field /. We
consider a smooth proper family

X —-U

of K3 surfaces over a non-empty Zariski open subset U of SpecZp such that the
generic fiber X, is isomorphic to X. For a closed point p of U, we denote by Xy the
reduction of X at p. For a prime integer p, we put

Sy(X):={penz'(p)NU | Xy is supersingular }.

We investigate the following lattices of rank 2:

e the transcendental lattice
T(X7) := (NS(X) — H*(X?,Z))*

for each o € Emb(F, C), where H?(X7,Z)) is the Betti cohomology group of
the complex surface X? with the cup-product, and
e the supersingular reduction lattice

L(X,p) := (NS(X) — NS(Xp))*

for each p € S,(X), where NS(X) < NS(Xy) is the specialization isometry.
(See [6, Exp. X], [13, §4] or [14, §20.3] for the definition of the specialization
isometry.)
As an application of our main results, we present new examples of non-homeomorphic
conjugate complex varieties, and arithmetic Zariski pairs of maximizing sextics.

Remark 1.3. The supersingular reduction lattices and their relation with transcen-
dental lattices were first considered by Shioda in [28] for certain elliptic K3 surfaces.



2. THE GENUS THEORY OF LATTICES AND DISCRIMINANT FORMS

We recall the notions of genera and discriminant forms of lattices. See [7] and [19]
for details.

Definition 2.1. Two lattices
AMAXA—Z and N:AN'xAN —7Z
are said to be in the same genus if

A®Z, : (A®Z,)x(A®Z,) — Z, and
N®Z, : NeZ,)x(NeZ,) — Z,

are isomorphic for any p including p = oo, where Z., = R.
If A and A’ are in the same genus and A is even, then A’ is also even.
Definition 2.2. Let A be an even lattice. We put
AY := Hom(A, Z).

Then A is canonically embedded into A" as a subgroup of index equal to | disc(A)],
and we have a natural symmetric bilinear form

A x AN = Q

that extends the symmetric bilinear form on A. The finite abelian group Dy := AY/A
together with the natural quadratic form

qn : Dy — Q/27Z
is called the discriminant form of A.
The following are due to Nikulin [19].

Theorem 2.3. Two even lattices of the same rank are in the same genus if and only
if they have the same signature and their discriminant forms are isomorphic.

Theorem 2.4. Let L be an even lattice, and let M C L be a primitive sublattice. We
put N := (M — L)*. Suppose that disc(M) and disc(L) are prime to each other.
Then there exists an isomorphism

(Dn,an) = (Dr,qn) ® (Dar, —qur)

of finite quadratic forms. In particular, we have disc(N) = disc(L) disc(M).



3. TRANSCENDENTAL LATTICES

Let X be a singular K3 surface defined over a number field F'. For an embedding
o : FF — C, the transcendental lattice T'(X7) of the complex singular K3 surface
X7 := X ®p, C is an even positive-definite lattice of rank 2 with discriminant equal
to —d(X), where d(X) = disc(NS(X)).

Proposition 3.1. For 0,0’ € Emb(F,C), the lattices T(X?) and T(X) are in the
same genus.

Proof. Because the Néron-Severi lattice is defined algebraically, we have
NS(X) = NS(X7) = NS(X7).
Since H?(X?,Z) is unimodular, it follows from Theorem 2.4 that
(Dr(xe), gr(xs)) = (Dns(xe), —qNs(x7))-

The same holds for T(X°"). Hence T(X?) and T(X°') have the isomorphic discrim-
inant forms. O

For a negative integer d, we put

M, 2a b a,b,ceZ, a>0, ¢>0,
4 b 2c b? — dac=d ’

on which GLy(Z) acts by M +— tgMg (M € Mgy, g € GLy(Z)). We then denote by
Lq:=Mqy/ GLy(Z)  (resp. Lg:= Mqy/SLy(Z) )
the set of isomorphism classes of even, positive-definite lattices (resp. even, positive-
definite oriented lattices) of rank 2 with discriminant —d.
Let S be a complex singular K3 surface. By the Hodge decomposition
T(S) ® C = H*(S) @ H**(S),
we can define a canonical orientation on 7'(S).

