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§1. Construction of the Moduli Space

Let X be a supersingular K3 surface.

Let £ be a line bundle on X with £? = 2. We say that
L is a polarization of type (f) if the following conditions
are satisfied:
e the complete linear system |£| has no fixed compo-
nents, and
e the set of curves contracted by the morphism
P X — P
defined by |L| consists of 21 disjoint (—2)-curves.

If (X, L) is a polarized supersingular K3 surface of type
(), then ®, : X — P? is purely inseparable.

Every supersingular K3 surface has a polarization of
type ().

We will construct the moduli space M of polarized su-

persingular K3 surfaces of type (f).



Let G = G(Xy,X1,X2) be a non-zero homogeneous
polynomial of degree 6.
We can define

dG € T(P? 5(6)),
because we are in characteristic 2 and we have Op2(6) =
O]P)2(3)®2.

We put

8G 8G  OG } )
= = = 0 C ]P) .
80X, 09X, 00X,

Z(dG) := {dG =0} = {
If dim Z(dG) = 0, then
length Ozq) = c2(Qp2(6)) = 21.
We put
U = {G | Z(dG) is reduced of dimension 0 }
C H°(P? Op:(6)).
For G € U, we put
Y = {W? = G(Xo, X1, X2)} —5 P2,
and let
pc: Xg — Yo

be the minimal resolution of Y.
We have

Sing(Yg) = 75 (Z(dG)) = { 21 ordinary nodes }.



We then put
Le := (g o pg)*Op2(1).

(X, L) is a polarized supersingular K3 surface
of type (f)

i
there exists G € U such that (X, L) = (X¢g, L)

We put

V := H°(P?, Op2(3)).
Because we have d(G + H?) = dG for H € V, the
additive group YV acts on the space U by

(G,H)eU xV — G+ H?el.

Let G and G’ be homogeneous polynomials in U.
Then the following conditions are equivalent:
(i) Yg and Yg are isomorphic over P?,
(i) Z(dG) = Z(dG'), and
(iii) there exist ¢ € k* and H € V such that G' =
cG + H?>.



Therefore the moduli space M of polarized supersingu-

lar K3 surfaces of type (#) is constructed by
M = PGL(3,k)\P.(U/V).

We put
P:={P,..., Py},
on which the full symmetric group S»2; acts from left.
We denote by G the space of all injective maps
~: P — P?
such that there exists G € U satisfying v(P) = Z(dG).

Then we can construct M by

Example by Dolgachev-Kondo:
Gpk = XoX1X2(X) + X? + X3,
Z(dGpk) = P*(FFy).
The Artin invariant of the supersingular K3 surface

XGDK is 1.

[Gpk| € M: the Dolgachev-Kondo point.



§2. Stratification by Isomorphism Classes of
Codes

Let G be a polynomial in U.
NS (X¢g) : the Néron-Severi lattice of Xg,
disc NS(X¢g) = —227Xa),
(0(X¢) is the Artin invariant of X¢).
Let v : P — P2 be an injective map such that
~(P) = Z(dG) = wg(Sing Yg),

that is, v is a numbering of the singular points of Yg.
E; C X¢ : the (—2)-curve that is contracted to v (F;).
Then NS(X¢g) contains a sublattice

So = < [El]a“-a[Eﬂ]v [‘CG] > —

SY = Hom(So,Z) = { [E1]/2,...,[E21]/2,[Lc]/2)
> NS(Xg).



We put
Ce := NS(Xg)/So C 80V/Sy = F?' @y,
Ce = pr(Ce) C F$?! = 27 (the power set of P).
Here the identification F$?' = 27 is given by
vi— { P, € P | the i¢-th coordinate of v is 1 }.
We have
dimCg = dimCg = 11 — o(Xg).

We say that a reduced irreducible curve C C P? splits in
X if the proper transform of C' in X is non-reduced,
that is, of the form 2F-, where Fo C X is a reduced

curve in Xg.

We say that a reduced curve C C P? splits in X if

every irreducible component of C splits in Xg.



C C P? : a curve of degree d splitting in X,
m;(C) : the multiplicity of C at v(F;) € Z(dG).

21

[Fo] = o(d-[ta] — Y miO)E]) € NS(Xa),

=1

W(C) := [Fg]mod Sy € Cg = NS(X¢)/So,
w(C) := pr(w(C))

A general member @Q of the linear system

T (5), _< 0G 0G O0G >
ZEET =\ 89X, 80X, 98X,
splits in Xg.

In particular,

w(@)=P=(11,...,1) € Cg.

What kind of codes can appear as Cg for some G € U?



NS (X¢g) has the following properties;
e type II (that is, v?> € Z for any v € NS(X¢g)V),
e there are no u € NS(X¢) such that u-[Lg] = 1 and
u? = 0 (that is, |L¢g| is fixed component free), and
o if u € NS(Xg) satisfies u - [Lg] = 0 and u? = —2,
then v = [E;] or —[E;] for some ¢ (that is, Sing Yg

consists of 21 ordinary nodes).

