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• By a lattice, we mean a finitely generated free Z-module Λ

equipped with a non-degenerate symmetric bilinear form

Λ × Λ → Z.

• A lattice Λ is said to be even if (v, v) ∈ 2Z for any v ∈ Λ.
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§1. Conjugate varieties

A complex affine algebraic variety X ⊂ CN is defined by a finite

number of polynomial equations:

X : f1(x1, . . . , xN) = · · · = fm(x1, . . . , xN) = 0.

Let cj,I ∈ C be the coefficients of the polynomial fj:

fj(x1, . . . , xN) =
∑

I

cj,Ix
I, where xI = xi1

1 · · · x
iN
N .

We then denote by

FX := Q(. . . , cj,I, . . . ) ⊂ C

the minimal sub-field of C containing all the coefficients of the

defining equations of X.

There are many embeddings

σ : FX ↪→ C

of the field FX into C.

Example.

(1) If FX = Q(
√

2, t), where t ∈ C is transcendental over Q,

then the set of embeddings FX ↪→ C is equal to

{
√

2, −
√

2} × { transcendental complex numbers }.

(2) If all cj,I are algebraic over Q, then the set of embeddings

is finite, and the Galois group of the Galois closure of the al-

gebraic extension FX/Q acts on the set transitively.
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For an embedding σ : FX ↪→ C, we put

fσ
j (x1, . . . , xN) :=

∑
I

cσ
j,Ix

I,

and denote by Xσ ⊂ CN the affine algebraic variety defined by

fσ
1 = · · · = fσ

m = 0.

We can define Xσ for a projective or quasi-projective variety

X ⊂ PN in the same way.

(Replace “polynomials” by “homogeneous polynomials”.)

Definition.

We say that two algebraic varieties X and Y are said to be

conjugate if there exists an embedding σ : FX ↪→ C such that

Y is isomorphic (over C) to Xσ.

In the language of schemes, two varieties X and Y over Spec C
are conjugate if there exists a diagram

Y −→ X

↓ ¤ ↓

Spec C σ∗
−→ Spec C.

of the fiber product for some morphism σ∗ : Spec C → Spec C.
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It is obvious that being conjugate is an equivalence relation.

Conjugate varieties can never be distinguished by any algebraic

methods.

Example.

Elliptic curves

E1 : y2 = x3 +
√

2x +
√

3 and

E2 : y2 = x3 −
√

2x +
√

3

are conjugate. Their j-invariants

j(E1) = −
221184

6433
+

1119744

6433

√
2 = 211.778... and

j(E2) = −
221184

6433
−

1119744

6433

√
2 = −280.544...

are different. Hence they can be distinguished analytically. But

they cannot be distinguished algebraically.
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Conjugate varieties are homeomorphic in Zariski topology.

How about in the complex topology?

Example.

The betti numbers of a smooth projective complex variety X

are “algebraic”, that is,

bi(X) = bi(X
σ) for any σ : FX ↪→ C,

in virture of the theory of étale cohomology groups.

Example (Serre (1964)).

There exist conjugate non-singular complex projective varieties

X and Xσ such that their fundamental groups are not isomor-

phic:

π1(X) 6∼= π1(X
σ).

In particular, they are not homotopically equivalent.

Grothendieck’s dessins d’enfant (1984).

Let f : C → P1 be a finite covering defined over Q branching

only at the three points 0, 1, ∞ ∈ P1. For σ ∈ Gal(Q/Q),

consider the conjugate covering

fσ : Cσ → P1.

Then f and fσ have different topology in general.

Belyi’s theorem asserts that the action of Gal(Q/Q) on the set

of topological types of the covering of P1 branching only at

0, 1, ∞ is faithful.
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Other examples of non-homeomorphic conjugate varieties.

• Abelson: Topologically distinct conjugate varieties with fi-

nite fundamental group.

Topology 13 (1974).

• Artal Bartolo, Carmona Ruber, Cogolludo Agust́ın: Effec-

tive invariants of braid monodromy.

Trans. Amer. Math. Soc. 359 (2007).

• S.-: On arithmetic Zariski pairs in degree 6.

arXiv:math/0611596, to appear in Adv. Geom.

