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§1. Introduction

This work is motivated by the conjecture in the paper

[ADKY]
D. Auroux, S. K. Donaldson, L. Katzarkov, and M. Yotov.
Fundamental groups of complements of plane curves and symplectic

invariants.
Topology, 43(6): 1285-1318, 2004,

on the fundamental group
Uy (IP)2 \ B)7
where B is the branch curve of a general projection S — P? from a
smooth projective surface
S C PV,
By the previous work of Moishezon-Teicher-Robb and by their own new
examples, they conjectured in [ADKY] that 7 (P? \ B) is “small”.



Let Gr?(PY) be the Grassmannian variety of linear subspaces in PV
with codimension 2. We put

Uy(S,PV) := { L € Gr*(P") | LN S is smooth of dimension 0 },

which is a Zariski open subset of the Grassmannian Gr?(PY).

It is easy to see that there exists a natural inclusion
P2\ B — Uy(S,PY),

which induces a surjective homomorphism

w1 (P?\ B) —— w1 (Uy(S,PY)).
Hence, if the conjecture is true, the fundamental group

71 (Uo(S, PY))

should be “very small”.
In this talk, we describe this fundamental group 7, (Uy (S, PY)) by means

of Zariski-van Kampen monodromy associated with a Lefschetz pencil
on S.



§2. Zariski-van Kampen theorem

We formulate and prove a theorem of Zariski-van Kampen type on the
fundamental groups of algebraic fiber spaces.

Let X and Y be smooth quasi-projective varieties, and let
f: X —-Y

be a dominant morphism.

For simplicity, we assume the following:

The general fiber of f is connected.

For a point y € Y, we put
F, = f_l(y)‘
We then choose general points
bcY and b€ F,C X.

Let
L Fb — X
denote the inclusion.



We denote by
Sing(f) C X
the Zariski closed subset consisting of the critical points of f.

The following is Nori’s lemma:

Proposition.
If there exists a Zariski closed subset = C Y of codimension > 2 such
that

F,\ (F,NSing(f)) #0 for all y ¢ =&,

then we have an exact sequence
m(Fyb) — m(X,b) L5 m(Y,b) — 1.

We will investigate
Ker(m (Fy, b) — m(X,b)).




We fix, once and for all, a hypersurface X of Y with the following
properties. We put

Y°:=Y \X, X°:=f1(Y°),
and let
f°:X°—->Y°
denote the restriction of f to X°.

The required property is as follows:

The morphism f° is smooth, and is locally trivial (in the category of
topological spaces and continuous maps).

The existence of such a hypersurface X follows from Hironaka’s resolu-
tion of singularities, for example.

We can assume that b € Y°.




Let I denote the closed interval [0,1] C R. Let

a: 1 — X°
be a loop with the base point bec F, C X°.
Then the family of pointed spaces

(Fra), (1))
is trivial over I, and hence we obtain an automorphism
p(la]) : m1(Fp, E) 2% 101 (Fp, l;)a g — Qﬁ([d])a

which depends only on the homotopy class of the loop a in X°.

We thus obtain a homomorphism
po: m(X°,b) — Aut(m(Fy, b)),
which is called the monodromy on m(Fp).
Our main purpose is to describe the kernel of
Lo : w(Fy,b) — m(X,b)

in terms of the monodromy .



Definition.
Let G be a group, and let S be a subset of G. We denote by

{(She < G

the smallest normal subgroup of G containing S.

Let T" be a subgroup of Aut(G). We put
RG,T):={g'g" | geG,~veT} C G.
We then put
G//T := G/ {(R(G,T)))a,
and call G//T the Zariski-van Kampen quotient of G by T’

Definition.

An element
g_lgﬂ([d]) (g S 7"'1(F1b7 5)9 [&] S 771(X07 B))

of 71(Fp, b) is called a monodromy relation.




We consider the following conditions.
(C1) Sing(f) is of codimension > 2 in X.
(C2) There exists a Zariski closed subset
= CY

with codimension > 2 such that Fj is non-empty and irreducible

forany y € Y \ E.
(C3) There exist a subspace Z C Y and a continuous section

sz : Z — f(2Z)
of f over Z such that Z 5 b, that Z — Y induces a surjective

homomorphism
m2(Z, b) —— m2(Y, b)7~
and that sz(Z) N Sing(f) = 0@ and sz(b) = b.



Our generalized Zariski-van Kampen theorem is as follows:

Theorem.
We put
K := Ker(m(X°,b) — m(X,b)),
where 7(X°,b) — m1(X,b) is induced by the inclusion. Under the
above conditions (C1)-(C3), the kernel of
ty : w1 (Fp,b) — m(X,Db)

is equal to the normal subgroup

(R(m1(Fy, b), p(K))) = ({ 979" | g € m(Fp,b), [4] € K }))

normally generated by the monodromy relations coming from the ele-
ments of K.