C¢ has the following properties;
oP=(1,1,...,1) € Cg, and
o |lw| € {0,5,8,9,12,13,16,21} for any w € Cg.

The isomorphism classes [C] of codes C C F¥?' = 27
satisfying these conditions are classified:
=11 —-dimC,

r(o) = the number of the isomorphism classes.

o (1/12/3/4|5|6 |7 |8/9|10]total
r(o)|1/3/13/41/58/43/21/83| 1 | 193




the isomorphism class of (Xg, Lg) € M
<— Cg € ][C]

M = PGL(3,k)\P.(U/V) = | | M.

the isom. classes
Each M is non-empty.

dimMg =0 —1=10 —dimC.

Case of o0 = 1.
There exists only one isomorphism class [Cpk] with di-
mension 10.
P = P*(F4),
Cpk := ( L(Fy4) | L : Fs-rational lines) C 2%.
The weight enumerator of Cpgk is

14+ 212° +2102% +2802° + 280212 + 210213 + 21216 + 221,

The 0O-dimensional stratum Mpk consists of a single

point [(Xpk, Lpk)]|, where Xpgk is the resolution of

W? = XoX1X2(X, + X3 + X3).

10



§3. Geometry of Splitting Curves and Codes

Gclu.
We fix a bijection

~:P = Z(dG) = 7g(Sing Yg).

Let L C P? be a line.

L splits in (Xg, L),
<— |LN Z(dG)| > 3,
<— |LN Z(dG)| = 5.

Let Q C P? be a non-singular conic curve.
Q splits in (Xg, L),

— |QN Z(dG)| > 6, and

<~ |Q N Z(dG)| = 8.

The word w(L) = v (L N Z(dG)) of a splitting line L
is of weight 5.
The word w(Q) = v 1(Q N Z(dG)) of a splitting non-

singular conic curve Q@Q is of weight 8.
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A pencil € of cubic curves in P? is called a regular pencil
if the following hold:

e the base locus Bs(€) consists of distinct 9 points,
and

e every singular member has only one ordinary node.

We say that a regular pencil € splits in (Xqg, L¢) if every
member of £ splits in (Xg, Lg).

Let £ be a regular pencil of cubic curves spanned by
Ey and E,. Let Hy = 0 and H,, = 0 be the defining
equations of FEy, and E.,, respectively. Then £ splits in
(Xg, L¢) if and only if

Z(dG) = Z(d(HoH)),
or equivalently
Ye and Yg, g, are isomorphisc over Pz,
or equivalently
dce kX, AH €V, HyH. = cG + H>.
If £ splits in (X¢g, L¢g), then Bs(€) is contained in Z(dG),

and

w(E;) = v~ (Bs(£))
holds for every member FE; of £. In particular, the word
w(E;) is of weight 9.
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Let A be a word of Cg.

(i) We say that A is a linear word if |A| = 5.

(ii) Suppose |A| = 8. If A is not a sum of two linear
words, then we say that A is a quadratic word.

(iii) Suppose |A| = 9. If A is neither a sum of three
linear words nor a sum of a linear and a quadratic words,

then we say that A is a cubic word.

By C — w(C), we obtain the following bijections:

{ lines splitting in (Xg, L¢) }

>~ { linear words in C¢ },

{ non-singular conic curves splitting in (Xg, Lg) }

aY)

=~ { quadratic words in C¢g }.

By € — w(E;) = v !(Bs(€)), we obtain the bijection

{ regular pencils of cubic curves splitting in (X¢g, L¢g) }

a

>~ { cubic words in C¢ }.
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§4. The Case of Artin Invariant 2

We start from a code C C 2% such that
P =(1,1,...,1) € C, and
o lw| € {0,5,8,9,12,13,16,21} for any w € C,

and construct the stratum M.

For simplicity, we assume that C is generated by P and

words of weight 5 and 8.

We denote by G¢ the space of all injective maps
~ P — P?
with the following properties:
(i) v(P) = Z(dG) for some G € U (that is, v € G),
(ii) for a subset A C P of weight 5, v(A) is collinear if
and only if A € C,
(iii) for a subset A C P of weight 8, v(A) is on a non-

singular conic curve if and only if A € C and A is

not a sum of words of weight 5 in C.
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M = PGL(3,k)\G/S21 D
M[C] = PGL(3, k)\gc/ Aut(C).

Suppose that the isomorphism class of (Xg,Lg) is a
point of M.
Let v € G¢ be the injective map such that ~(P) =
Z(dG).
Then
Aut(Xgq, Lg) ={ g € PGL(3,k) | g(Z(dG)) = Z(dG) }
is the stabilizer subgroup

Stab({(y)) C Aut(C)
of the projective equivalence class (v) € PGL(3, k)\Gc.