• S.-: Non-homeomorphic conjugate complex varieties.

arXiv:math/0701115

• Easton, Vakil: Absolute Galois acts faithfully on the com-

ponents of the moduli space of surfaces: A Belyi-type the-

orem in higher dimension.

arXiv:0704.3231

• Bauer, Catanese, Grunewald: The absolute Galois group

acts faithfully on the connected components of the moduli

space of surfaces of general type.

arXiv:0706.1466

• F. Charles: Conjugate varieties with distinct real cohomol-

ogy algebras.

arXiv:0706.3674
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§2. Zariski pairs

Definition.

A pair [C, C′] of complex projective plane curves is said to be

a Zariski pair if the following hold.

(i) There exist tubular neighborhoods T ⊂ P2 of C and T ′ ⊂ P2

of C′ such that (T , C) and (T ′, C′) are diffeomorphic.

(ii) (P2, C) and (P2, C′) are not homeomorphic.

Example.

The first example of a Zariski pair was discovered by Zariski in

1930’s, and studied by Oka.

They presented a Zariski pair [C, C ′] of plane curves of degree

6 with six ordinary cusps as its only singularities. The fact

(P2, C) and (P2, C′) are not homeomorphic follows from

π1(P2 \ C) ∼= (Z/2Z) ∗ (Z/3Z) and π1(P2 \ C′) ∼= Z/6Z.

Hence the moduli of projective plane curves of degree 6 with 6

ordinary cusps has at least two connected components.

Remark. Degtyarev showed that there are no Zariski pairs

in degree ≤ 5.
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Let [C, C ′] be the Zariski pair of 6-cuspidal sextics. Then C

and C′ can be deistinguished algebraically, because there is a

surjective homomorphism from π1(P2 \ C) ∼= (Z/2Z) ∗ (Z/3Z)

to a finite non-abelian group S3, while there are no such homo-

morphisms from π1(P2 \ C′) ∼= Z/6Z.

Many Zariki pairs discovered so far uses “algebraic” topological

invariants in distinguishing the topology of (P2, C).

Definition.

A Zariski pair [C, C ′] is said to be an arithmetic Zariski pair

if the following hold.

Suppose that C = {Φ = 0}. Then there exists an embedding

σ : FC ↪→ C such that C′ is isomorphic (as a plane curve) to

Cσ := {Φσ = 0} ⊂ P2.

In other words, an arithmetic Zariski pair is an algebraically-

indistinguishable Zariski pair.

Remark.

The first example of an arithmetic Zariski pair was discov-

ered by Artal, Carmona, Cogolludo (2007) in degree 12. They

used the invariant of braid monodromies in order to distinguish

(P2, C) and (P2, C′) topologically.
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Our aim is:

(1) to present a topological invariant of the complex plane

curves that is fine enough to distinguish the conjugate curves,

(2) to present explcit examples of arithmetic Zariski pairs, and

(3) to study the topology of those examples closely, and see

how the Galois action affects the topology.
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§3. A topological invariant

Let V be an oriented topological manifold of real dimension 4.

We put

H2(V ) := H2(V, Z)/torsion and H2(V ) := H2(V, Z)/torsion,

and let

ιV : H2(V ) × H2(V ) → Z
be the intersection pairing. We then put

J∞(V ) :=
⋂
K

Im(H2(V \ K) → H2(V )),

where K runs through the set of compact subsets of V , and set

B̃V := H2(V )/J∞(V ) and BV := (B̃V )/torsion.

Since any topological cycle is compact, the intersection pairing

ιV induces a symmetric bilinear form

βV : BV × BV → Z.

It is obvious that the isomorphism class of (BV , βV ) is a topo-

logical invariant of V .
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For a complex smooth projective surface X, we denote by

NS(X) ⊂ H2(X) the Néron-Severi lattice of X; that is, the

lattice generated by cohomology classes of curves on X with

the intersection pairing.

Theorem.

Let X be a complex smooth projective surface, and let

C1, . . . , Cn be irreducible curves on X. We put

V := X \
⋃

Ci.

Suppose that the classes [C1], . . . , [Cn] span NS(X) ⊗ Q. Then

(BV , βV ) is isomorphic to the transcendental lattice

T (X) := (NS(X) ↪→ H2(X))⊥/torsion.

Hence T (X) is a topological invariant of the open complex sur-

face V ⊂ X.
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Definition.

