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• We work over the complex number field C.

• The coefficients of the (co-)homology groups are in Z.

• By a lattice, we mean a finitely generated free Z-module Λ

equipped with a non-degenerate symmetric bilinear form

Λ × Λ → Z.
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§1. Conjugate varieties

An affine algebraic variety X ⊂ CN is defined by a finite num-

ber of polynomial equations:

X : f1(x1, . . . , xN) = · · · = fm(x1, . . . , xN) = 0.

Let cj,I ∈ C be the coefficients of the polynomial fj:

fj(x1, . . . , xN) =
∑

I

cj,Ix
I, where xI = xi1

1 · · · x
iN
N .

We then denote by

FX := Q(. . . , cj,I, . . . ) ⊂ C

the minimal sub-field of C containing all the coefficients of the

defining equations of X.

There are many other embeddings

σ : FX ↪→ C

of the field FX into C.

Example.

(1) If FX = Q(
√

2, t), where t ∈ C is transcendental over Q,

then the set of embeddings FX ↪→ C is equal to

{
√

2, −
√

2} × { transcendental complex numbers }.

(2) If all cj,I are algebraic over Q, then the set of embeddings

is finite, and the Galois group of the Galois closure of the al-

gebraic extension FX/Q acts on the set transitively.
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For an embedding σ : FX ↪→ C, we put

fσ
j (x1, . . . , xN) :=

∑
I

cσ
j,Ix

I,

and denote by Xσ ⊂ CN the affine algebraic variety defined by

fσ
1 = · · · = fσ

m = 0.

We can define Xσ for a projective or quasi-projective variety

X ⊂ PN in the same way.

Definition.

We say that two algebraic varieties X and Y are said to be

conjugate if there exists an embedding σ : FX ↪→ C such that

Y is isomorphic to Xσ.

In the language of schemes, two varieties X and Y over Spec C
are conjugate if there exists a diagram

Y −→ X

↓ ¤ ↓

Spec C σ∗
−→ Spec C.

of the fiber product for some morphism σ∗ : Spec C → Spec C.

It is obvious that being conjugate is an equivalence relation.

3



y2 = x3 + 6
√

2x +
√

2.

y2 = x3 − 6
√

2x −
√

2.
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§2. Topology of conjugate varieties

Conjugate algebraic varieties cannot be distinguished by any

algebraic methods. In particular, they are homeomorphic in

Zariski topology.

How about their complex topology?

The following is due to Serre, Grothendieck, Artin, . . . .

Theorem.

Let X and Y be conjugate non-singular projective varieties.

(1) They have the same betti numbers:

Bi(X) = Bi(Y ) for i = 0, . . . , 2 dim X.

(2) The profinite completions of their fundamental groups are

isomorphic: π∧
1 (X) ∼= π∧

1 (Y ).

The following example is due to Serre (1964).

Example.

There exist conjugate non-singular projective varieties X and

Y such that their fundamental groups are not isomorphic:

π1(X) 6∼= π1(Y ).
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Other examples of non-homeomorphic conjugate varieties:

• Abelson (1974).

• E. Artal, J. Carmona, and J.-I. Cogolludo. (2003-).

• Bauer, Catanese, Grunewald. (2005-).
...

Grothendieck’s “dessins d’enfant”.

Let f : C → P1 be a finite covering of a projective line branch-

ing only at the three points 0, 1, ∞ ∈ P1. We have defining

equations of f with coefficients in Q ⊂ C. For σ ∈ Gal(Q/Q),

consider the conjugate covering

fσ : Cσ → P1.

Then f and fσ have, in general, different topology.
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§3. Main result

We introduce a new topological invariant of open algebraic va-

rieties, which allows us to distinguish conjugate varieties topo-

logically in some cases.

Combining this topological invariant with the following results,

we obtain several explicit examples of non-homeomorphic con-

jugate varieties.

• Arithmetic theory of abelian and K3 surfaces due to S.-

and Schütt.

• Degtyarev’s theorem on the connected components of plane

curves of degree 6 with only simple singularities.

• Artal, Carmona and Cogolludo’s calculation of defining

equations of plane curves of degree 6 with prescribed sim-

ple singularities.

Our examples consist of the following:

• Zariski open subsets of abelian surfaces.

• Zariski open subsets of K3 surfaces.

• Singular plane curves C of degree 6 with only simple sin-

gularities and of Milnor number 19. (In this example, the

homeomorphism types of the pairs (P2, C) are distinct.)
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Example.

