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On lattice-invariants of complex algebraic surfaces and their applications

We work over C.

Abstract

We study some lattice-theoretic topological invariants of complex
algebraic surfaces in P3, and
present an application to the construction of examples of weak
(arithmetic) Zariski pairs of surfaces with only RDPs in P3.

This is a joint work with A. Katanaga and M. Oka.
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Zariski pairs

Let S and S ′ be reduced (possibly reducible) hypersurfaces in Pn.

Definition

(1) We say that S and S ′ are of the same configuration type and
write

S ∼cfg S ′

if there are tubular neighborhoods T ⊂ Pn of S and T ′ ⊂ Pn of S ′,
and a homeomorphism (T , S) →∼ (T ′, S ′) that preserves the
degrees of the irreducible components of S and S ′.

(2) We say that S and S ′ have the same embedding topology and
write

S ∼top S ′

if there is a homeomorphism between (Pn, S) and (Pn, S ′).
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Zariski pairs

If two surfaces S and S ′ in P3 with only RDPs are of the same
configuration type, then

deg S = deg S ′, and

the ADE -type RS of Sing S is equal to the ADE -type RS ′ of
Sing S ′.

Definition

We say that two surfaces S and S ′ in P3 with only RDPs are of the
weakly same configuration type and write

S ∼wcfg S ′

if deg S = deg S ′ and RS = RS ′ .
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Zariski pairs

It is obvious that S ∼top S ′ implies S ∼cfg S ′ and S ∼wcfg S ′.

Definition

The pair [S , S ′] of reduced hypersurfaces in Pn is called a Zariski
pair if S ∼cfg S ′ but S 6∼topS

′.

Definition

The pair [S ,S ′] of surfaces S and S ′ in P3 with only RDPs is called
a weak Zariski pair if S ∼wcfg S ′ but S 6∼topS

′.

Many examples of Zariski m-ples of plane curves (n = 2) have
been constructed.
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Zariski pairs

The first example was discovered by Zariski in 1930’s.

Example

Let B ⊂ P2 be a plane curve of degree 6 defined by

f 3 + g2 = 0, deg f = 2, deg g = 3, general.

Then B is irreducible and has six cusps as its only singularities.
The six cusps are lying on the conic f = 0, and we have

π1(P2 \ B) ∼= Z/(2) ∗ Z/(3).

Del Pezzo had observed that there is a plane sextic B ′ with only
six cusps that are not lying on a conic. Zariski exhibited such B ′

and showed that

π1(P2 \ B ′) ∼= Z/(2)× Z/(3).
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Zariski pairs

The main problem in these studies is how to distinguish the
embedding topologies of plane curves B ⊂ P2 of the same
configuration type.

The major tool is the fundamental groups π1(P2 \ B) or its
variations like Alexander polynomials.

Aim: Construct Zariski pairs [S , S ′] of surfaces in
P3 with only isolated singularities.

In the construction, we cannot use π1(P3 \ S):
By Zariski’s hyperplane section theorem, we have

π1(P3 \ S) ∼= π1(P3 \ S ′) ∼= Z/(deg S).

We need new topological invariants.
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Arithmetic Zariski pairs

Let Aut(C) be the automorphism group of C.

For a scheme V → SpecC and an element σ ∈ Aut(C), we define
V σ → SpecC by the following Cartesian diagram:

V σ −→ V

↓ ¤ ↓
SpecC −→

σ∗
SpecC.

Two schemes V and V ′ over C are said to be conjugate
if V ′ is isomorphic over C to V σ over C for some σ ∈ Aut(C).
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Arithmetic Zariski pairs

Conjugate complex varieties can never be distinguished by any
algebraic methods (they are isomorphic over Q),
but they can be non-homeomorphic in the classical complex
topology.

The first example was given by Serre in 1964.

Other examples have been constructed by:
Abelson (1974),
Grothendieck’s dessins d’enfants (1984),
Bartolo, Ruber, and Agustin (2004),
Easton and Vakil (2007),
F. Charles (2009).
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Arithmetic Zariski pairs

Example (S.- and Arima)

Consider two smooth irreducible surfaces S± in C3 defined by

w2(G (x , y)±
√

5 · H(x , y)) = 1, where

G (x , y) := −9 x4 − 14 x3y + 58 x3 − 48 x2y2 − 64 x2y

+10 x2 + 108 xy3 − 20 xy2 − 44 y5 + 10 y4,

H(x , y) := 5 x4 + 10 x3y − 30 x3 + 30 x2y2 +

+20 x2y − 40 xy3 + 20 y5.

Then S+ and S− are not homeomorphic.
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Arithmetic Zariski pairs

Definition

A Zariski pair [S , S ′] of hypersurfaces in Pn is called an arithmetic
Zariski pair if S and S ′ are conjugate.