Theorem.

Assume the following:

(C1) Sing(f) is of codimension > 2 in X.

(C2) There exists a Zariski closed subset 2 C Y with codimension > 2
such that F is non-empty and irreducible for any y € Y \ E.

(C4) There exist an irreducible smooth curve C C Y passing through b
and a continuous section

sc:C — f71C)
of f over C with the following properties:
(i) m1(C°) —— 71 (Y°), where C° :=C NY°.
(ii) m2(C) —— w2 (Y).
(iii) C intersects each irreducible component of 3 transversely at least
at one point.

(iv) sc(C) N Sing(f) = 0 and sc(b) = b.
We put
K¢ := Ker(m(C°b) — m(C,b)).
By the section s, we have a monodromy action
pe : ©(C° b) — Aut(m(Fy,b)).
Then we have
Ker(t,) = (R(m1(Fp), no(Kc))))-




Remark.
The classical Zariski-van Kampen theorem deals with the situation
where there exists a continuous section

s:Y — X
of f so that we have a monodromy
pi=fios, : m(Y°b) — Aut(m(Fp,b)).
The main difference from the classical Zariski-van Kampen theorem is

that we assume the existence of a section sz of f only over a subspace
Z C Y such that ma(Z) —— m2(Y).




The necessity of the existence of such a section is shown by the following
example.

Example.
Let L — P! be the total space of a line bundle of degree d > 0 on
P!, and let L* be the complement of the zero section with the natural
projection

f: X: =L — Y :=P,
so that m(F,) = Z. Then we have ¥ = @, X° = X and hence K =
Ker(m(X°) — m(X)) is trivial. In particular, we have

R(m(Fp), i(K)) = {1}.
On the other hand, the kernel of
te 2 ™ (Fp) 27 — m™(X)=Z/dZ
is non-trivial, and equal to the image of the boundary homomorphism
m(Y)=2Z — m(F) = Z.

Remark.
The condition (C3) or (C4-(ii)) is vacuous if m2(Y) = 0 (for example, if
Y is an abelian variety).




§2. Grassmannian dual varieties

A Zariski closed subset of a projective space is said to be non-degenerate
if it is not contained in any hyperplane.

We denote by Gr¢(PY) the Grassmannian variety of linear subspaces of
the projective space PV with codimension c.

Definition.
Let W be a closed subscheme of PV such that every irreducible compo-
nent is of dimension n. For a positive integer ¢ < n, the Grassmannian

dual variety of W in Gr°(PY) is the locus
{ LeGr(P") | WNL fails to be smooth of dimensionn —c  }.

For a non-negative integer k < n, we denote by
U (W,PY) C Gr" *(PN)

the complement of the Grassmannian dual variety of W in Gr" *(PN);
that is, Up(W,PV) is

{ Lc Gr"_k’(IP’N) L intersects W along a smooth }
scheme of dimension k .




Remark.
When n — k = 1, the variety U,,_;(W,PY) is the complement of the
usual dual variety

H e (PN)V H fails to intersect W along a
smooth scheme of dimension n—1 )

of W in Gr'(PV) = (PM)V.




Let
X c PN

be a smooth non-degenerate projective variety of dimension n > 2. We
choose a general line

A C (PY)Y,
and a general point

0 € A.

Let H; (t € A) denote the pencil of hyperplanes corresponding to A,
and let

A 2 pN-2
denote the axis of the pencil. We then put

Y, =X NH; and Z,:= X N A.

Then Z, is smooth, and every irreducible component of Z, is of dimen-
sion n — 2. (In fact, Z, is irreducible if n > 2.)

We have natural inclusions
Grc2(A) — Gr Y(H;) — Gr¢(PN).
Hence, for £k = 0,...,n — 2, we have natural inclusions
Up(Zr, A) — Up(Yi, H)) — Ugp(X,PN).
Indeed, we have
Ur(Zp, A)
Uk (Y, Hy)

{LcU(X,PY) | LC A},
{LeU(X,PY) | L C H,}.



Let k be an integer such that 0 < k < n — 2. Then Ug(Z,,A) is
non-empty. We choose a base point

Lo S Uk(ZAa A)7
which serves also as a base point of U, (X, PY) and of Uy (Y;, H;) by the
natural inclusions.
We then consider the family
f: U(Y,A) — A
of the varieties U (Y;, H;), where

Un(V,A) == { (L,t) e Up(X,PY) x A | LC H } = | | Un(Ys, Hy),
teA
and f is the natural projection.