We consider the following cubic extension of Q:

K := Q[t]/(ϕ), where ϕ = 17t3 − 18t2 − 228t + 556.

The roots of ϕ = 0 are α, ᾱ, β, where

α = 2.590 · · · + 1.108 · · ·
√

−1, β = −4.121 · · · .

There are three corresponding embeddings

σα : K ↪→ C, σᾱ : K ↪→ C and σβ : K ↪→ C.

There exists a homogeneous polynomial

Φ(x0, x1, x2) ∈ K[x0, x1, x2]

of degree 6 with coefficients in K with the following properties.

We consider the conjugate plane curves

Cα = {Φσα = 0} and Cβ = {Φσβ = 0}.

Then each of them has three simple singular points of type

A16 + A2 + A1

as its only singularities. In particular, there exist tubular neigh-

borhoods Tα ⊂ P2 of Cα ⊂ P2 and Tβ ⊂ P2 of Cβ ⊂ P2 such that

(Tα, Cα) is diffeomorphic to (Tβ, Cβ).

However, there are no homeomorphisms between the pairs

(P2, Cα) and (P2, Cβ).

Namely, Cα and Cβ form an arithmetic Zariski pair.

Let X → P2 be the double covering of the plane branching ex-

actly along the curve C : Φ = 0, and U ⊂ X the pull-back of

P2\C. Then U is a variety defined over K. Consider the conju-

gate open varieties Uα and Uβ corresponding the embeddings

σα and σβ. Then Uα and Uβ are not homeomorphic.
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§4. The topological invariant

Let U be an oriented topological manifold of dimension 4n. Let

ιU : H2n(U) × H2n(U) → Z

be the intersection pairing.

Definition.

We put

J∞(U) :=
⋂
K

Im(H2n(U \ K) → H2n(U)),

where K runs through the set of all compact subsets of U . We

then put

B̃U := H2n(U)/J∞(U) and BU := (B̃U)/torsion.

Since any topological cycle is compact, the intersection pairing

ιU induces a symmetric bilinear form

βU : BU × BU → Z.

It is obvious that, if U and U ′ are homeomorphic, then there

exists an isomorphism

(BU , βU) ∼= (BU ′, βU ′),

and hence the isomorphism class of (BU , βU) is a topological

invariant of U .
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We study the invariant (BU , βU) for the space

U := X \ Y,

where X is a non-singular projective variety of complex di-

mension 2n, and Y is a union of irreducible (possibly singular)

subvarieties Y1 . . . , YN of complex dimension n:

Y = Y1 ∪ · · · ∪ YN .

We denote by

Σ̃(X,Y ) := 〈[Y1], . . . , [YN ]〉 ⊂ H2n(X)

the submodule of H2n(X) generated by the homology classes

[Yi] ∈ H2n(X), and put

Σ(X,Y ) := (Σ̃(X,Y ))/torsion.

We then put

Λ̃(X,Y ) := {x ∈ H2n(X) | ιX(x, y) = 0 for any y ∈ Σ̃(X,Y )},

Λ(X,Y ) := (Λ̃(X,Y ))/torsion.

Finally, we denote by

σ(X,Y ) : Σ(X,Y ) × Σ(X,Y ) → Z and

λ(X,Y ) : Λ(X,Y ) × Λ(X,Y ) → Z

the symmetric bilinear forms induced from the intersection

pairing

ιX : H2n(X) × H2n(X) → Z.

Theorem.

Let X, Y and U be as above. Suppose that σ(X,Y ) is non-

degenerate. Then (BU , βU) is isomorphic to (Λ(X,Y ), λ(X,Y )).
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Sketch of the proof.

Since X is non-singular and complete, the intersection pair-

ing ιX on H2n(X)/torsion is non-degenerate. Hence the as-

sumption that σ(X,Y ) is non-degenerate implies that λ(X,Y ) is

non-degenerate.

We consider the homomorphism

jU : H2n(U) → H2n(X)

induced by the inclusion. It is obvious that the image of jU is

contained in Λ̃(X,Y ). We first show that

Im(jU) = Λ̃(X,Y ).

Let [W ] ∈ Λ̃(X,Y ) be represented by a real 2n-dimensional topo-

logical cycle W . We can assume that W ∩Y consists of a finite

number of points in Y \ Sing(Y ), and that the intersection of

W with Y is transverse at each intersection point.

