Singularity of discriminant varieties in characteristic 2 and 3

Ichiro Shimada (Hokkaido University, Sapporo, JAPAN)

We work over an algebraically closed field k.

§1. An Example

Let $E \subset \mathbb{P}^2$ be a smooth cubic plane curve.

We fix a flex point $O \in E$, and consider the elliptic curve (E, O).

Let $(\mathbb{P}^2)^{\vee}$ be the dual projective plane, and let $E^{\vee} \subset (\mathbb{P}^2)^{\vee}$ be the dual curve of E. We denote by

$$\phi: E o E^ee$$

the morphism that maps a point $P \in E$ to the tangent line $T_P(E) \in E^{\vee}$ to E at P.

Suppose that $char(k) \neq 2$.

Then E^{\vee} is of degree 6, and ϕ is birational.

The singular points $\operatorname{Sing}(E^{\vee})$ of E^{\vee} are in one-to-one correspondence with the flex points of E via ϕ .

On the other hand, the flex points of E are in one-to-one correspondence with the 3-torsion subgroup E[3] of (E,O).

We have

$$E[3] \cong egin{array}{l} E[3] \cong \ & \mathbb{Z}/3\mathbb{Z} imes \mathbb{Z}/3\mathbb{Z} & ext{if } \mathrm{char}(k)
eq 3, \ & \mathbb{Z}/3\mathbb{Z} & ext{if } \mathrm{char}(k) = 3 ext{ and } E ext{ is not supersingular,} \ & 0 & ext{if } \mathrm{char}(k) = 3 ext{ and } E ext{ is supersingular.} \end{array}$$

Then we have

$$\operatorname{Sing}(E^{\vee})$$
 consists of

\mathbf{type}	defining equation	normalization
$oldsymbol{A_2}$	$x^2+y^3=0$	$t\mapsto (t^3,t^2)$
$oldsymbol{E_6}$	$x^4 + y^3 + x^2y^2 = 0$ or	$t\mapsto (t^4,t^3+t^5)$ or
	$x^4+y^3=0$	$t\mapsto (t^4,t^3)$
$\overline{T_3}$	$x^{10} + y^3 + x^6 y^2 = 0$	$t\mapsto (t^{10},t^3+t^{11})$

Remark. When $char(k) \neq 3$, then the two types of the E_6 -singular point are isomorphic.

Suppose that char(k) = 2.

Then E^{\vee} is a smooth cubic curve, and $\phi: E \to E^{\vee}$ is a purely inseparable finite morphism of degree 2.

If E is defined by

$$x^3 + y^3 + z^3 + a \ xyz = 0,$$

then E^{\vee} is defined by

$$\xi^3 + \eta^3 + \zeta^3 + a^2 \xi \eta \zeta = 0,$$

where $[\xi:\eta:\zeta]$ are the homogeneous coordinates dual to [x:y:z] (C. T. C. Wall).

§2. Introduction

The aim of this talk is to investigate the singularity of the discriminant variety of a smooth projective variety $X \subset \mathbb{P}^m$ in arbitrary characteristics.

It turns out that the nature of the singularity differs according to the following cases:

- char(k) > 3 or char(k) = 0 (the classical case),
- \bullet char(k)=3,
- \bullet char(k) = 2 and dim X is even,
- char(k) = 2 and dim X is odd (I could not analyze the singularity in this case).

§3. Definition of the discriminant variety

We need some preparation.

Let V be a variety, and let E and F be vector bundles on V with rank e and f, respectively. For a bundle homomorphism $\sigma: E \to F$, we define the *degeneracy* subscheme of σ to be the closed subscheme of V defined locally on V by all r-minors of the $f \times e$ -matrix expressing σ , where $r := \min(e, f)$.

Let V and W be smooth varieties, and let $\phi: V \to W$ be a morphism.

The *critical subscheme* of ϕ is the degeneracy subscheme of the homomorphism $d\phi: T(V) \to \phi^* T(W)$.

Suppose that dim $V \leq \dim W$. We say that ϕ is a closed immersion formally at $P \in V$ if $d_P \phi : T_P(V) \to T_{\phi(P)}(W)$ is injective, or equivalently, the induced homomorphism $(\mathcal{O}_{W,\phi(P)})^{\wedge} \to (\mathcal{O}_{V,P})^{\wedge}$ is surjective.