Definition 3.2. For a complex singular K3 surface .S, we denote by f(S ) the ori-
ented transcendental lattice of S, and by [T'(S)] € Ly(s) the isomorphism class of the
oriented transcendental lattice.

The following is due to Shioda-Inose [27].

Theorem 3.3. The map S — [T(S)] induces a bijection from the set of isomorphism
classes of complex singular K3 surfaces to the set of isomorphism classes of even,
positive-definite oriented lattices of rank 2.

In [25] and [21], the author and M. Schiitt have proved the following existence
theorem. (See Remark 4.15.)



Theorem 3.4. Let G C Ly be a genus of even positive-definite lattices of rank 2,
and let G C Lq be the pull-back of G by the natural projection L4 — Lq. Then there
exists a singular K3 surface X defined over a number field F' with d(X) = d such
that the set

{[T(X°)] | 0 € Emb(F,C)} C Ly

coincides with the oriented genus G.

Corollary 3.5. Complex singular K3 surfaces S and S" are conjugate if and only if
T(S) and T(S") are in the same genus.

Proof. The “only if” part is proved in the same way as the proof of Proposition 3.1.
Suppose that T'(S) and T(S") are in the same genus. Let Gg C Zd(s) be the oriented
genus containing [T(S)] € Ed(S), and let X be the singular K3 surface defined over
a number field F' such that

(3.1) {[T(X%)] | 0 € Emb(F,C)} = Gs.

By the assumption, we have [T(S’ )] € Gs. By the injectivity of the theorem of
Shioda-Inose, there exist 7 € Emb(F,C) and 7" € Emb(F, C) such that X™ = S and
X7 = &' There exists ¢ : C — C such that o o7 = 7. O

Corollary 3.6. Let S be a complex singular K3 surface, and let ’g} - Ed(s) be the
oriented genus containing T (S)] € Ed . If S is defined over a number field L, then

[L:Q] > |Gsl.

Proof. Let X be a K3 surface defined over a number field F' such that (3.1) holds.
Then X% = S for some oy € Emb(F,C). Let Y be a K3 surface defined over L such
that Y™ = S for some 7 € Emb(L,C). Then there exists a number field M C C
containing both of oo(F) and 79(L) such that

XM=Y QM over M.

Therefore, for each o € Emb(F, C), there exists 7 € Emb(L,C) such that X7 =2 Y7
over C. Since there exist exactly |Gg| isomorphism classes of complex K3 surfaces
among X7, we have | Emb(L,C)| > |Gg|. O
Corollary 3.7. Let S and S” be complex singular K3 surfaces. If NS(S) and NS(5”)
are in the same genus, then NS(S) and NS(S") are isomorphic.

Proof. If NS(S) and NS(S’) are in the same genus, then 7'(S) and 7'(S") are in the
same genus, and hence S and S’ are conjugate. U

4. SUPERSINGULAR REDUCTION LATTICES

Definition 4.1. Let Y be a supersingular K3 surface in characteristic p. Artin [4]
and Rudakov-Shafarevich [20] showed that there exists a positive integer o(Y) < 10
such that d(Y) := disc(NS(Y)) is written as —p>*(¥). This integer o(Y) is called the
Artin invariant of Y.



We describe the Néron-Severi lattice of a supersingular K3 surface in odd charac-
teristic p > 0. In [20], Rudakov-Shafarevich showed the following:

Theorem 4.2. Let p be an odd prime, and let o be a positive integer < 10. Then
there exists a lattice Ay, of rank 22 with the following properties, and it is unique up
to isomorphism: (i) even, (ii) of signature (1,21), and (iii) the discriminant group is
isomorphic to (Z/pZ)*

Definition 4.3. We call A, , the Rudakov-Shafarevich lattice.
Let x, : FX — {£1} be the Legendre character.

