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§1 Four equivalence relations of simple sextics

B ⊂ P2 : a complex reduced projective plane curve of degree 6.

B is a simple sextic

⇔ B has only simle singularities (ADE-singularities)

⇔ the minimal resolution XB of the double cover

YB → P2 branching along B is a K3 surface

I µB : the total Milnor number of B.

I RB : the ADE type of Sing B.

I EB : the set of exceptional (−2)-curves for the minimal
resolution XB → YB . We have |EB | = µB .

I ΣB ⊂ H2(XB ,Z) : the sublattice generated by the classes
[E ] of E ∈ EB and the polarization class h := [ρ∗OP2(1)],
where ρ : XB → YB → P2. We have rankΣB = 1 + µB .

I ΣB ⊂ H2(XB ,Z) : the primitive closure of ΣB in H2(XB ,Z).

2 / 30



Example by Zariski in 1930’s

There exist two irreducible simple sextics with six ordinary cusps
(that is, RB = 6A2)

Btrs = {f 3+g2 = 0} (torus type) and Bntrs (non-torus type)

that cannot be connected by an equisingular family.
Their differences are described in a several ways:

I π1(P2 \ Btrs) ∼= Z/2Z ∗ Z/3Z, while
π1(P2 \ Bntrs) ∼= Z/2Z× Z/3Z.

I ∃ a smooth conic Γ = {f = 0} passing through the six cusps
of Btrs , which splits into two curves Γ+ and Γ− in XBtrs , while
@ a conic passing through the six cusps of Bntrs .

I the finite abelian group ΣBtrs /ΣBtrs is cyclic of order 3
generated by [Γ+] ∈ ΣBtrs , while ΣBntrs /ΣBntrs = 0.
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B ∼eqs B ′ ⇔ B and B ′ are connected by an equisingular family.
B ∼lat B ′ ⇔ ∃ a bijection EB

∼= EB′ that induces, with φ(h) = h,
an isometry of lattices φ : ΣB

∼= ΣB′ .
B ∼cfg B ′ ⇔ ∃ tubular nbds T ⊂ P2 of B and T ′ ⊂ P2 of B ′

∃ a homeo ϕ : (T , B) →∼ (T ′, B ′) such that
• deg Bi = deg ϕ(Bi ) for each irred comp Bi of B,
• ϕ induces a local analytic isomorphism
at each singular point of B and B ′.

B ∼top B ′ ⇔ ∃ a homeo ϕ : (P2,B) →∼ (P2, B ′) that induces
a local analytic isom at each singular point.

B ∼lat B ′
⇒ ⇒ (Yang)

B ∼eqs B ′ B ∼cfg B ′⇒ ⇒
B ∼top B ′
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Example

For the example by Zariski, we have

Btrs ∼cfg Bntrs , but

Btrs 6∼eqsBntrs , Btrs 6∼latBntrs , Btrs 6∼topBntrs .

Remark

The torus curves Btrs = {f 3 + g2 = 0} of Zariski form a connected
equisingular family. An explicit defining equation of a non-torus
curve Bntrs of Zariski was first given by Oka (1994). The connect-
edness of the equisingular family of non-torus curves was established
by Degtyarev (2008).

Aim: to compare these four equivalence relations.
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§2 Comparison of ∼lat and ∼cfg

Using the surjectivity of the period mapping for complex K3
surfaces, Yang (1996) classified all lattice types (the equivalence
classes of ∼lat). He has also established an algorithm to determine
the configuration type of a given lattice type.

Numbers of lattice types and configuration types:

µB 0 1 2 3 4 5 6 7 8 9 10 11

∼cfg 1 1 2 3 6 10 18 30 53 89 148 246
∼lat 1 1 2 3 6 10 18 30 53 89 148 246

µB 12 13 14 15 16 17 18 19 total
∼cfg 415 684 1090 1623 2139 2283 1695 623 11159
∼lat 416 686 1096 1639 2171 2330 1734 629 11308
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Definition

A configuration type consisting of k lattice types with k > 1 is called
a lattice Zariski k-plet.

Aim: Desribe all lattice Zariski k-plets.

There are no lattice Zariski k-plets with k ≥ 4.