When dim $V \leq \dim W$, a point $P \in V$ is in the support of the critical subscheme of ϕ if and only if ϕ is not a closed immersion formally at P.

Let $X \subset \mathbb{P}^m$ be a smooth projective variety with dim X = n > 0. We put

$$\mathcal{L} := \mathcal{O}_X(1).$$

We assume that X is not contained in any hyperplane of \mathbb{P}^m . Then the dual projective space

$$\mathbb{P} := (\mathbb{P}^m)^{\vee}$$

is regarded as a linear system |M| of divisors on X, where M is a linear subspace of $H^0(X, \mathcal{L})$.

Let $\mathcal{D} \subset X \times \mathbb{P}$ be the universal family of the hyperplane sections of X, which is smooth of dimension n+m-1. The support of \mathcal{D} is equal to

$$\{\ (p,H)\in X\times \mathbb{P}\ \mid\ p\in H\cap X\ \}.$$

Let $\mathcal{C} \subset \mathcal{D}$ be the critical subscheme of the second projection $\mathcal{D} \to \mathbb{P}$. It turns out that \mathcal{C} is smooth of dimension m-1. The support of \mathcal{C} is equal to

$$\{\ (p,H)\in \mathcal{D}\ \mid\ H\cap X \ \text{is singular at}\ p\ \}.$$

Let $\mathcal{E} \subset \mathcal{C}$ be the critical subscheme of the second projection $\pi_2 : \mathcal{C} \to \mathbb{P}$. The support of \mathcal{E} is equal to $\{ (p, H) \in \mathcal{C} \mid \text{ the Hessian of } H \cap X \text{ at } p \text{ is degenerate } \}.$

The image of $\pi_2:\mathcal{C}\to\mathbb{P}$ is called the discriminant variety of $X\subset\mathbb{P}^m.$

We will study the singularity of the discriminant variety by investigating the morphism $\pi_2: \mathcal{C} \to \mathbb{P}$ at a point of the critical subscheme \mathcal{E}

Let $P = (p, H) \in X \times \mathbb{P}$ be a point of \mathcal{E} , so that $H \cap X$ has a degenerate singularity at p.

Let $\Lambda \subset \mathbb{P}$ be a general plane passing through the point $\pi_2(P) = H \in \mathbb{P}.$

We denote by $C_{\Lambda} \subset \mathcal{C}$ the pull-back of Λ by π_2 , and by $\pi_{\Lambda}: C_{\Lambda} \to \Lambda$ the restriction of π_2 to C_{Λ} .

- What type of singular point does the plane curve $\Lambda \cap \pi_2(\mathcal{C})$ have at H?
- ullet Does there exist any normal form for the morphism $\pi_{\Lambda}:C_{\Lambda}
 ightarrow \Lambda$ at P?

$\S 4$. The scheme \mathcal{E}

For $P = (p, H) \in \mathcal{C}$, we have the *Hessian*

$$H_P\,:\,T_p(X) imes T_p(X)\,
ightarrow\, k$$

of the hypersurface singularity $p \in H \cap X \subset X$. If $H \cap X$ is defined locally by f = 0 in X, then H_P is expressed by the symmetric matrix

$$M_P := \left(rac{\partial^2 f}{\partial x_i \partial x_j}(p)
ight).$$

Over C, we can define the universal Hessian

 $\mathcal{H}\,:\,\pi_1^*\,T(X)\otimes\pi_1^*\,T(X)\,
ightarrow\,\widetilde{\mathcal{L}}:=\pi_1^*\mathcal{L}\otimes\pi_2^*\mathcal{O}_{\mathbb{P}}(1),$ where $\pi_1:\mathcal{C}
ightarrow X$ and $\pi_2:\mathcal{C}
ightarrow\,\mathbb{P}$ are the projections.

The critical subscheme \mathcal{E} of $\pi_2:\mathcal{C}\to\mathbb{P}$ coincides with the degeneracy subscheme of the homomorphism $\pi_1^*T(X)\to\pi_1^*T(X)^\vee\otimes\widetilde{\mathcal{L}}$ induced from \mathcal{H} .

From this proposition, we see that $\mathcal{E} \subset \mathcal{C}$ is either empty or of codimension ≤ 1 . In positive characteristics, we sometimes have $\mathcal{E} = \mathcal{C}$.

Example.