The point L, yields a holomorphic section
So ¢ A — U(Y,AN)
of f. In fact, we have
L, € Ur(Zr,A) C Uk(Y:, Hy)
for all t € A.



There exists a proper Zariski closed subset
XA C A

such that f is locally trivial (in the category of topological spaces and
continuous maps) over A \ X,. By the section s,, we have the mon-
odromy action

(A \ Za,0) — Aut(m(Us(Yo, Ho), Lo)).

We have the following theorem of Lefschetz type.

Theorem.
Consider the homomorphism

Ly - 7"-I(U—ki(l/()?I_IO)aLO) — 71-1((]/16()(9IP>N)9LO)
induced by the inclusion
L2 Up(Yy, Hy) — Ui(X,PN).

(1) If K < n — 2, then ¢, is an isomorphism.
(2) If K = n — 2, then ¢, is surjective and induces an isomorphism

T (Uk(Yo, Ho))// 71 (A\ Ba) & m(Un(X,PY)).




Compare this theorem with the following classical hyperplane section
theorem of Lefschetz on homotopy groups:

Theorem.
Let b be a point of Y,, and let

Ik ™(Yo,b) — (X, b)

be the homomorphism of the kth homotopy groups induced by the
inclusion.

(1) If kK < n — 1, then ji is an isomorphism.

(2) If Kk = n — 1, then j is surjective.

Remark.
The description of Zariski-van Kampen type of the kernel of 3,,_; is also
given by Chéniot-Libgober (2003) and Chéniot- Eyral (2006).




Sketch of the proof.

We put
U (y) = { (L, H) € Uy(X,P") x (P")" | LC H },
and consider the diagram

U (Y) — Up(X,PN)

1
(PN
of the natural projections. The morphism U (Y) — Ui (X,PY) is locally

trivial (in the holomorphic category) with a fiber being a linear subspace
of (PV)V. Hence we obtain

T (U(Y)) = T (Uk(X, PY)).
By definition, we have

Ui(Yo, Ho) — U(Y,A) — U(Y)
! U 1 U 1
H, € A — (PN)V,
and we have a section for U, (Y, A) — A. Moreover we have
ma(A) = m((PY)Y).



By the generalized Zariski-van Kampen theorem, we obtain
71 (U (Yo, Ho)) //mi(A\ Ba) 2 m(Us(D)).
If Ek <n — 2, then we have a surjection
71 (Ur(Za, A)) —— m1(Ur(Yo, Ho)).

Because m (A \ Xa) acts on m(Ug(Zp,A)) trivially, it acts on
71 (Uk (Yo, Hyp)) trivially.



§3. Simple braid groups

We study the case where k = 0.

Let X C PN be a smooth non-degenerate projective variety of dimen-
sion n and degree d. Then we have

Uy(X,PN) = { Le Gr™(PY) | L intersects X at distinct d points .

By the previous theorem of Lefschetz type, it is enough to consider the
case where dim X = 2 in order to study m;(Uy(X,PY)).



Hence, from now on, we assume

dim X = 2,
and study the monodromy

T (A\ X)) — Aut(m(Uo(Yo, Ho)))

associated with a Lefschetz pencil on X corresponding to a general line
A C (PM)V. In this case,

Yo =X N H
is a compact Riemann surface embedded in H, =
degenerate curve of degree d.

PN-1 as a non-

Note that

Us (Yo, Hy) = { L € Gr'(Hy) L intersects the curve Yj at }

distinct d points
is the complement of the dual hypersurface

(Vo) € Hy = (PN
of Y.



First we define the simple braid group SB;l of d strings on a compact
Riemann surface C of genus g > 0.

We denote by
Div4(C) := (C x --- X C)/Sy4
the variety of effective divisors of degree d on C, and by
rDiv?(C) := Div?*(C) \ the big diagonal C Div%(C)
the Zariski open subset consisting of reduced divisors (that is, rDiv¢(C)
is the configuration space of distinct d points on C'). We fix a base point

Dy =pi+ -+ pqg € rDiv¥(C).

Definition.
The braid group
B! = B(C, D)
is defined to be the fundamental group 7 (rDiv?*(C), Dy).

The simple braid group
SB{ = SB(C, Dy)
is defined to be the kernel of the homomorphism
B(C, Dy) = 7 (rDiv*(C), Dy) — m(Div*(C), Dy)
induced by the inclusion
rDiv¢(C) — Div?¥(C).




A braid on C is called simple if it interchanges two points p; and p;
of Dy around a simple path connecting p; and p;, and does not move
other points.