Two lattices

λ : Λ × Λ → Z and λ′ : Λ′ × Λ′ → Z

are said to be in the same genus if

λ ⊗ Zp : Λ ⊗ Zp × Λ ⊗ Zp → Zp and

λ′ ⊗ Zp : Λ′ ⊗ Zp × Λ′ ⊗ Zp → Zp

are isomorphic for any p including p = ∞, where Z∞ = R.

Theorem.

Let X and Xσ be conjugate non-singular complex projective

varieties of dimension 2. Suppose that H2(X) and H2(Xσ) are

both even. Then the transcendental lattices T (X) and T (Xσ)

are contained in the same genus.

This theorem follows from the theory of discriminant forms of

even lattices.

Gauss gave a complete description of isomorphism classes of

lattices of rank 2 (binary lattices) and their decomposition into

genera in Disquisitiones arithmeticae.
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§4. Singular K3 surfaces

Let X be a complex K3 surface; that is, a simply-connected

surface with KX
∼= OX. Then H2(X) is a unimodular lattice

of rank 22 with signature (3, 19).

Definition.

A complex K3 surface X is said to be singular if the rank of

the transcendental lattice T (X) is 2 (the possible minimum).

The transcendental lattice T (X) of a singular K3 surface X is

positive-definite. Moreover, by the Hodge decomposition

T (X) ⊗ C ∼= H2,0(X) ⊕ H0,2(X),

this lattice has a canonical orientation. We denote by T̃ (X)

the oriented transcendental lattice of X.
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Definition.

We put

M :=

{ [
2a b

b 2c

] ∣∣∣∣ a, b, c ∈ Z, a > 0, c > 0,

4ac − b2 > 0

}
.

We then denote by

L := M/ GL2(Z)

the set of isomorphism classes of even positive-definite binary

lattices, and by

L̃ := M/ SL2(Z)

the set of isomorphism classes of even positive-definite oriented

binary lattices.

Theorem (Shioda and Inose).

The map X 7→ T̃ (X) ∈ L̃ induces a bijection from the set of

isomorphism classes of singular K3 surfaces to the set L̃.
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Theorem (S.- and M. Schütt).

Let G ⊂ L be a genus in L, and let G̃ ⊂ L̃ be the pull-back of G
by the natural projection L̃ → L. Then there exists a singular

K3 surface X defined over a number field F such that the set

{ [T̃ (Xσ)] | σ ∈ Emb(F, C) } ⊂ L̃

coincides with the oriented genus G̃, where Emb(F, C) denotes

the set of embeddings of F into C.

Corollary.

Let X and X ′ be singular K3 surfaces. If their transcendental

lattices are in the same genus, then they are conjugate.
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Construction of examples.

Let T1 and T2 be even positive-definite lattices of rank 2 that

are in the same genus but not isomorphic. We have a singular

K3 surface X defined over a number field F , and embeddings

σ1, σ2 ∈ Emb(F, C) such that

T (Xσ1) ∼= T1 and T (Xσ2) ∼= T2.

Let C1, . . . , Cn be irreducible curves on X whose classes span

NS(X) ⊗ Q. Enlarging F , we can assume that

V := X \
⋃

Ci.

is defined over F . Then the conjugate open varieties

V σ1 and V σ2

are not homeomorphic.
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§5. Arithmetic Zariski pairs of maximizing sextics

Definition.

A complex plane curve C ⊂ P2 of degree 6 is called a maxi-

mizing sextic if C has only simple singularities and the total

Milnor number of C attains the possible maximum 19.

If C is a maximizing sextic, then the minimal resolution XC →
YC of the double covering YC → P2 branching exactly along C

is a singular K3 surface. We denote by T [C] the transcendental

lattice of XC.

Corollary.

The lattice T [C] is a topological invariant of (P2, C).

Using the surjectivity of the period map for complex K3 sur-

faces, we can determine whether there exists a maximizing sex-

tics C such that Sing(C) is of a given ADE-type. This task was

worked out by Yang (1996). We can also determine all possible

isomorphism classes of the transcendental lattice T [C].