Suppose that char(k) = 2. Then the Hessian H_P is not only symmetric but also anti-symmetric, because we have

$$M_P={}^tM_P=-{}^tM_P \quad ext{and} \quad rac{\partial^2\phi}{\partial x_i^2}(p)=0.$$

On the other hand, the rank of an anti-symmetric bilinear form is always even. Hence we obtain the following:

If char(k) = 2 and dim X is odd, then $C = \mathcal{E}$.

Example.

Let $X \subset \mathbb{P}^{n+1}$ be the Fermat hypersurface of degree q+1, where q is a power of the characteristic of the base field k. Then, at every point (p, H) of \mathcal{C} , the singularity of $H \cap X$ at p is always degenerate. In particular, we have $\mathcal{C} = \mathcal{E}$.

The discriminant variety of a hypersurface is the dual hypersurface. The dual hypersurface X^{\vee} of the Fermat hypersurface X of degree q+1 is isomorphic to the Fermat hypersurface of degree q+1, and the natural morphism $X \to X^{\vee}$ is purely inseparable of degree q^n .

§5. The quotient morphism by an integrable tangent subbundle

In order to describe the situation in characteristic 2 and 3, we need the notion of the quotient morphism by an integrable tangent subbundle.

In this section, we assume that k is of characteristic p > 0. Let V be a smooth variety.

A subbundle \mathcal{N} of T(V) is called *integrable* if \mathcal{N} is closed under the p-th power operation and the bracket product of Lie.

The following is due to Seshadri:

Let \mathcal{N} be an integrable subbundle of T(V). Then there exists a unique morphism $q:V\to V^{\mathcal{N}}$ with the following properties;

- (i) q induces a homeomorphism on the underlying topological spaces,
- (ii) q is a radical covering of height 1, and
- (iii) the kernel of $dq: T(V) \to q^* T(V^{\mathcal{N}})$ is equal to \mathcal{N} . Moreover, the variety $V^{\mathcal{N}}$ is smooth, and the morphism q is finite of degree p^r , where $r = \operatorname{rank} \mathcal{N}$.

For an integrable subbundle \mathcal{N} of T(V), the morphism $q:V\to V^{\mathcal{N}}$ is called the *quotient morphism* by \mathcal{N} .

The construction of $q:V\to V^{\mathcal{N}}$.

Let V be covered by affine schemes $U_i := \operatorname{Spec} A_i$. We put

$$A_i^{\mathcal{N}} := \{ \; f \in A_i \; \mid \; Df = 0 \; ext{ for all } \; D \in \Gamma(U_i, \mathcal{N}) \; \}.$$

Then the natural morphisms $\operatorname{Spec} A_i \to \operatorname{Spec} A_i^{\mathcal{N}}$ patch together to form $q: V \to V^{\mathcal{N}}$.

Let $\phi: V \to W$ be a morphism from a smooth variety V to a smooth variety W. Suppose that the kernel \mathcal{K} of $d\phi: T(V) \to \phi^* T(W)$ is a subbundle of T(V), which is always the case if we restrict ϕ to a Zariski open dense subset of V. Then \mathcal{K} is integrable, and ϕ factors through the quotient morphism by \mathcal{K} .

The case where char(k) = 2 and dim X is odd.

Suppose that $\operatorname{char}(k)=2$ and $\dim X$ is odd, so that $\mathcal{C}=\mathcal{E}$ holds. Let \mathcal{K} be the kernel of the homomorphism $\pi_1^*T(X)\to\pi_1^*T(X)^\vee\otimes\widetilde{\mathcal{L}}$ induced from the universal Hessian \mathcal{H} , which is of rank ≥ 1 at the generic point of every irreducible component of \mathcal{C} . Then the subsheaf

 $\mathcal{K} \ \subset \ \pi_1^*\,T(X) \ \subset \ \pi_1^*\,T(X) \oplus \pi_2^*\,T(\mathbb{P}) = T(X imes \mathbb{P})|\mathcal{C}$ is in fact contained in $T(\mathcal{C}) \subset T(X imes \mathbb{P})|\mathcal{C}$.

Let $U \subset \mathcal{C}$ be a Zariski open dense subset of \mathcal{C} over which \mathcal{K} is a subbundle of $T(\mathcal{C})$. Then the restriction of π_2 to U factors through the quotient morphism by \mathcal{K} . In particular, the projection $\mathcal{C} \to \mathbb{P}$ is inseparable onto its image.