Remark 4.4. The discriminant form of A, is calculated in [24]. For an odd prime
p, let v, be an even integer such that x,(v,) = —1. Let () be the cyclic group of
order p generated by . We define quadratic forms

¢ : () — Q/2Z and gq,:(y) — Q/2Z

by ¢1(7) :== (p+1)/p and ¢,(7) := v,/p. Then the discriminant form (D, ,,q, ) of
A, , for an odd prime p is isomorphic to

{(W), @)% if o(p—1) =2 mod 4,
(1), )2 YV ((7),q,) ifo(p—1)=0mod 4.

Artin [4] and Rudakov-Shafarevich [20] showed the following:

Theorem 4.5. LetY be a supersingular K3 surface in odd characteristic p with the
Artin invariant o. Then NS(Y') is isomorphic to A, ,.

We fix a smooth proper family X — U of K3 surfaces over an open subset U C
Spec Zp such that the generic fiber X, is singular, and investigate the set

Sy(X):={penz'(p)NU | Xy is supersingular }.
In [24] and [25], we have obtained the following:

Theorem 4.6. Suppose that p does not divide 2d(X,,) = 2 disc(NS(X,))).
(1) If p € Sp(X), then the Artin invariant of Xy is 1.

(2) There exists a finite set N of prime integers containing the prime divisors of

2d(X,) such that

0 if xp(d(Xy)) =
Tt (p) if xp(d(Xy) =
Recall that the supersingular reduction lattice L(X,p) of X at p € S,(X) is defined

to be (NS(X,,) — NS(Xp))*. If pf2d(X,) and p € S,(X), then the Artin invariant
of Xy is 1, and hence

PEN = Sp(X)Z{

NS(Xp) = Ay
Using the standard technique of [15, Exp. XI], we have obtained the following in [25]:



Proposition 4.7. Suppose that p f2d(X,,), and let p be a point of S,(X). Then the
image of the specialization isometry NS(X,) — NS(Xy) is primitive.

Combining Proposition 4.7 and Theorem 2.4, we obtain the following:

Corollary 4.8. Suppose that p f2d(X,), and let p be a point of S,(X). Then L(X,p)
is an even, negative-definite lattice of rank 2 with discriminant —p*d(X,), and its
discriminant form is isomorphic to

(Dns, —gns) @ (Dpas@p1) = (Drygr) ® (Dpa, 4p),
where NS = NS(X,), T' = T(X;) for any o0 € Emb(F,C), and (D1, qp.1) is the

discriminant form of the Rudakov-Shafarevich lattice Ay ;.

Definition 4.9. For any [T] € £, and a prime integer p f2d, we denote by
G(p,T) C Lppg—1] :={-M|M e My2.}/ GL(2,Z)

the genus consisting of even, negative-definite lattices of rank 2 whose discriminant
form is isomorphic to (Dr, qr) @ (Dp1,qp1)-

In fact, the genus G(p,T) depends only on the genus containing [T]. By Theo-
rem 2.3, we have the following:

Corollary 4.10. Suppose that p f2d(X,). Then L(X,p) is contained in the genus
G(p, T(XY)) for any p € Sp(X).

In view of Theorem 3.4, it is natural to raise the following:

Problem 4.11. For a given [T] € L, does there exist a smooth proper family X — U
of K3 surfaces over an open subset U C Spec Zp with the following properties?
(i) (Dns(x,)s ans(x,)) = (Dr, —qr), and
(ii) except for a finite number of primes, if x,(d) = —1, then the set of isomor-
phism classes [L(X, )], where p runs through S,(X) = 7' (p), coincides with
the genus G(p,T).

In [25], we have proved a partial affirmative answer to this problem.

Definition 4.12. A negative integer d is called a fundamental discriminant if it is
the discriminant of an imaginary quadratic field.

Definition 4.13. An even lattice of rank 2 is said to be primitive if it is expressed
by a matrix

2a b
b 2c

} with  ged(a,b,c) = 1.

