Supersingular K3 surfaces (in characteristic 2)

Ichiro Shimada
(Hokkaido University, Sapporo)

We work over an algebraically closed field k of charac-

teristic p > 0.

Definition

A non-singular projective surface X is called
a K3 surface if
] KX = Ox, and

® hl(X, OX) = 0.



Example: K3 surfaces as double covers of P2,

Let C(xg, 1, x2) and F(xg, x1, x2) be homogeneous poly-
nomials of degree 3 and 6, respectively.
Let Y be a double cover of P? defined by

w? + w - C(w07 L1, w2) + F(ﬂUo, L1, $2) =0,
and let X — Y be the minimal resolution of Y.
Then X is a K3 surface if and only if Y has only ra-
tional double points as its singularities; that is, if and
only only if the exceptional divisor of X — Y is an

ADE-configuration of smooth rational curves of self-

intersection —2.
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Conversely, let X be a K3 surface.
Let £ be a line bundle of X with £? = 2.

If the complete linear system |£| has no fixed compo-
nents, then dim |£| = 2, and the morphism
P X — P?
defined by |L| is factored as
X —-Y — P?
where Y — P? is a double cover defined by
w? + w - C(xg, 1, T2) + F(x, 1, T2) = 0,

with deg C' = 3 and deg F' = 6, and Y has only rational

double points as its singularities.



Remarks
(1) Suppose that k is not of characteristic 2. Then we
can assume that

C(xg, T2, x2) =0
by the coordinate change

w— w+ C/2.
Let B C P? be the branch curve of Y — P?;

B = {F(xy,x1,x3) = 0} C P2

Then X is a K3 surface if and only if the plane curve

B has only rational double points as its singularities.

(2) In characteristic 2,

C(wo, I, :132) =0 <

X is purely inseparable over P2




Let X be a K3 surface.

Let D be a divisor on X.
We say that D is numerically equivalent to 0
(denoted by D = 0) if

CD =0 for any curve C C X

holds. (Here CD is the intersection number.)

The Néron-Severi lattice NS(X) of X is the free abelian

group
{divisors on X}/ = ,

equipped with the non-degenerate pairing

[D][D’] := DD'.

The rank of NS(X) is called the Picard number of X:
p(X) :=rank NS(X).



Corollary of Hodge Index Theorem

The signature of the quadratic form on NS(X) ® R
defined by the intersection pairing is (1, p(X) — 1).

In characteristic 0, we have
NS(X) = H"(X) N H*(X,7Z).
In particular, p(X) < hb(X) = 20.

In positive characteristics, the possible values of p(X)
are 1,...,20 and 22.

A K3 surface X is supersingular (in the sense of Shioda)
if p(X) = 22 holds.



Example
Suppose that k is of characteristic 2.

Let G(x¢,x1,x2) be a general homogeneous polynomial

of degree 6. Then the purely inseparable double cover
Y; — P? defined by

w? = G (xo, 1, x2)

has 21 rational double points of type A;.

Proof. We put g(x,y) := G(x,y,1). Since
Ow?

T —0
ow

in characteristic 2, the singular points of Y is given by
dg Og
oxr Oy
The affine curves dg/0x = 0 and 9g/dy = 0 intersect

at 21 points transversely when G is general. (Other four

= 0.

intersection points are always on the line at infinity.) [

Let X — Y¢ be the minimal resolution of Yg. Since
p(Xg) =214+ 1 = 22,

the K3 surface X is supersingular.



Example (Pho D. Tai)
Suppose that k is of characteristic 5.

Let f(x) be a general polynomial of degree 6, and let
B C P? be the projective completion of the affine curve
defined by

y* = f(2).
Then Sing B consists of five rational double points of
type Ajy.
Indeed, let ay,..., a5 be the roots of f'(x) = 0, and let

3; be the (unique) 5-th root of y° = f(«;). Then
Sing B = {(a1,01)5. .+, (a5,05) }
At each singular point, B is formally isomorphic to
n° — & =0.
Let Y — P? be the double cover defined by
w? =y° — f(x),
and let X — Y be the minimal resolution of Y. Then
p(X)>5x4+1=21.
Hence p(X) = 22.