Let Pi,1, . . . , Pi,k(i) (resp. Qi,1, . . . , Qi,l(i)) be the intersection

points of W and Yi with local intersection number 1 (resp. −1).

Since ιX([W ], [Yi]) = 0, we have

k(i) = l(i).

Modifying W by adding the tube

∂(D2n × I)

for each pair (Pi,j, Qi,j), we obtain a topological cycle W ′ that

is homologous to W in X and is disjoint from Y . Hence [W ] =

[W ′] is represented by W ′ ⊂ U . Thus

Im(jU) = Λ̃(X,Y )

holds.
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Using Mayer-Vietris sequence, we can prove

Ker(jU) ⊆ J∞(U)

from the assumption that λ(X,Y ) is non-degenerate. By the

commutative diagram

0 −→ Ker(jU) −→ H2n(U)
jU−→ Λ̃(X,Y ) −→ 0

↪→

=

→
→ ṽ

0 −→ J∞(U) −→ H2n(U) −→ B̃U −→ 0 ,

we obtain the isomorphism (Λ(X,Y ), λ(X,Y )) ∼= (BU , βU).
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§5. Transcendental lattices

Let X be a non-singular projective variety of dimension 2n.

Then we have a natural isomorphism

H2n(X)/torsion ∼= H2n(X)/torsion

that transforms ιX to the cup-product ( , )X. Let

SX ⊂ H2n(X)/torsion

be the submodule generated by the classes [Z] of irreducible

subvarieties Z of X with codimension n; that is, SX is the

space of algebraic cycles in the middle dimension. We then

denote by

sX : SX × SX → Z
the restriction of ( , )X to SX. We consider the following con-

dition:

(N) The symmetric bilinear form sX is non-degenerate.

Remark.

The condition (N) is satisfied for X if the Hodge conjecture

SX ⊗ Q = H2n(X, Q) ∩ Hn,n(X)

is true for the middle cohomology group of X. In particular,

the condition (N) is satisfied if dim X = 2.
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Proposition.

Let X and Xσ be conjugate non-singular projective varieties.

Suppose that (N) holds for both of X and Xσ. Then the map

[Z] 7→ [Zσ] induces an isomorphism (SX, sX) ∼= (SXσ, sXσ).

Definition.

When (N) holds for X, we define the transcendental lattice TX

of X to be the free Z-module

TX := {x ∈ H2n(X)/torsion | (x, y)X = 0 for any y ∈ SX}.

Theorem.

Let X be a non-singular projective variety of dimension 2n.

Suppose that (N) holds for X. Let Y1, . . . , YN be irreducible

subvarieties of X with codimension n whose classes span SX⊗Q
over Q. We put

Y :=
N⋃

i=1

Yi and U := X \ Y.

Then the transcendental lattice TX of X is isomorphic to the

topological invariant (BU , βU) of U .

Corollary.

Let X and Xσ be conjugate non-singular projective varieties of

dimension 2n. Suppose that (N) holds for both of X and Xσ.

Let Y ⊂ X and U ⊂ X be as above. If TXσ is not isomorphic

to TX, then Uσ = Xσ \ Y σ is not homeomorphic to U .
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§6. Genus theory of lattices

Definition.

Two lattices

λ : Λ × Λ → Z and λ′ : Λ′ × Λ′ → Z

are said to be in the same genus if

λ ⊗ Zp : Λ ⊗ Zp × Λ ⊗ Zp → Zp and

λ′ ⊗ Zp : Λ′ ⊗ Zp × Λ′ ⊗ Zp → Zp

are isomorphic for any p including p = ∞, where Z∞ = R.

Let X be a non-singular projective variety of dimension 2n.

Recall that SX is the submodule of H2n(X)/torsion generated

by algebraic cycles. We consider the following condition:

(P) The submodule SX is primitive in H2n(X)/torsion; that is,

the quotient (H2n(X)/torsion)/SX is torsion-free.

Remark.

The condition (P) is satisfied for X if the integral Hodge con-

jecture

SX = H2n(X, Z) ∩ Hn,n(X)

is true for X. In particular, the condition (P) is satisfied if

dim X = 2. There exists, however, a counter-example for (P)

in higher-dimension. (Atiyah-Hirzebruch (1962).)
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Theorem.

Let X and Xσ be conjugate non-singular projective varieties

of dimension 2n. Suppose that (N) and (P) hold for both of

X and Xσ. Then the transcendental lattices TX and TXσ are

contained in the same genus.