Theorem 4.14. Let d be a negative integer, and let T' be an even positive-definite
lattice of rank 2 with discriminant —d. Assume the following:
e d is odd,

e d is a fundamental discriminant, and



o T is primitive.
Then there exists a smooth proper family of K3 surfaces X — U over an open subset
U C SpecZr, where F is a number field, such that

(i) (Dns(x,)» aNs(x,)) = (Dr, —qr), and
(i) except for a finite number of primes, if x,(d) = —1, then the set

{[LX.p)] | peS(X) = (p) }

of isomorphism classes of supersingular reduction lattices at the points of
S,(X) = 7' (p) coincides with the genus G(p,T).

Remark 4.15. The author proved Theorem 3.4 in [25] under the assumption that d
be a fundamental discriminant, and that 7" be primitive. Then Schiitt [21] removed
these assumptions.

5. THE THEORY OF SHIODA, MITANI AND INOSE
We give a sketch of the proof of Theorems 3.4 and 4.14.
Suppose that a matrix
T = [Qba 2bc} with a,b,c€Z, a>0, ¢>0, d:=b*—4ac <0,
is given. Let v/d € C be in the upper-half plane. We consider elliptic curves
E' :=C/(Z+7Z) and E:=C/(Z+7Z),

—b+Vd L bt Vd
2a 2

where 7/ = dr . Shioda and Mitani [29] showed the following:

Theorem 5.1. The oriented transcendental lattice T(A) of the abelian surface
A:=EXE.
18 expressed by the given matriz T.

We consider the Kummer diagram
Km(A) «— A — A,

where A — A is the blowing-up of A at the 2-torsion points, and Km(A) « A is the
quotient by the lift of the inversion of A. Shioda and Inose [27] showed that, on the
Kummer surface Km(A), there exist reduced effective divisors C' and © such that
(i) C and © are disjoint,
(ii) C is an ADFE-configuration of (—2)-curves C, ..., Cs of type Es,
(iii) © is an ADFE-configuration of (—2)-curves ©1, ..., Oz of type 8A;, and
(iv) there exists a class [£] € NS(Km(A)) such that 2[£] = [©].



We consider the Shioda-Inose diagram
Y «— Y — Km(A),

where Y — Km(A) is the double covering branched exactly along ©, and Y « Y is
the contraction of the (—1)-curves on Y (that is, the inverse images of O, ..., Og).
Shioda and Inose [27] proved the following:

Theorem 5.2. The surface Y is a singular K3 surface, and the diagram
Y «— Y — Km(4) «— 4 — A
induces an isomorphism
TY)=ZTA) (=T)
of the oriented transcendental lattices.
Suppose that we have a Shioda-Inose-Kummer diagram
Y «— Y — Km(A) «— A — A=ExE&

over an open subset U of Spec Zp, where F' is a number field. We denote by

Y, «— Y, — Km(4,) «— A, — A,=E xE,
the generic fiber of the diagram. For a closed point p € U, we denote by
the fiber over p of the diagram.

Analyzing the arguments of Shioda and Inose, we obtain the following theorems.

[

Theorem 5.3. The above diagram over n induces an isomorphism f(Y}Z") =~ T(A7)
for any o € Emb(F,C).

Definition 5.4. For elliptic curves E;, F5 defined over a field k, we denote by
Hom(F4, E5) the Z-module of homomorphisms

9B @k — E @k,
and we regard Hom(F1, F») as a lattice by
(¢, ) :=2deg .
Theorem 5.5. Except for a finite number of closed points p of U, we have
Yy is supersingular <= E{) and Ey are supersingular,
and if this is the case, then the above diagram over p induces an isomorphism
L(Y,p) = (Hom(Ey, E,) — Hom(Ey, Ey))*[-1],

where Hom(Ey, Ey) — Hom(Ey, Ey) is the specialization isometry.



Thus Theorems 3.4 and 4.14 are reduced to the statements about elliptic curves.

The lattices f(Ag) =T(E,° xE,?) for 0 € Emb(F,C)) are calculated by the classical
theory of complex multiplications in the class field theory ([18], [30]). The lattices

(Hom(E], E,) — Hom(E'y, Ey))*

are calculated by Deuring’s theory [10] of endmorphism rings of supersingular elliptic
curves. We use Dorman’s description [11] of optimal embeddings of the integer ring
of an imaginary quadratic fields into the Deuring order.