Definition

A weak Zariski pair [S , S ′] of surfaces in P3 with only RDPs is
called a weak arithmetic Zariski pair if S and S ′ are conjugate.

Aim: Construct arithmetic Zariski pairs [S , S ′] of
surfaces in P3 with only isolated singularities.

The first example of arithmetic Zariski pair was given by
Bartolo, Ruber, and Agustin (2004) for plane curves.
Their tool was the braid monodromy, and cannot be used for
surfaces with only isolated singularities.

We need new topological invariants.
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Topological invariants t(S) and T (S)

Definition

A quasi-lattice is a finitely generated Z-module L with a symmetric
bilinear form

L× L → Z.

For a quasi-lattice L, we put

ker L := { x ∈ L | (x , y) = 0 for all y ∈ L } = L⊥.

Note that ker L contains the torsion part of L.

Definition

A quasi-lattice L is called a lattice if the symmetric bilinear form is
non-degenerate (that is, ker L = 0).

For a quasi-lattice L, the free Z-module L/ ker L is a lattice.
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Topological invariants t(S) and T (S)

Let S ⊂ P3 be a surface with only RDPs.

We will define two topological invariants t(S) and T (S) of (P3,S),
which allow us to construct weak (arithmetic) Zariski pairs.

Definition

We put

t(S) := the torsion part of H3(P3 \ S ,Z)

= the torsion part of H3(P3,S ,Z)

= the torsion part of H2(S ,Z).

It is obvious that S ∼top S ′ implies t(S) ∼= t(S ′).
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Topological invariants t(S) and T (S)

We consider the smooth open surface

S◦ := S \ Sing S

and the intersection pairing

H2(S
◦,Z)× H2(S

◦,Z) → Z.

We then put

V (S◦) := Ker(H2(S
◦) → H2(P3)).

Definition

We define the invariant T (S) by

T (S) := V (S◦)/ kerV (S◦),

which is a lattice.

It is obvious that S ∼top S ′ implies T (S) ∼= T (S ′).
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Topological invariants t(S) and T (S)

Calculation of the invariants t(S) and T (S)

Let RS denote the ADE -type of Sing(S).
Consider the minimal resolution

ρ : X → S

of S . We regard H2(X ,Z) as a lattice by the cup-product. Let

h ∈ H2(X )

be the class of the pull-back of a plane section of S .
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Topological invariants t(S) and T (S)

Let Eρ be the set of exceptional curves E ⊂ X of ρ.
Each E ∈ Eρ is a smooth rational curve with E 2 = −2,
and the dual graph of them is a Dynkin diagram of type RS .

We consider the submodule

〈Eρ〉 ⊂ H2(X )

generated by the classes of the curves E ∈ Eρ. Then 〈Eρ〉 is a
sublattice of H2(X ) isomorphic to the negative-definite root lattice
of ADE -type RS . Let

〈Eρ〉 := (〈Eρ〉 ⊗Q) ∩ H2(X )

be the primitive closure of 〈Eρ〉 in H2(X ).
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Topological invariants t(S) and T (S)

Looking at the topology of the minimal resolution ρ, we obtain the
following:

Theorem

The invariant

t(S) = the torsion part of H2(S ,Z)

is isomorphic to 〈Eρ〉/〈Eρ〉.

Theorem

The lattice
T (S) := V (S◦)/ kerV (S◦),

where S◦ := S \ Sing S and V (S◦) := Ker(H2(S
◦) → H2(P3)) is

isomorphic to the orthogonal complement of 〈Eρ〉 ⊕ 〈h〉 in H2(X ).
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Topological invariants t(S) and T (S)

Therefore, if we know the data

(〈Eρ〉, h),

then we can calculate t(S) and T (S).

When deg S = 4, X is a K3 surface, and H2(X ) is isomorphic to
the K3 lattice

L := (−E8)
2 ⊕

(
0 1
1 0

)3

.

Definition

A quartic lattice data is a pair

(Λ, v)

of a negative-definite root sublattice Λ of the K3 lattice L and a
vector v ∈ L with v2 = 4.
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Topological invariants t(S) and T (S)

Definition

A quartic lattice data (Λ, v) is realizable if there is a quartic
surface S ⊂ P3 with only RDPs and an isomorphism

φ : H2(X ) ∼= L

of lattices such that φ(〈Eρ〉) = Λ and φ(h) = v .

If such S exists, then RS is equal to the ADE -type of the root
sublattice Λ.