§6. The case where $char(k) \neq 2$

Suppose that the characteristic of k is not 2.

Let (p, H) be a point of \mathcal{E} , so that the divisor $H \cap X$ has a degenerate singularity at p.

We say that the singularity of $H \cap X$ at p is of type A_2 if there exists a formal parameter system (x_1, \ldots, x_n) of X at p such that $H \cap X$ is given as the zero of the function of the form

$$x_1^2 + \cdots + x_{n-1}^2 + x_n^3 + \text{(higher degree terms)}.$$

We then put

$$\mathcal{E}^{A_2} := \left\{ egin{array}{ll} (p,H) \in \mathcal{E} & \left| egin{array}{ll} ext{the singularity of } H \cap X ext{ at} \ p ext{ is of type } A_2 \end{array}
ight.
ight.
ight.$$

We also put

$$\mathcal{E}^{ ext{sm}} := \left\{egin{array}{c} (p,H) \in \mathcal{E} & \left| egin{array}{c} \mathcal{E} ext{ is smooth of dimension} \ m-2 ext{ at } (p,H) \end{array}
ight.
ight.
ight.$$

We see that \mathcal{E} is irreducible and the loci \mathcal{E}^{A_2} and \mathcal{E}^{sm} are dense in \mathcal{E} if the linear system |M| is sufficiently ample; e.g., if the evaluation homomorphism

$$v_p^{[3]}:\,M\, o\,{\cal L}_p/m_p^4{\cal L}_p$$

is surjective at every point p of X, where $m_p \subset \mathcal{O}_{X,p}$ is the maximal ideal.

The case where char(k) > 3 or char(k) = 0.

In this case, we have the following:

Let P=(p,H) be a point of \mathcal{E} . The following two conditions are equivalent:

- ullet $P\in \mathcal{E}^{A_2},$
- $ullet P \in \mathcal{E}^{\mathrm{sm}}, ext{ and the projection } \mathcal{E} o \mathbb{P} ext{ is a closed immersion formally at } P.$

Moreover, if these conditions are satisfied, then the curve $C_{\Lambda} = \pi_2^{-1}(\Lambda)$ is smooth at P, and $\pi_{\Lambda}: C_{\Lambda} \to \Lambda$ has a critical point of A_2 -type at P; that is,

$$\pi_{\Lambda}^* u = a \, t^2 + b \, t^3 + (ext{terms of degree} \geq 4)$$
 and $\pi_{\Lambda}^* v = c \, t^2 + d \, t^3 + (ext{terms of degree} \geq 4)$

with $ad-bc\neq 0$ hold for a formal parameter system (u,v) of Λ at $\pi(P)=H$ and a formal parameter t of C_{Λ} at P.

By suitable choice of formal parameters, we have

$$\pi_{\Lambda}^* u = t^3, \quad \pi_{\Lambda}^* v = t^2,$$

and the plane curve $\pi_2(\mathcal{C}) \cap \Lambda \subset \Lambda$ is defined by $u^2 - v^3 = 0$ locally at $H \in \Lambda$.

The case where char(k) = 3.

In this case, $P \in \mathcal{E}^{A_2}$ does not necessarily imply $P \in \mathcal{E}^{\mathrm{sm}}$. Our main results are as follows.

(I) Let $\varpi: \mathcal{E}^{\mathrm{sm}} \to \mathbb{P}$ be the projection. Then the kernel \mathcal{K} of $d\varpi: T(\mathcal{E}^{\mathrm{sm}}) \to \varpi^*T(\mathbb{P})$ is a subbundle of $T(\mathcal{E}^{\mathrm{sm}})$ with rank 1. Hence ϖ factors as

$$\mathcal{E}^{\mathrm{sm}} \stackrel{q}{\longrightarrow} (\mathcal{E}^{\mathrm{sm}})^{\mathcal{K}} \stackrel{\tau}{\longrightarrow} \mathbb{P},$$

where $\mathcal{E}^{\text{sm}} \to (\mathcal{E}^{\text{sm}})^{\mathcal{K}}$ is the quotient morphism by \mathcal{K} .