6. AN APPLICATION TO TOPOLOGY

It is obvious from the definition that conjugate complex varieties are homeomor-
phic in Zariski topology. On the other hand, for the complex topology, we have the
following classical example by Serre [22].

Example 6.1. There exist conjugate complex smooth projective varieties X and X°?
such that their topological fundamental groups are not isomorphic. In particular, X
and X7 are not homotopically equivalent.

We also have Grothendieck’s dessins d’enfant ([16], [17]).

Example 6.2. Let f : C — P! be a finite covering defined over Q C C branching
only at 0,1,00 € P!. For o € Gal(Q/Q), consider the conjugate covering

f7:C° — P

Then f and f? are topologically distinct in general. Belyi’s theorem asserts that the
action of Gal(Q/Q) on the set of topological types of the coverings of P! branching
only at 0,1, 0o is faithful.

See Abelson [1], Artal, Carmona and Cogolludo [3], Easton and Vakil [12], Bauer,
Catanese and Grunewald [5] and Charles [8] for other examples. Using Corollary 3.5,
we also have obtained simple and explicit examples of non-homeomorphic conjugate
complex varieties in [23] and [26]. (Note that, except for [22] and [1], all these papers
have appeared quite recently.)

We present our construction of examples in [23] and [26]. Let V' be an oriented
topological manifold of real dimension 4. We put

Hy (V) := Hy(V, Z) /torsion,
on which we have the intersection pairing
wy » Ho(V) x Hy(V) — Z.

We then put
Joo(V) = () Im(Ha(V \ K) — Hy(V)),
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where K runs through the set of compact subsets of V', and set
By :=Hy(V)/J(V) and By := (By)/torsion.

Since any topological cycle is compact, the intersection pairing ¢y, induces a sym-
metric bilinear form

ﬂV:BVXBV_)Z-

It is obvious that the isomorphism class of (By, By ) is a topological invariant of V.

Theorem 6.3. Let S be a complex smooth projective surface, and let Cy,...,C, be
irreducible curves on S. We put

v=38\Jc.

Suppose that the classes [C1], ..., [Cyn] span NS(S)®@Q. Then (By, By) is isomorphic
to the transcendental lattice

T(S) := (NS(S) — H?(S, Z))* /torsion.

Using Corollary 3.5 and Theorem 6.3, we obtain the following examples of non-
homeomorphic conjugate complex varieties.

Example 6.4. Let T} and 75 be even positive-definite lattices of rank 2 that are in
the same genus but not isomorphic. We have a singular K3 surface X defined over
a number field F' and two embeddings 01,09 € Emb(F, C) such that

T(X°) 2T, and T(X°) 2T

Let C4,...,C, be irreducible curves on X whose classes span NS(X) ® Q. Enlarging
F', we can assume that the Zariski open subset V := X \ |JC; of X is also defined
over F'. Then the conjugate open varieties V' and V7?2 are not homeomorphic.

Definition 6.5. A pair [C, C’] of complex projective plane curves is said to be an
arithmetic Zariski pair if the following hold:

(i) Suppose that C' = {® = 0}, where ® is a homogeneous polynomial in three
variables. Then there exists ¢ € Emb(C,C) such that C" C P? is projectively
isomorphic to the plane curve C7 := {®7 = 0}.

(ii) There exist tubular neighborhoods 7 C P? of C' and 7’ C P? of C’ such that
(T,C) and (7", ") are diffeomorphic, while (P?, C) and (P2, C") are not homeomor-
phic.

Remark 6.6. The first example of an arithmetic Zariski pair was discovered by Artal,
Carmona, Cogolludo [3] in degree 12. They used the invariant of braid monodromies
in order to distinguish (P?,C') and (P?, C") topologically.

Definition 6.7. A complex plane curve C' C P? of degree 6 is called a mazimizing
sextic if C' has only simple singularities and the total Milnor number of C attains
the possible maximum 19.

11



If C' is a maximizing sextic, the minimal resolution X — Y¢ of the double cover
Yo — P? branching exactly along C is a singular K3 surface. We denote by T[C]
the transcendental lattice of X.