The discriminant of a lattice is the determinant of the

intersection matrix.

Theorem (Artin)

Let X be a supersingular K3 surface in characteristic
p. Then the discriminant of NS(X) is of the form

20

—P ’

where ox is a positive integer < 10.

The integer ox is called the Artin invariant of the su-

persingular K3 surface X.

Theorem (Artin, Shioda, Rudakov-Shafarevich)

For any pair (p,o) of a prime integer p and a positive
integer o < 10, there exists a supersingular K3 surface

X in characteristic p with Artin invariant o.



Theorem (Rudakov-Shafarevich)

The Néron-Severi lattice of a supersingular K3 surface
is determined uniquely (up to isomorphisms of lattices)

by p and the Artin invariant.

More precisely:

Let A,, be the lattice of rank 22 with the following
properties:

(i) even (i.e., v? € 2Z for every v € A, ),

(ii) the signature is (1,21),

(iii) the cokernel of the natural embedding

Ap,O' — A;)/,O' = Hom(Ap’o-, Z) C Ap,o' ®Z @

is isomorphic to (Z/pZ)®?°, and
(iv) if p = 2, then u® € Z for every u € Ay C Az, ®2Q.

e These properties determine the lattice A,, uniquely
up to isomorphisms.
e If X is a supersingular K3 surface in characteristic p

with ox = o, then NS(X) has these properties.

Hence there exists an isomorphism

¢ : Ay, — NS(X).
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Theorem (Rudakov-Shafarevich)

Let h € A,, be a vector with h? = 2 such that
{veA, | v =0,vh=1}=0.
Then we can choose an isomorphism
¢ : Ay, — NS(X)
in such a way that
¢(h) = [£],
where L is a line bundle on X whose complete linear

system |L£| has no fixed components.

Let
X Y — P2

be the Stein factorization of @, : X — P2. Then the
ADE-type of the singularity of Y is equal to the ADE-
type of the root system

{veA, | v =-2,vh=0}.

For a supersingular K3 surface X, the set
{generically finite morphisms X — P? of degree 2}

is completely determined by the characteristic p and the

Artin invariant of X.
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Theorem (S.)

(1) Every supersingular K3 surface in odd characteristic
is birational to a double cover of P? branched along a

plane curve of degree 6.

(2) Every supersingular K3 surface in characteristic 2
is birational to a purely inseparable double cover of P?

that has 21 rational double points of type A;.

Problem in odd characteristics

For each pair (p, o), find a plane curve
F(mo, I, .’132) =0

of degree 6 such that the minimal resolution of the sur-
face w? = F(xg, T, T2) is a supersingular K3 surface in

characteristic p with Artin invariant o.
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Example in characteristic 5 (Pho D. Tai)

Suppose that k is of characteristic 5, and let X be the

supersingular K3 surface birational to

{w* =y - f(z)} C A%
where f(x) is a general polynomial of degree 6. Then
NS (X) is isomorphic to
2 1

R(A4) ® R(A4) © R(Ay) © R(A4) © R(A4) © <1 2) ’
where R(A,) is the (negative-definite) root lattice given
by the Cartan matrix of type Ay;
(-2 1 0 0)

1 —2 1 O

0 1 —2 1
\0 0 1 -2

Since disc R(A4) = 5, we have disc NS(X) = —55%, and

hence

O'X:3.
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Example (continued)

Conversely, suppose that X is a supersingular K3 sur-
face in characteristic 5 with Artin invariant 3. Then, by

the theorem of Rudakov-Shafarevich, NS(X) is isomor-
phic to

R(A,) ® R(Ay) ® R(Ay) & R(Ay) & R(Ay) B <i _12> .

It follows that X has a line bundle L of degree 2 (L? = 2)
such that

e |£| has no fixed components, and

e the Stein factorization of the morphism ®, : X —
P? defined by |L] is

X —»Y — P?

where Y has 5A4, as its singularities.

On the other hand, we can show that, if a plane curve B
of degree 6 has 5A, as its singularities, then B is defined

by an equation of the form

y° — f(z) = 0.
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Theorem (Pho D. Tai)

Every supersingular K3 surface in characteristic 5 with
Artin invariant < 3 is birational to a surface defined by

an equation of the form

w® =y’ — f(x).