(II) Suppose that P is a point of $\mathcal{E}^{\mathrm{sm}} \cap \mathcal{E}^{A_2}$. Then $\tau: (\mathcal{E}^{\mathrm{sm}})^{\mathcal{K}} \to \mathbb{P}$ is a closed immersion formally at q(P). Moreover the curve C_{Λ} is smooth at P, and

 $\pi_{\Lambda}:C_{\Lambda} o\Lambda$ has a critical point of E_6 -type at P; i. e.,

$$\pi_{\Lambda}^* u = a t^3 + b t^4 + (\text{terms of degree} \ge 5)$$
 and

$$\pi_{\Lambda}^* v = c t^3 + d t^4 + (\text{terms of degree} \geq 5)$$

with $ad - bc \neq 0$ hold.

By suitable choice of formal parameters, we have either

$$(\pi_{\Lambda}^* u = t^3, \; \pi_{\Lambda}^* v = t^4) \; ext{ or } (\pi_{\Lambda}^* u = t^3 + t^5, \; \pi_{\Lambda}^* v = t^4).$$

The plane curve $\pi_2(\mathcal{C}) \cap \Lambda \subset \Lambda$ is defined at $H \in \Lambda$ by either

$$x^4 + y^3 = 0$$
 or $x^4 + y^3 + x^2y^2 = 0$.

In the case of a projective plane curve (i.e., the case where (n, m) = (1, 2)), the locus \mathcal{E}^{sm} is always empty. In this case, we have the following:

(III) Suppose that (n, m) = (1, 2), and that the projection $\mathcal{C} \to \mathbb{P}$ is separable onto its image. (This assumption excludes the case of, for example, the Fermat curve of degree $3^{\nu} + 1$.)

Then dim $\mathcal{E}=0$. Let P=(p,H) be a point of \mathcal{E} . Then the length of $\mathcal{O}_{\mathcal{E},P}$ is divisible by 3. If $P\in\mathcal{E}^{A_2}$ (that is, H is an ordinary flex tangent line to X at p), then, with appropriate choice of formal parameters, the formal completion of $\pi_2:\mathcal{C}\to\mathbb{P}$ at P is given by

$$T_l : t \mapsto (t^{3l+1}, t^3 + t^{3l+2}),$$

where $l := \text{length } \mathcal{O}_{\mathcal{E},P}/3$.

§7. The case where char(k) = 2 and dim X is even.

For simplicity, we assume that |M| is so ample that the evaluation homomorphism

$$v_p^{[4]}:\,M\, o\,\mathcal{L}_p/m_p^5\mathcal{L}_p$$

is surjective at every point p of X.

Then \mathcal{E} is an irreducible divisor of \mathcal{C} , and is written as $2\mathcal{R}$, where \mathcal{R} is a reduced divisor of \mathcal{C} .

We denote by \mathcal{R}^{sm} the smooth locus of \mathcal{R} , and by $\varpi : \mathcal{R}^{sm} \to \mathbb{P}$ the projection. Then we have the following:

(I) The kernel \mathcal{K} of $d\varpi: T(\mathcal{R}^{\mathrm{sm}}) \to \varpi^*T(\mathbb{P})$ is a subbundle of $T(\mathcal{R}^{\mathrm{sm}})$ with rank 2.

In particular, the projection ϖ factors through a finite inseparable morphism of degree 4.

(II) Let P = (p, H) be a general point of \mathcal{R} .

Let $L \subset \mathbb{P}$ be a general linear subspace of dimension 3 containing Λ . We put $S_L := \pi_2^{-1}(L) \subset \mathcal{C}$.

Then S_L is smooth of dimension 2 at P, and C_{Λ} is a curve on S_L that has an ordinary cusp at P.

Let $\nu: \widetilde{C}_{\Lambda} \to C_{\Lambda}$ be the normalization of C_{Λ} at P, and let z be a formal parameter of \widetilde{C}_{Λ} at the inverse image $P' \in \widetilde{C}_{\Lambda}$ of P. Then the formal completion at P' of $\pi_{\Lambda} \circ \nu: \widetilde{C}_{\Lambda} \to \Lambda$ is written as

$$(\pi_{\Lambda} \circ
u)^* u = a \, z^4 + (ext{terms of degree} \geq 6)$$
 and $(\pi_{\Lambda} \circ
u)^* v = b \, z^4 + (ext{terms of degree} \geq 6)$

for some $a, b \in k$, where (u, v) is a formal parameter system of Λ at H.

Hence the plane curve singularity of $\pi_2(\mathcal{C}) \cap \Lambda$ at H is not a rational double point any more.