Let X be a surface. Then TX and TXσ are contained in the

same genus. Let Y1, . . . , YN be irreducible curves of X whose

classes span SX ⊗ Q. We put

Y :=
N⋃

i=1

Yi and U := X \ Y.

If TX and TXσ are not isomorphic, then U and Uσ are not

homeomorphic.

Therefore we will search for lattices that are not isomorphic

but in the same genus.

Gauss gave a complete description of isomorphism classes of

lattices of rank 2 (binary lattices) and their decomposition into

genera.

Example.

Two binary lattices [
6 2

2 8

]
and

[
2 0

0 22

]
are not isomorphic, but in the same genus.
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§7. Singular abelian surfaces and

singular K3 surfaces

Let A be an abelian surface; that is, a complex torus of di-

mension 2 that can be embedded into a projective space. Then

H2(A) is a unimodular lattice of rank 6 with signature (3, 3).

Definition.

An abelian surface A is said to be singular if the rank of the

transcendental lattice TA is 2 (the possible minimum).

The transcendental lattice TA of a singular abelian surface A is

positive-definite. Moreover, by the Hodge decomposition

TA ⊗ Z ∼= H2,0(A) ⊕ H0,2(A),

this lattice has a canonical orientation. We denote by T̃A the

oriented transcendental lattice of A.

Definition.

We denote by

L :=

{ [
2a b

b 2c

] ∣∣∣∣ a, b, c ∈ Z, a > 0, c > 0,

4ac − b2 > 0

}
/ SL2(Z)

the set of isomorphism classes of even positive-definite oriented

binary lattices. For a singular abelian surface A, we denote by

[T̃A] ∈ L

the class of the oriented transcendental lattice of A.
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The following theorem is due to Shioda and Mitani (1974):

Theorem.

The map A 7→ [T̃A] induces a bijection from the set of isomor-

phism classes of singular abelian surfaces A to the set L.

Shioda and Mitani have also given a method of explicit con-

struction of a singular abelian surface with a prescribed ori-

ented transcendental lattice.

Theorem.

Let

M :=

[
2a b

b 2c

]

be a matrix representing an element of L. We put

D := b2 − 4ac < 0.

Consider the elliptic curves

E1 := C/(Z + Zτ1), where τ1 := (b +
√

D)/2, and

E2 := C/(Z + Zτ2), where τ2 := (−b +
√

D)/(2a).

Then A := E1 × E2 is a singular abelian surface such that [T̃A]

is equal to [M ].
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Note that the elliptic curves E1 and E2 have complex multi-

plications, and hence each of them is defined over a certain

number field (a class field of Q(
√

D)).

Using the classical class field theory, M. Schütt and S.- proved

the following:

Theorem.

Consider two oriented lattices T̃1 ∈ L and T̃2 ∈ L. Suppose that

their underlying (non-oriented) lattices T1 and T2 are in the

same genus. Then the corresponding singular abelian surfaces

A1 and A2 are conjugate.

Combining all the results so far, we obtain the following:

Corollary.

Consider two oriented lattices T̃1 ∈ L and T̃2 ∈ L. Suppose that

their underlying (non-oriented) lattices are not isomorphic but

in the same genus. Let A be a singular abelian surface such

that T̃A
∼= T̃1. We choose a divisor D of A such that the classes

of the irreducible components of D span SA ⊗ Q. We put

U := A \ D.

Let Aσ be a singular abelian surface conjugate to A such that

T̃Aσ ∼= T̃2, and let Uσ be the Zariski open subset of Aσ corre-

sponding to U . Then U and Uσ are not homeomorphic.
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Let X be a K3 surface; that is, a simply-connected surface

with KX
∼= OX. Then H2(X) is a unimodular lattice of rank

22 with signature (3, 19).

Definition.

A K3 surface X is said to be singular if the rank of the tran-

scendental lattice TX is 2 (the possible minimum).

We have the same theory for singular K3 surfaces as for the

singular abelian surfaces by Shioda-Inose (1977), and the same

theorem by S.- and Schütt.

Corollary.

If there exist two even positive-definite lattices T1 and T2 of

rank 2 that are not isomorphic but in the same genus, then

there exist non-homeomorphic conjugate varieties U1 and U2,

where Ui is a Zariski open subset of a singular K3 surface Xi

with the transcendental lattice isomorphic to Ti.

21



§8. Arithmetic Zariski pairs

We apply this corollary to the construction of examples of arith-

metic Zariski pairs of maximizing sextics.