Using computer, we obtain the following examples of arithmetic

Zariski pairs of maximizing sextics. We put

L[2a, b, 2c] :=

[
2a b

b 2c

]
.
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No. the type of Sing(C) T [C] and T [C′]

1 E8 + A10 + A1 L[6, 2, 8], L[2, 0, 22]

2 E8 + A6 + A4 + A1 L[8, 2, 18], L[2, 0, 70]

3 E6 + D5 + A6 + A2 L[12, 0, 42], L[6, 0, 84]

4 E6 + A10 + A3 L[12, 0, 22], L[4, 0, 66]

5 E6 + A10 + A2 + A1 L[18, 6, 24], L[6, 0, 66]

6 E6 + A7 + A4 + A2 L[24, 0, 30], L[6, 0, 120]

7 E6 + A6 + A4 + A2 + A1 L[30, 0, 42], L[18, 6, 72]

8 D8 + A10 + A1 L[6, 2, 8], L[2, 0, 22]

9 D8 + A6 + A4 + A1 L[8, 2, 18], L[2, 0, 70]

10 D7 + A12 L[6, 2, 18], L[2, 0, 52]

11 D7 + A8 + A4 L[18, 0, 20], L[2, 0, 180]

12 D5 + A10 + A4 L[20, 0, 22], L[12, 4, 38]

13 D5 + A6 + A5 + A2 + A1 L[12, 0, 42], L[6, 0, 84]

14 D5 + A6 + 2A4 L[20, 0, 70], L[10, 0, 140]

15 A18 + A1 L[8, 2, 10], L[2, 0, 38]

16 A16 + A3 L[4, 0, 34], L[2, 0, 68]

17 A16 + A2 + A1 L[10, 4, 22], L[6, 0, 34]

18 A13 + A4 + 2A1 L[8, 2, 18], L[2, 0, 70]

19 A12 + A6 + A1 L[8, 2, 46], L[2, 0, 182]

20 A12 + A5 + 2A1 L[12, 6, 16], L[4, 2, 40]

21 A12 + A4 + A2 + A1 L[24, 6, 34], L[6, 0, 130]

22 A10 + A9 L[10, 0, 22], L[2, 0, 110]

23 A10 + A9 L[8, 3, 8], L[2, 1, 28]

24 A10 + A8 + A1 L[18, 0, 22], L[10, 2, 40]

25 A10 + A7 + A2 L[22, 0, 24], L[6, 0, 88]

26 A10 + A7 + 2A1 L[10, 2, 18], L[2, 0, 88]

27 A10 + A6 + A2 + A1 L[22, 0, 42], L[16, 2, 58]

28 A10 + A5 + A3 + A1 L[12, 0, 22], L[4, 0, 66]

29 A10 + 2A4 + A1 L[30, 10, 40], L[10, 0, 110]

30 A10 + A4 + 2A2 + A1 L[30, 0, 66], L[6, 0, 330]

31 A8 + A6 + A4 + A1 L[22, 4, 58], L[18, 0, 70]

32 A7 + A6 + A4 + A2 L[24, 0, 70], L[6, 0, 280]

33 A7 + A6 + A4 + 2A1 L[18, 4, 32], L[2, 0, 280]

34 A7 + A5 + A4 + A2 + A1 L[24, 0, 30], L[6, 0, 120]
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§6. Maximizing sextics of type A10 + A9

There are 4 connected components in the moduli space of max-

imizing sextics of type

A10 + A9.

Two of them have irreducible members, and their oriented tran-

scendental lattices are[
10 0

0 22

]
and

[
2 0

0 110

]
.

The other two have reducible members (a line and an irre-

ducible quintic), and their oriented transcendental lattices are[
8 3

3 8

]
and

[
2 1

1 28

]
.

We will consider these reducible members.
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The reducible members are defined over Q(
√

5). The defining

equation is

C± : z · (G(x, y, z) ±
√

5 · H(x, y, z)) = 0,

where

G(x, y, z) := −9 x4z − 14 x3yz + 58 x3z2 − 48 x2y2z −
−64 x2yz2 + 10 x2z3 + +108 xy3z −
−20 xy2z2 − 44 y5 + 10 y4z,

H(x, y, z) := 5 x4z + 10 x3yz − 30 x3z2 + 30 x2y2z +

+20 x2yz2 − 40 xy3z + 20 y5.

The singular points are

[0 : 0 : 1] (A10) and [1 : 0 : 0] (A9).

We have two possibilities:

T [C+] ∼=

[
8 3

3 8

]
and T [C−] ∼=

[
2 1

1 28

]
,

or

T [C+] ∼=

[
2 1

1 28

]
and T [C−] ∼=

[
8 3

3 8

]
.

Problem. Which is the case?

Remark.