Corollary

Every supersingular K3 surface X in characteristic 5

with Artin invariant < 3 is unirational; that is, the func-
tion field k(X)) of X is contained in k(P?) = k(u,v).

Conjecture (Artin-Shioda)

Every supersingular K3 surface X is unirational.

Artin-Shioda Conjecture has been verified in the follow-
ing cases:

op =2,

ep =3 and o < 6, and

oo < 2.
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Suppose that k is of characteristic 2.

Then every supersingular K3 surface is obtained as the
minimal resolution Xgs — Yg of a purely inseparable

double cover
Yo @ w? = G(xg, 1, x2)

of P? with 21 ordinary nodes.

We put

U := { G | Sing(Ys) consists of 21 ordinary nodes }
C H°(P?, Op2(6)).

Then U is a Zariski open dense subset of H?(P?, Op2(6)).
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For any G € H°(P?, Op2(6)), we can define
dG € T(P*,Qp(6)),

because we are in characteristic 2 and we have Op2(6) =
Op2(3)®? so that the transition functions of Op:2(6) are

squares:

g =t°g = dg’ =2gdt+t*dg = t*dg.
Let Z(dG) be the subscheme of P? defined by dG = 0.

Then we have
Sing(Ye) = mg' (Z(dG)),
where ¢ : Yo — P? is the covering morphism.
Hence
U={G | Z(dG) is reduced of dimension 0 }.
(Note that c3(€23,(6)) = 21.)
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We put

V := H°(P?, Op2(3)).
Because we have d(G + H?) = dG for H € V, the
additive group YV acts on the space U by

(G,H)EUXY — G+ H?cU.

Let G and G’ be homogeneous polynomials in U.
Then the following conditions are equivalent:
(i) Yg and Yg are isomorphic over P?,
(ii) Z(dG) = Z(dG"), and
(iii) there exist ¢ € k* and H € V such that
G' =cG + H>.

Therefore a moduli space M of polarized supersingular

K3 surfaces of degree 2 is constructed by

M = GL(3,k)\U/V.
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Let

U/V)* C UV
be the locus of stable points with respect to the action
of GL(3,k) on the vector space U/V.

By Hilbert-Mumford criterion, we can see that

(U/V)? = { G | Yg has only rational double points }.

If [G] € (U/V)?, then Sing(Yy) consists of rational dou-
ble points of type

Al, D2m7 E7 or Eg.
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We can calculate the Artin invariant of X from G € U.

Example
If G € U is general, the Artin invariant of X is 10.

Let G; and G; be general homogeneous polynomials
such that
deg G; + deg G, = 6.
Then
G = GGy

is a member of U, and the Artin invariant of X is 9.
The proper transform of the plane curve C; defined by
G, = 0 is non-reduced divisor on Xg. It is written as

2F,. The class of the curve F) gives an extra algebraic

cycles.
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Example

Let Li,...,Lg be general linear forms of P2. Then
G = L1L2...L6

is a member of U, and the Artin invariant of X is 5.

Example
We put

Gla] := xox122 (:133 + a:? + wg) +a wgw?,
where a is a parameter.

Then Gla] is a member of U for any a, and the Artin

invariant of Xgjq) is
2 if a # 0,
1 ifa=0.
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Compactification of the moduli.

Rudakov, Shafarevich and Zink showed that, at least in
characteristic > 3, every smooth family of of supersin-
gular K3 surfaces can be extended, after base change
by finite covering and birational transformation of the

total space, to a non-degenerate complete family.

Problem

Construct explicitly a non-degenerate completion of a

finite cover of the moduli space M.
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Example in characteristic 3 (S. and De Qi Zhang)

In characteristic 3, every supersingular K3 with Artin

invariant < 6 is birational to a purely inseparable triple
cover Y of P! x P! defined by

w® = f(xo, T15 Yo, Y1),
where f is a bi-homogeneous polynomial of degree (3, 3),
and Y has 10 rational double points of type A, as its

only singularities.

The minimal resolution of the surface

w? = (zy — 2o1) (Y — Yo¥Y1)

is a supersingular K3 surface with Artin invariant 1.
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