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§1 Four equivalence relations of simple sextics
B Cc P?: a complex reduced projective plane curve of degree 6.

B is a simple sextic
< B has only simle singularities (ADE-singularities)
< the minimal resolution Xg of the double cover

Yg — PP? branching along B is a K3 surface

» up: the total Milnor number of B.

» Rg: the ADE type of Sing B.

» Eg: the set of exceptional (—2)-curves for the minimal
resolution Xg — Y. We have |Eg| = ug.

» Y5 C H?>(Xp,Z) : the sublattice generated by the classes
[E] of E € Eg and the polarization class h := [p*Op2(1)],
where p: Xg — Yg — P?. We have rank¥p =1+ pug.

> S5 C H*(Xg,Z): the primitive closure of £g in H?(Xg,Z).



Example by Zariski in 1930's

There exist two irreducible simple sextics with six ordinary cusps
(that is, Rg = 6A2)

Bis = {f3+g%> =0} (torus type) and Bpys (non-torus type)
ypP

that cannot be connected by an equisingular family.
Their differences are described in a several ways:
> 11(P? \ Bys) = Z/27 + 7./37Z, while
71(P? \ Bpirs) = 7./27 x 7./37.
» 3 a smooth conic ' = {f = 0} passing through the six cusps
of Byrs, which splits into two curves [ and ' in Xp,, while
7 a conic passing through the six cusps of Bpys.

> the finite abelian group X g,,/X5,, is cyclic of order 3
generated by [[4] € Xp,., while Xg,./%5,,. =0.
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B ~eqs B’
B ~lat B’

B~z B’

B ~iop B’

T ¢

B and B’ are connected by an equisingular family.
3 a bijection g = Ep/ that induces, with ¢(h) = h,
an isometry of lattices ¢ : g = YL p.

3 tubular nbds T C P? of B and T’ C P? of B’

Ja homeo ¢ : (T,B) = (T', B') such that

e deg B; = deg ¢(B;) for each irred comp B; of B,

e o induces a local analytic isomorphism

at each singular point of B and B'.

3 a homeo ¢ : (IP?, B) =% (P2, B) that induces

a local analytic isom at each singular point.

i
B ~eqs B B ~eiy B
S

B ~lat B
S (Yang)

Z
B ~iop B’




Example
For the example by Zariski, we have

Birs ~cfg Bntrs, but

Btrs’?(’eqs Bntrs: Btrs’?(’lat Bntr57 Btrs’?(’tOantrs-

Remark

The torus curves By = {f3 + g% = 0} of Zariski form a connected
equisingular family. An explicit defining equation of a non-torus
curve Bpes of Zariski was first given by Oka (1994). The connect-
edness of the equisingular family of non-torus curves was established
by Degtyarev (2008).

Aim: to compare these four equivalence relations.
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§2 Comparison of ~1,; and ~fy

Using the surjectivity of the period mapping for complex K3
surfaces, Yang (1996) classified all lattice types (the equivalence
classes of ~,). He has also established an algorithm to determine
the configuration type of a given lattice type.

Numbers of lattice types and configuration types:

g |0 1 2 3 4 5 6 7 8 9 10 11
~g| 1 1 2 3 6 10 18 30 53 89 148 246
~ae| 11 2 3 6 10 18 30 53 89 148 246

pg | 12 13 14 15 16 17 18 19 | total
415 684 1090 1623 2139 2283 1695 623 11159
416 686 1096 1639 2171 2330 1734 629 |11308

~cfg

~lat
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Definition
A configuration type consisting of k lattice types with k > 1 is called
a lattice Zariski k-plet.

Aim: Desribe all lattice Zariski k-plets.
There are no lattice Zariski k-plets with k > 4.

Example of a lattice Zariski triple

There are three lattice types A1, Ay, Az in the configuration type of
B = CUQ, where C is a smooth conic and @ is a quartic with a
tacnode P; intersecting C at P, P3 with multiplicity 4, so that
Rg = Az + 2A;5.
These three lattice types are distinguished as follows:

Beh <« [EB:ZB]:4,

Beh <& [EB:ZB]:&

Belhs & [EB:ZB]:Z
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Definition

A simple sextic B is said to be lattice-generic if g = NS(Xg) holds.

Remark

For any B, there exists a lattice-generic B’ such that B ~eqs B'. In
particular, every lattice type contains a lattice-generic member.