Remark 6.8. Using Urabe’s idea [31], Yang [32] has made the complete list of all
possible AD E-configurations of singular points of sextic curves with only simple
singularities. Recently, Degtyarev [9] has described the connected components of the
equisingular family of sextic curves with only simple singularities of a given ADFE-
configuration.

Example 6.9. In the following example, we employ a calculation of Artal, Carmona
and Cogolludo in [2]. We consider the following cubic extension of Q:

K :=Q[t]/(¢), where = 17t> —18t* — 228t + 556.
The roots of ¢ = 0 are a, &, 3, where
a=2590---+1.108---v/—1, f=—4121---.
There are three corresponding embeddings
0 K—=C, 05:K—=C and o03:K — C.

There exists a homogeneous polynomial ®(xq,x, z2) of degree 6 with coefficients in
K such that the plane curve C' = {® = 0} has three simple singular points of type
A6 + A + A; as its only singularities. Consider the conjugate plane curves

Co= {07 =0}, Cy={07 =0} and Cj={d7 =0}.

Artal, Carmona and Cogolludo showed that, if ¢’ C P? is a complex projective
plane curve possessing Aig + As + A; as its only singularities, then C” is projectively
isomorphic to C,, Cg or Cp.

On the other hand, by the surjectivity of the period map for complex K3 surfaces,
we can prove that there are exactly three singular K3 surfaces (up to isomorphism)
that is a double cover of P? with a sextic branch curve possessing A;g + Ay + A; as
its only singularities. Their oriented transcendental lattices are

10 +4 6 0
[10,i4,22]._[i4 221 and [6,0,34].[0 34],

which are in the same genus. The non-oriented lattices [10, 4, 22] and [10, —4, 22| are
isomorphic, while the non-oriented lattices [10, 4, 22] and [6, 0, 34] are not isomorphic.
Therefore we have

T[C,] = [10,4,22] or [10,—4,22] and T[Cj] = [6,0, 34].

(The homeomorphism (P?,C,,) = (P?,Cy) induced by the complex conjugate corre-
sponds to the orientation reversing of the transcendental lattices.) Let V' C Yo be
the pull-back of P2\ C' by Yz — P2, which is a smooth open surface defined over K.

12



Then the conjugate varieties V7« and V72 are not homeomorphic. Hence the pair
[Ca, Cp| is an arithmetic Zariski pair.

By the same method, we have found examples of arithmetic Zariski pair of maxi-

mizing sextics listed in the table below.

Z,
e

Sing(C') = Sing(C")

T[C] and T

C’] (non-oriented)

© 00 J O T = W N

W W W W W KN NN DNDDNDDNDNDDNDINDNR = = &= = = = ==
B W N O O© WO Ttk WNhEFE O O©OW-SO ULk W~ O

FEs+ Ajg + A

Eg + Ag + Ay + Aq
E6+D5+A6—|—A2
Eg + Ao + As

Eg + Ao+ A2 + Ay
Ee+ A7+ A4+ A
Es + Ag + As+ Ax + Ay
Dg + Ao+ A1

Dg + Ag + As + Ay
D7+ Ajo
D7+ Ag + Ay

Ds + Ajg + As

D5+ Ag + A5 + Ay + Ay
D5+ Ag +2A4
Aig + Aq

A+ As

Ag + Aa + Ay

Az + Ay + 24

A1g + Ag + Ay

Ap + As + 24,4

Ap + Ay + Ao+ Ay
Ao + Ag

Ao + Ag
A+ Ag + Ay
A+ A7+ Ay
Ao+ A7 4+ 244
Ao+ Ag + As + Ay
Ao+ As + A3 + Ay
Ao+ 244+ A4
Ao+ Ay + 242+ Ay
Ag+ Ag + As+ Ay
A7+ Ag + As+ A
A7+ Ag + Ay + 24
A7+ As+ Ag+ Ar + Ay
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2]

[3]

[12]

[13]
[14]

[15]

[17]

[18]

[19]
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