By the Torelli theorem for K3 surfaces, we have the complete list
of realizable lattice data.
This task was done by J. G. Yang with an aid of computer.
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Examples of weak Zariski pairs

Example

There is a weak Zariski pair [S0,S1] of quartic surfaces such that

each Si has 8 nodes as its only singularities, and

t(S0) = 0, while t(S1) ∼= Z/2Z.

This pair was already observed by Coble in 1930’s:
S0 is called azygetic, while S1 is called syzygetic.
Their difference is also expressed by

h0(P3, IQ(2)) =

{
2 if Q = Sing S0,
3 if Q = Sing S1,

where IQ ⊂ OP3 is the ideal sheaf of Q ⊂ P3.
A syzygetic member S1 is defined by an equation of the form∑

aijAiAj = 0, where A0, A1,A2 are quadratics.
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Examples of weak Zariski pairs

Example

There is a weak Zariski quartet [S0,S1, S2, S3] of quartic surfaces
with RDPs of type

2A1 + 2A2 + 2A5

as their only singularities such that

t(S0) = 0, t(S1) ∼= Z/2Z, t(S2) ∼= Z/3Z, t(S3) ∼= Z/6Z.
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Singular K3 surfaces

Definition

A K3 surface X is called singular if the Picard number of X is 20.

Let X be a singular K3 surface. Then the transcendental lattice

T (X ) := NS(X )⊥ in H2(X ,Z)

is a positive-definite even lattice of rank 2.
The Hodge decomposition

T (X )⊗ C = H2,0(X )⊕ H0,2(X )

induces an orientation on T (X ). We denote by

T̃ (X )

the oriented transcendental lattice of X .
By Torelli theorem, we have

T̃ (X ) ∼= T̃ (X ′) =⇒ X ∼= X ′.
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Singular K3 surfaces

Construction by Shioda and Inose

Every singular K3 surface X is obtained as a certain double cover
of the Kummer surface

Km(E × E ′),

where E and E ′ are elliptic curves with CM by some orders of

Q(
√
−|disc(T (X ))|).

Theorem (Shioda and Inose)

(1) For any positive-definite oriented even lattice T̃ of rank 2,
there exists a singular K3 surface X such that T̃ (X ) ∼= T̃ .
(2) Every singular K3 surface is defined over a number field.
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Singular K3 surfaces

A lattice L is naturally embedded into the dual lattice

L∨ := Hom(L,Z).

The discriminant group of L is the finite abelian group

DL := L∨/L.

The Z-valued symmetric bilinear form on L extends to

L∨ × L∨ → Q.

A lattice L is said to be even if x2 ∈ 2Z for all x ∈ L. If L is even,
then we have a quadratic form

qL : DL → Q/Z, x̄ 7→ x2 mod 2Z,

which is called the discriminant form of L.
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Singular K3 surfaces

We have the following:

Proposition

Let L and L′ be even lattices of the same rank.
If L and L′ have isomorphic discriminant forms and
the same signature, then L and L′ belong to the same genus.

Since H2(X ) is unimodular and both of T (X ) and NS(X ) are
primitive in H2(X ), we have the following:

Proposition

(DT (X ), qT (X )) ∼= (DNS(X ),−qNS(X )).
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Singular K3 surfaces

Let X and X ′ be singular K3 surfaces.
It is obvious that, if X and X ′ are conjugate, then NS(X ) and
NS(X ′) are isomorphic. Therefore we have the following:

Corollary

If X and X ′ are conjugate, then T (X ) and T (X ′) are in the same
genus.

The class field theory of imaginary quadratic fields tells us how the
Galois group acts on the j-invariants of elliptic curves with CM.
Using this, S.- and Schütt (2007) proved the following converse:

Theorem

If T (X ) and T (X ′) are in the same genus,
then X and X ′ are conjugate.
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An example of weak arithmetic Zariski pairs

Definition

A quartic surface S ⊂ P3 is maximizing if it has only RDPs and its
total Milnor number is 19.

If S is a maximizing quartic, then X is a singular K3 surface, and
we have

T (S) ∼= T (X ).

Hence, if maximizing quartics S and S ′ are of the weakly same
configuration type, and T (X ) and T (X ′) are not isomorphic but in
the same genus, then [S , S ′] is a weak arithmetic Zariski pair.
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An example of weak arithmetic Zariski pairs

Example

There is a weak arithmetic Zariski pair [S , S ′] of maximizing
quartic surfaces such that

each of them has RDPs of type A1 + A18 as its only
singularities, and

the minimal resolutions X of S and X ′ of S ′ have the
transcendental lattices

[
4 0
0 38

]
and

[
6 2
2 26

]
,

which are in the same genus but are not isomorphic.

Problem: Find the explicit defining equations of S and S ′.
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An example of weak arithmetic Zariski pairs

Thank you!
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