The three lattice types above are distinguished geometrically.
Let B be a lattice-generic member of the configuration type above.

» B € A; if and only if 3 a smooth conic I passing through
P1, P>, P3 such that multp,(B,I') =4 for i = 1,2,3.
» B € Ay if and only if 3 a line I passing through Py, P>, Ps.

» B € Az if and only if there are no such conics or lines.
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Z-splitting curves (Z stands for “Zariski")

Definition

A reduced irreducible curve I C P? is called splitting for B if the
strict transform of I by Xz — P? splits into distinct irred com-
ponents . C Xpg and I_ C Xpg, which are called the lifts of T.

A splitting curve I C P? is called Z-splitting if the class [I'1] of
[, C Xp is contained in the primitive closure g C H?(Xg,Z).

Remark

(1) A splitting curve is Z-splitting if and only if it is stable under a
small equisingular deformation of B.

(2) We have a numerical criterion (involving the intersection mul-
tiplicities of B and I') to determine whether a splitting curve I is
Z-splitting or not.
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Example
Consider the torus curve Bys = {f3 + g2 = 0} of Zariski, where f
and g are general. Then the conic I = {f = 0} is Z-splitting.
If f = f1f, with degfiy = degf, = 1, then the lines [ = {f4 = 0}
and I, = {f, = 0} are splitting but not Z-splitting. In this case,
the simple sextic

B :={f’ +¢* =0}
with Rgr = 6A5 is contained in the same lattice type as By, but is
not lattice-generic.
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We have written an algorithm to determine all Z-splitting curves of
degree < 2 for a lattice-generic member of a given lattice type. In
particular, if B and B’ are lattice-generic and B ~,; B’, then the
numbers of Z-splitting lines (resp. conics) for B and for B are
equal.

By this algorithm, we have obtained the following:

Theorem

The lattice types in any lattice Zariski k-plets (k > 1) are distin-
guished by the numbers of Z-splitting lines and Z-splitting conics
for their lattice-generic members.

We are going to classify all Z-splitting lines and Z-splitting conics
for simple sextics.
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§3 Classification of Z-splitting lines and conics

For simplicity, we call a pair (B, ) of a lattice-generic simple sextic
B and a Z-splitting curve ' a lattice-generic Z-pair.

Definition
Let (B,I) and (B’,T") be lattice-generic Z-pairs. We say that (B, )
and (B’,T") are of the same lattice type and write (B, ') ~a¢ (B’,T")
if there exists a bijection £ = £ that induces an isometry of
lattices ¢ : X p = Y g/ such that

» ¢ preserves h, and

» ¢ maps theclass [[;] € Tgto [[" ] €Xp or [[] € Tp.
The lattice type containing a lattice-generic Z-pair (B, ) is denoted
by A\(B,T).

We have (B, ) ~ia (B, ") = B ~jay B' = B~z B'.
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Definition
The order of a lattice type A(B,T) is the order of the class [[ ] € T
in the finite abelian group ¥5/% 5.

Definition

Let A and Ao be lattice types of lattice-generic Z-pairs. We say
that Ao is a specialization of X if there exists an analytic family
(B¢, Tt)ten of lattice-generic Z-pairs parametrized by a unit disc A
such that (B, T¢) € A for t # 0, and (Byp, o) € Xo.

We are going to classify the lattice types of lattice-generic Z-pairs
(B,T) with deg " < 2 from which all lattice types are obtained by
specializations.
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Theorem (Classification of Z-splitting lines)

Let A be the lattice type of a lattice-generic Z-pair (B,I') with
degl = 1. Then the order d of A is 6,8,10 or 12, and X is a
specialization of the following lattice type Mjin g = A(Bqg, [4):

Rg, degrees of irreducible components
Aing  3As [3,3] (the cubics are smooth)
Aing A3z +2A7 [2,4] (the quartic has As)
Ainto 2A4 + Ag [1,5] (the quintic has 2A;)

Nin12 Az + As+ A1 [2,4] (the quartic has As).