We carry out this construction of Mc for the three iso-
morphism classes [C4], [Cg]|, [Cc] of codes with dimension

9, that is, the Artin invariant 2.
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(Generators of the code C4

—_— — — —— — — — —

Generators of the code Cp

—_— —_— — —— — — — —

Generators of the code Co

—_—  — — r—— — — — —

—_— e e e e et et et
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The weight enumerators of these codes are as follows:

Ca : 14 2% +13(2° + 219 +106(2° + 2'%) + 136(2° + 2'9),
Cp : 14221 +9(2° + 2'%) 4+ 102(2® + 2%) + 144(2° + 212,
Cc : 1+ 2% +5(2° + 2% +130(2° + 2) + 120(2° + 2'2).

The numbers of linear, quadratic and cubic words in
these codes, and the order of the automorphism group

are given in the following table:

linear quadratic cubic || Aut(C)]
Ca| 13 28 0 1152
Cs 9 66 0 432
Cc 5% 120 0 23040

These codes are generated by P and linear and qua-

dratic words.
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For T = A, B and C, the following hold.
(w is the third root of unity, and ® = w + 1.)

The space PGL(3, k)\Gr has exactly two connected com-

ponents, both of which are isomorphic to
Speck[A,1/(A* + M) = A'\ {0,1,w, ®}.
Let Ny C Aut(Cr) be the subgroup of index 2 that

preserves the connected components, and let I't be the

image of Nr in
Aut(A'\ {0,1,w,®}).
The moduli curve
Mr = (A'\ {0,1,w,&})/Tr
is isomorphic to a punctured affine line
Spec k[Jr,1/Jr] = A\ {0}.

The punctured origin J;r = 0 corresponds to the Dolgachev-

Kondo point.

The action of I'r on A'\ {0, 1, w, @} is free. Hence the or-
der of Stab((v)) C Aut(Cr) is constant on PGL(3, k)\Gr.

We have an exact sequence

1 - Auwt(X,L) — Nr — I'r — 1.
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The case A:

r —{)\A—l—ll 1 A )\+1}QS
A — ’ 7)\7)\_'_19)\_'_17 A — 3
(P A4)

AT N +1)2

GA[)\] = XOX1X2 (Xo —|— Xl -|— Xz) .
<X02 + X2+ <)\2 + A) Xo% + XoX1 + X1 X, + X2X0> .

The family

W? = GA[)]
is the universal family of polarized supersingular K3
surfaces over the A-line.
For a € k\ {0,1,w,®}, Aut(Xgaja]s Lca[q)) is equal to
the group

AR A € GL(2,T,),
b | ¢ pars, k)| © S (2,F2) .
00|1 a,be {0,1,a,a+ 1}
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I'p is isomorphic to the alternating group Aj.

Jg = A+ w)2/(A(A+1)2(A 4+ @)3).
GB[)\] — XOX1X2 (XO —|— Xl —|— Xz) .

(@A + w) Xo® + @ X1° + wA X+
(A+1) XoX1 + (@A + w) X1 X2 + (A4 1) X2X).

I'c is the group of affine transformations of an affine line

over [Fy.

Joc = (A*+ )3

GC\] = Xo X1 X2 (X3 4+ X7+ X5) + (A + )X X5,

The orders of the groups above are given as follows.

T |Aut(Cr)| = 2 X |I'p| X |Aut(X, L)|
A 1152 =2 X 6 X 96
B 432 = 2 X 12 X 18
C| 23040 =2 x 12 X 960
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§5. Cremona transformations

Let ¥ = {p1,...,p6} C Z(dG) be a subset with |¥| =6
satisfying the following:

e no three points of X are collinear, and

e for each 2, the non-singular conic curve QQ; contain-

ing ¥ \ {p;} satisfies Q; N Z(dG) = X\ {p:}.

Let 3 : S — P2 be the blowing up at the points in X,
and
let 3’ : S — P2 be the blowing down of the strict trans-

forms @’ of the conic curves Q;.
The birational map
c:=80op7": P°... - P?

is called the Cremona transformation with the center
3.

There exists G’ € U such that
(Z(AG)\ D) U{F (@) |i = 1,...,6} = Z(dG).

Obviously, X and X are isomorphic.
But (Xg, Lg) and (Xg/, L) may fail to be isomorphic.
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A curve D C Mg X My is called an isomorphism cor-

respondence if, for any pair
(X, L], [X',L']) € D,

the K3 surfaces X and X’ are isomorphic as non-polarized

surfaces.

Using Cremona transformations, we obtain an example

of non-trivial isomorphism correspondences.

Let (X, L) and (X', L") be polarized supersingular K3
surfaces of type (§) with Artin invariant 2, and let Jr

and Jp be their J-invariants.
If T =T = A and
14+ JaJ) + JA2T° + J42T° + J43T,° =0,
then X and X'’ are isomorphic.
If T =A and T = B and
Jg+Jadp + JaJdp® + Ja%Jp + Ja* =0,

then X and X'’ are isomorphic.
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The isomorphism correspondence

14+ gy + T2+ T2 + T30, =0
intersects with the diagonal A4, C M4 X M4 at two
points (J4,J)) = (w,w) and (&, ).

At these points, the automorphism group Aut(X) of the

supersingular K3 surface jumps.

Do all isomorphism correspondences come from Cre-

mona transformations?
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