This problem cannot be solved by any algebraic methods.
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For simplicity, we put X± := XC±. Let D ⊂ X± be the total

transform of the union of the lines

{z = 0} ∪ {x = 0},

on which the two singular points of C± locate, and let X0
± be

the complement of D. Since the irreducible components of D

span SX± ⊗ Q, the inclusion X0
± ↪→ X± induces a surjection

H2(X
0
±, Z) →→ T (X±).

We will describe the generators of H2(X
0
±, Z) and the intersec-

tion numbers among them.

We put

f±(y, z) := G(1, y, z) ±
√

5 · H(1, y, z),

and set

Q± := {f±(y, z) = 0}.

Then Q± is a smooth affine quintic curve, and it intersects the

line

L := {z = 0}
at the origin with the multiplicity 5. The open surface X0

± is a

double covering of A2 \ L branching along Q±.
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Let

π± : X0
± → A2 \ L

be the double covering. We consider the projection

p : A2 → A1
z p(y, z) := z

and the composite

q± : X0
± → A2 \ L → A1

z \ {0}.

There are four critical points of the finite covering

p|Q± : Q± → A1
z.

Three of them R±, S±, S± are simple critical values, while the

critical point over 0 is of multiplicity 5. Their positions are

R+ = 0.42193..., S+ = 0.23780... + 0.24431... ·
√

−1,

and

R− = 0.12593..., S− = 27.542... + 45.819... ·
√

−1.

We choose a base point b on A1
z as a sufficiently small positive

real number (say b = 10−3), and define the loop λ and the

paths ρ±, σ±, σ̄± on the z-line A1
z as in the figure:
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0
b

R±

S±

S̄±

γ±
S

γ±
S̄

γ±
R

λ
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We put

A1
y := p−1(b), F± := q−1

± (b) = π−1
± (A1

y).

Then the morphism

π±|F± : F± → A1
y

is the double covering branching exactly at the five points A1
y ∩

Q±. Hence F± is a genus 2 curve minus one point.

We choose a system of oriented simple closed curves a1, . . . , a5

on F± in such a way that their images by the double covering

π±|F± : F± → A1
y

are given in the figure and that the orientations are given so

that

aiai+1 = −ai+1ai = 1

holds for i = 1, . . . , 5, where a6 := a1. Then H1(F±, Z) is

generated by [a1], . . . , [a4], and we have

[a5] = −[a1] − [a2] − [a3] − [a4].
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a5

a1

a2

a3

a4
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The monodromy along the loop λ around z = 0 is given by

ai 7→ ai+1.

Hence the open surface X0
± is homotopically equivalent to the

2-dimensional CW -complex obtained from F± by attaching

• four tubes

Ti := S1 × I (i = 1, . . . , 4)

with ∂Ti = ai+1 − ai, and

• three thimbles

Θ(ρ±), Θ(σ±), Θ(σ̄±)

corresponding to the vanishing cycles on F± for the simple

critical values R±, S± and S±.
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Hence the homology group H2(X
0
±, Z) is equal to the kernel of

the homomorphism
4⊕

i=1

Z[Ti] ⊕ Z[Θ(ρ±)] ⊕ Z[Θ(σ±)] ⊕ Z[Θ(σ̄±)] −→
4⊕

i=1

Z[ai]

given by [M ] 7→ [∂(M)]. Therefore the problem is reduced

to the calculation of the vanishing cycles ∂Θ(ρ±), ∂Θ(σ±) and

∂Θ(σ̄±).
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When z moves from b to R± along the path ρ±, the branch

points p−1(z) ∩ Q± moves as follows:

Q+(z) Q−(z)

Therefore, putting an orientation on the thimble, we have

[∂Θ(ρ+)] = [a1] − [a2] + [a3] − [a4],

while

[∂Θ(ρ−)] = [a2] + [a3].
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When z moves from b to S± along the path σ±, the branch

points p−1(z) ∩ Q± moves as follows:

Q+(z) Q−(z)

Therefore, putting an orientation on the thimble, we have

[∂Θ(σ+)] = [a1] − [a2] − [a3],

while

[∂Θ(σ−)] = 2[a1] − [a2] − [a3] − [a4].
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By this calculation, we obtain the following:

Proposition.

T [C+] ∼=

[
2 1

1 28

]
, T [C−] ∼=

[
8 3

3 8

]
.

Problem.

π1(P2 \ C+) ∼= π1(P2 \ C−)?
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