For each Ajing = A(Bg,T4), the Z-splitting line 'y passes through
the three singular points of By. The finite abelian group Xp,/Y g,
is cyclic of order d, and is generated by the class [(I'y)+] of the lift.
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Theorem (Classification of Z-splitting conics)

Let A be the lattice type of a lattice-generic Z-pair (B,I") with
degl = 2. Then the order d of A is 3,4,5,6,7 or 8, and X is a
specialization of the following lattice type Acon.d = A(Bg, q):

>\con,3
/\con,4
>\con,5
Acon,6
/\con,7
A(:on,8

The finite abelian group de/ZBd is cyclic of order d, and is gener-
ated by the class [(I'y)+] of the lift.

Rs,
6A,

2A1 =+ 4A3

4A,

2A1 —+ 2A2 + 2A5
3A6

A + Az +2A;7

degs

[6]

[2,4] (the quartic has 2A;)
[6]

[2,4] (the quartic has 2A;)

[6]
[2,4] (the quartic has A; + A3).
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Each of the simple sextics in these “generating” lattice types
)\Iin,d (d = 67 8, 107 # 12) and )\con,d (d = 3, ce ,8)

is a member of lattice Zariski k-plets (k > 1).

Example

The simple sextic in Acon 3 (Re = 6A2, degs = [6]) is the torus curve
Birs of Zariski. It has a non-torus partner Bpys.

Example
The simple sextic in Ajng (Re = A3 + 2A7,degs = [2,4]) is a
member of the lattice Zariski triple presented above.
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What classes generates the finite abelian group ¥g/¥ g?

Let B be a lattice-generic simple sextic.

Y C H*(Xg,Z): the sublattice generated by ¥ and the
reduced parts of the strict transforms of the irred components of B.

YgpCYgCXp.

Theorem (Exceptional simple sextic)
(1) If 3 a Z-splitting curve of degree < 2, then ¥ g/¥} is generated
by the classes of the lifts of these Z-splitting curves.

(2) There exists a lattice-generic Bexe wWith Rp, . = 3A1 + 4As3 and
degs Bexc = [2,4] (the quartic has 3A1) such that ¥ # ¥, but
there are no Z-splitting curves of degree < 2.

(3) If £z # £g but there are no Z-splitting curves of degree < 2,
then the lattice type of B is a specialization of that of Beyc.
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The group ¥, /¥ g, is cyclic of order 4, and is generated by the
classes of the lift [[;] of Z-splitting cubic curves I'. Hence we
have

Corollary

For a lattice-generic B, £5 = NS(Xp) is generated over ¥z by the
classes of the lifts of Z-splitting curves of degree < 3.

Remark

The exceptional simple sextic Bexe = C U Q is a member of lattice
Zariski couple. Let B . = C'U Q' be a lattice-generic member of
the partner in this lattice Zariski couple. Then fBéxc/ZBéxc is also
cyclic of order 4. There exists a Z-splitting conic I for B, . and

= exc
ZBéxc/ZBéxc is generated by [F+]
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&4 Comparison of ~i,¢ and ~yqp

Recall the implications:

B ~lat B’
B ~egs B’ B efg B’
S Z

B ~top B’

For a simple sextic B, we denote by
Ts C H*(Xg,Z)

the orthogonal complement of Y5 C H?(Xg,Z). (If B is
lattice-generic, then Tg is the transcendental lattice of Xg.)

Theorem
If B ~top B’, then the lattices Tg and Tpgs are isomorphic.
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Proof

We consider the open K3 surface Ug := p~}(P?\ B) C Xg. We
put

Joo(UB) = ﬂK Im(H2(UB \ K,Z) — HQ(UB,Z)),

where K runs through the set of compact subsets of Ug, and put
Vo(Ug) := Ha(Ug,Z)/J(Ug). Then the intersection pairing

15 : Ho(Ug, Z) x Hy(Ug,Z) — 7.
induces 7g : Vo(Ug) x Vo(Ug) — Z. By construction, we have
B ~iop B = (Vo(Ug),78) = (Va(Ug),7s).
Then Theorem follows from

(Va(Ug),78) = Tp.
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We have obtained following theorem by means of the Shioda-Inose
construction of the singular K3 surfaces (the complex K3 surfaces
with Picard number 20).

Theorem (S.- and Schiitt)

Let X and X’ be singular K3 surfaces defined over Q such that their
transcendental lattices are in the same genus. Then X and X' are
conjugate under the action of Gal(Q/Q).