It is easy to see that SBZ is the subgroup of Bg generated by simple
braids, whence the name.

Figure



Definition.
Suppose that C is embedded in PM as a non-degenerate smooth curve.
We say that C C PM is Pliicker general if the dual curve

p(C)Y C (PF)”
of the image of a general projection
p: C — P?

has only ordinary nodes and ordinary cusps as its singularities.

Our second main result is as follows:

Theorem.
Let C C PM be a smooth non-degenerate projective curve of degree d
and genus g > 0. Suppose that

d>g-+4,

and that C is Pliicker general in PM. Let Dy, = C N H, be a general
hyperplane section of C. Then

71 (Uo(C, P™), Do) = i ((PY)Y \ CV, Hy)
is canonically isomorphic to

SB(C, Dy).




For the proof, we use the following.
e We apply the generalized Zariski-van Kampen theorem to the nat-
ural morphism
Divt(C) — Pict(C),
where Pic?(C) is the Picard variety. Note that
my(Pic?(C)) = 0.
Then we can show that, under the assumption d > g + 4,
w1 (Div(C)) = 7 (Pic*(C)) = Hy(C,7Z).
e We then apply the generalized Zariski-van Kampen theorem to the
natural morphism

rDiv¢(C) — Pic?(C).
If L is a very ample line bundle of degree d on C that embeds C
into P™, then the fiber of rDiv¢(C) — Pic*(C) over [L] € Pic*(C)
is canonically isomorphic to
(P™)"\ (Cr)" = Uo(Cr,P™),
where C; C P™ is the image of C by the embedding by L. In
particular, 7 (Uy(Cr,P™)) is isomorphic to
SBZ = Ker(m (rDiv*(C)) — = (Pic*(C))),
if [L] € Pic?(C) is a general point.



e Finally, we use Harris’ result on Severi problem, which asserts that
the moduli of irreducible nodal plane curves of degree d and genus g
is irreducible. By the assumption of Pliicker generality, we conclude
that

71 (Uo(C, PM)) = 7y (Uo(Cr, P™)),

where [L] € Pic?(C) is a general point.



Let
X c PN

be a smooth non-degenerate projective surface of degree d, and let
{Yi}iea

be a general pencil of hyperplane sections of X parameterized by a line
A C (PM)V.
Let
p: Vi ={(x,t) EX XA | x€H } — A
be the fibration of the pencil. We denote by
¥, C A
the set of critical values of ¢. Then ¢ is locally trivial over A \ 3/,.

Let 0 € A be a general point of A. The corresponding member Yj is a
compact Riemann surface of genus

g:=(d+ Hy-Kx)/2+ 1.
Consider the base locus
Zry:=XNA
of the pencil, where A = PN~2 is the axis of the pencil {H;}.

Note that
Uy(Zy,A) = {A} and Z, € rDivi(Y)),
and each point of Z, yields a holomorphic section of

@ : Y — A



Let

Mg — M(Yba ZA)
be the group of orientation-preserving diffeomorphisms ~ of Y; acting
from right such that

p;” = p; for each point p; of Z,.

We put
I} = I' (Yo, Zs) := wo(M(Y0, Z4))
the group of isotopy classes of elements of MS = M(Yy, Zp). Then
ng = I'(Yy, ZA) acts on the simple braid group
SB! = SB(Y,, Za)

in a natural way.

By the monodromy action, we obtain a homomorphism
7 (A\X),0) — IY = TI'(Yo, Za) = mo(M(Yo, Z4)).

We denote by
Cr C I} =T(Yo, Zs)
the image of the this monodromy homomorphism.



Combining the results above, we obtain the following:

Corollary.
Let X, {Y:}ica, ZAn = X N A and T', be as above. Suppose that

g>0, d2>g+4,
and that a general hyperplane section of X is Pliicker general. Then
we have a natural isomorphism

T (Ug(X,PN), A) = SB(Yy, Z,)//Ta.

Remark.

Let L be an ample line bundle of a smooth projective surface S, and let
X,, C PN be the image of S by the embedding given by the complete
linear system |L®™|. If m is sufficiently large, then X,, C PV (m) satisfies
d > g+ 4.




According to this corollary, the conjecture that m,(Uy(X,PY)) is “very
small” is rephrased as the conjecture that I'y C F;l is “large”. As for
the largeness of 'y, we have the following result due to I. Smith (2001).

Theorem.

The vanishing cycles of the Lefschetz fibration Y, — A fill up the fiber
Y,; that is, their complement is a bunch of discs. Moreover distinct
points of Z, are on distinct discs.