Definition.

A pair [C, C ′] of plane curves is said to be an arithmetic Zariski

pair if the following hold:

(i) Suppose that C = {Φ = 0}. Then there exists an embedding

σ : FC ↪→ C such that C′ is isomorphic (as a plane curve) to

Cσ := {Φσ = 0}.

(ii) There exist tubular neighborhoods T ⊂ P2 of C and T ′ ⊂ P2

of C′ such that (T, C) and (T ′, C′) are diffeomorphic.

(iii) (P2, C) and (P2, C′) are not homeomorphic.

Definition.

A plane curve C of degree 6 is called a maximizing sextic if C

has only simple singularities and the total Milnor number of C

attains the possible maximum 19.

Remark.

If C is a maximizing sextic, the minimal resolution XC → YC

of the double covering YC → P2 branching exactly along C is

a singular K3 surface. We denote by T [C] the transcendental

lattice of XC.
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Remark.

If C is a maximizing sextic, then its conjugate Cσ is also a

maximizing sextic and and [C, Cσ] satisfies the condition (ii)

in the definition of arithmetic Zariski pairs, because simple

singularities have no moduli.

We obtain the following examples of arithmetic Zariski pairs of

maximizing sextics.

We put

L[2a, b, 2c] :=

[
2a b

b 2c

]
.
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No. the type of Sing(C) T [C] and T [C′]

1 E8 + A10 + A1 L[6, 2, 8], L[2, 0, 22]

2 E8 + A6 + A4 + A1 L[8, 2, 18], L[2, 0, 70]

3 E6 + D5 + A6 + A2 L[12, 0, 42], L[6, 0, 84]

4 E6 + A10 + A3 L[12, 0, 22], L[4, 0, 66]

5 E6 + A10 + A2 + A1 L[18, 6, 24], L[6, 0, 66]

6 E6 + A7 + A4 + A2 L[24, 0, 30], L[6, 0, 120]

7 E6 + A6 + A4 + A2 + A1 L[30, 0, 42], L[18, 6, 72]

8 D8 + A10 + A1 L[6, 2, 8], L[2, 0, 22]

9 D8 + A6 + A4 + A1 L[8, 2, 18], L[2, 0, 70]

10 D7 + A12 L[6, 2, 18], L[2, 0, 52]

11 D7 + A8 + A4 L[18, 0, 20], L[2, 0, 180]

12 D5 + A10 + A4 L[20, 0, 22], L[12, 4, 38]

13 D5 + A6 + A5 + A2 + A1 L[12, 0, 42], L[6, 0, 84]

14 D5 + A6 + 2A4 L[20, 0, 70], L[10, 0, 140]

15 A18 + A1 L[8, 2, 10], L[2, 0, 38]

16 A16 + A3 L[4, 0, 34], L[2, 0, 68]

17 A16 + A2 + A1 L[10, 4, 22], L[6, 0, 34]

18 A13 + A4 + 2A1 L[8, 2, 18], L[2, 0, 70]

19 A12 + A6 + A1 L[8, 2, 46], L[2, 0, 182]

20 A12 + A5 + 2A1 L[12, 6, 16], L[4, 2, 40]

21 A12 + A4 + A2 + A1 L[24, 6, 34], L[6, 0, 130]

22 A10 + A9 L[10, 0, 22], L[2, 0, 110]

23 A10 + A9 L[8, 3, 8], L[2, 1, 28]

24 A10 + A8 + A1 L[18, 0, 22], L[10, 2, 40]

25 A10 + A7 + A2 L[22, 0, 24], L[6, 0, 88]

26 A10 + A7 + 2A1 L[10, 2, 18], L[2, 0, 88]

27 A10 + A6 + A2 + A1 L[22, 0, 42], L[16, 2, 58]

28 A10 + A5 + A3 + A1 L[12, 0, 22], L[4, 0, 66]

29 A10 + 2A4 + A1 L[30, 10, 40], L[10, 0, 110]

30 A10 + A4 + 2A2 + A1 L[30, 0, 66], L[6, 0, 330]

31 A8 + A6 + A4 + A1 L[22, 4, 58], L[18, 0, 70]

32 A7 + A6 + A4 + A2 L[24, 0, 70], L[6, 0, 280]

33 A7 + A6 + A4 + 2A1 L[18, 4, 32], L[2, 0, 280]

34 A7 + A5 + A4 + A2 + A1 L[24, 0, 30], L[6, 0, 120]
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