Corollary

Let B be a simple sextic with g = 19 defined over Q. If the
genus containing Tg contains more than one isomorphism classes of
lattices, then 3 o € Gal(Q/Q) such that B ~1,; B” and By, ,B°.
(Remark that the lattice type is determined algebraically.)

Can this corollary be generalized to equisingular families of simple
sextics with ug < 197
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Example (Arima and S.-)
Consider By :z-(G(x,y,z) +v5-H(x,y,z)) =0, where

G(x,y,z) = —9x*z—14x%yz +58x2% — 48x°y°z — 64 x°yz°
+10x223 + 108 xy3z — 20 xy?2z% — 44 y° + 10 y*z,
H(x,y,z) = 5x*z+10x’yz —30x>2% +30x°y%z +

+20 x%yz? — 40 xy3z + 20 y°.

We have degs By = [1,5] with the quintic having Aig and Rg, =
A1g + Ag. Their transcendental lattices are

8 3

3 8|°

2 1
Tp, = [ } , Te_
Hence we have By ~y; B but By %y, B-.

1%

1 28

22
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Does B ~yop, B imply B ~y,; B'?

Since H2(Xpg,Z) is unimodular, we have | disc Tg| = |disc Zp|.

Proposition
Suppose that B ~¢; B’ (and hence X = ¥ p/). Then

[EB . ZB] 75 [EB/ . ZB/] - Bf/JtOpBI.

In many cases (but not in all cases), the lattice types in a
configuration type are distinguished by [X5 : Xg].

Proposition

Let B and B’ be simple sextics such that
B ~cfg B/, [fB . ZB] = [fB/ . ZB/], B%latBl.

Then either the lattice types of [B, B'] are specializations of those
Of [Bexcs Blxe]: of R = A1 + A3z + 2A; and degs B = [2,4].

23
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85 Comparison of ~,¢ and ~ves

B ~1a B’
B ~eqs B' B~y B/
S A

B ~top B’

Using the refined version of the surjectivity of the period mapping
for complex K3 surfaces, Degtyarev (2008) has given an algorithm
to determine the connected components of the equisingular family
(the equivalence classes of ~qqs) in a given lattice type.

His algorithm involves a calculation of the orthogonal group
O(Tg). Since Tg is indefinite for ug < 19, the complete table of
the connected components of the equisingular family has not yet
obtained except for the case ug = 19.
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A a given lattice type.
We want to calculate

CES(A) := A/ ~eqs @ the set of connected components of the
equisingular family in A.

> Y : the Néron-Severi lattice of \; sgn ™ = (1, ).

» G C O(X): the subgroup of isometries of & preserving the
set of exceptional (—2)-curves [E] and the polarization h.

» 7s: the set of isomorphism classes of even lattices T with
sgn T = (2,19 — ) whose discriminant form is (—1) times
the discriminant form of & (the set of possible transcendental
lattices).

We have a natural projection

p: CES(\) — Ts.
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For T € Ts, we put

» L(X,T) . the set of even unimodular overlattices L of TaoT
in which X and T are primitive (these L are the K3 lattice).

> cQ(T): the set of connected components of the cone
{(xe T®R|x%>0}.

Theorem (Degtyarev)
We have

pHT) =2 (Gx O(T)\(L(E, T) x cQ(T)).

We say that a connected component is real if the corresponding
(G x O(T))-orbit C L(X, T) x cQ(T) is stable under the
interchanging of the two elements of cQ(T).
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Example

The simple sextics with Rg = Ai1g + A; form one lattice type. The
equisingular family has three connected components; one is real and
the other two are non-real. Artal, Carmona and Cogolludo (2002)
constructed these simple sextics defined over Q(«), where « is a
root of

19x> + 50x° 4 36x + 8 = 0,

which has one real root and two non-real roots. Their transcendental
lattices are

[380

+2 10

8 £2
0 2} (for real), [

] (for non-real).
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Example

The simple sextics with Rg = Ajg form one lattice type. The eq-
uisingular family has two connected components, and both are real.
Artal et al. showed that they are conjugate by Gal(Q(v/5)/Q).
Their transcendental lattices are

oa)

We would like to know whether these two are ~, or not.
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Example

The simple sextics with Rg = A1z + As + A1 form one lattice
type. The equisingular family has six non-real connected compo-
nents. Their transcendental lattices are all isomorphic to

10 0
0 30 |°
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Summary

The “zoology” of simple sextics is interesting.
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