Example of a lattice Zariski triple

There are three lattice types Λ1,Λ2, Λ3 in the configuration type of
B = C ∪ Q, where C is a smooth conic and Q is a quartic with a
tacnode P1 intersecting C at P2, P3 with multiplicity 4, so that
RB = A3 + 2A7.
These three lattice types are distinguished as follows:

B ∈ Λ1 ⇔ [ΣB : ΣB ] = 4,

B ∈ Λ2 ⇔ [ΣB : ΣB ] = 8,

B ∈ Λ3 ⇔ [ΣB : ΣB ] = 2.
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Definition

A simple sextic B is said to be lattice-generic if ΣB = NS(XB) holds.

Remark

For any B, there exists a lattice-generic B ′ such that B ∼eqs B ′. In
particular, every lattice type contains a lattice-generic member.

The three lattice types above are distinguished geometrically.
Let B be a lattice-generic member of the configuration type above.

I B ∈ Λ1 if and only if ∃ a smooth conic Γ passing through
P1, P2,P3 such that multPi

(B, Γ) = 4 for i = 1, 2, 3.

I B ∈ Λ2 if and only if ∃ a line Γ passing through P1, P2, P3.

I B ∈ Λ3 if and only if there are no such conics or lines.
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Z -splitting curves (Z stands for “Zariski”)

Definition

A reduced irreducible curve Γ ⊂ P2 is called splitting for B if the
strict transform of Γ by XB → P2 splits into distinct irred com-
ponents Γ+ ⊂ XB and Γ− ⊂ XB , which are called the lifts of Γ.

A splitting curve Γ ⊂ P2 is called Z-splitting if the class [Γ+] of
Γ+ ⊂ XB is contained in the primitive closure ΣB ⊂ H2(XB ,Z).

Remark

(1) A splitting curve is Z -splitting if and only if it is stable under a
small equisingular deformation of B.
(2) We have a numerical criterion (involving the intersection mul-
tiplicities of B and Γ) to determine whether a splitting curve Γ is
Z -splitting or not.
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Example

Consider the torus curve Btrs = {f 3 + g2 = 0} of Zariski, where f
and g are general. Then the conic Γ = {f = 0} is Z -splitting.

If f = f1f2 with deg f1 = deg f2 = 1, then the lines Γ1 = {f1 = 0}
and Γ2 = {f2 = 0} are splitting but not Z -splitting. In this case,
the simple sextic

B ′ := {f 3
1 f 3

2 + g2 = 0}
with RB′ = 6A2 is contained in the same lattice type as Btrs , but is
not lattice-generic.
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We have written an algorithm to determine all Z -splitting curves of
degree ≤ 2 for a lattice-generic member of a given lattice type. In
particular, if B and B ′ are lattice-generic and B ∼lat B ′, then the
numbers of Z -splitting lines (resp. conics) for B and for B ′ are
equal.

By this algorithm, we have obtained the following:

Theorem

The lattice types in any lattice Zariski k-plets (k > 1) are distin-
guished by the numbers of Z -splitting lines and Z -splitting conics
for their lattice-generic members.

We are going to classify all Z -splitting lines and Z -splitting conics
for simple sextics.
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§3 Classification of Z -splitting lines and conics

For simplicity, we call a pair (B, Γ) of a lattice-generic simple sextic
B and a Z -splitting curve Γ a lattice-generic Z-pair.

Definition

Let (B, Γ) and (B ′, Γ′) be lattice-generic Z -pairs. We say that (B, Γ)
and (B ′, Γ′) are of the same lattice type and write (B, Γ) ∼lat (B ′, Γ′)
if there exists a bijection EB

∼= EB′ that induces an isometry of
lattices φ : ΣB

∼= ΣB′ such that

I φ preserves h, and

I φ maps the class [Γ+] ∈ ΣB to [Γ′+] ∈ ΣB′ or [Γ′−] ∈ ΣB′ .

The lattice type containing a lattice-generic Z -pair (B, Γ) is denoted
by λ(B, Γ).

We have (B, Γ) ∼lat (B ′, Γ′) =⇒ B ∼lat B ′ =⇒ B ∼cfg B ′.
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Definition

The order of a lattice type λ(B, Γ) is the order of the class [Γ+] ∈ ΣB

in the finite abelian group ΣB/ΣB .

Definition

Let λ and λ0 be lattice types of lattice-generic Z -pairs. We say
that λ0 is a specialization of λ if there exists an analytic family
(Bt , Γt)t∈∆ of lattice-generic Z -pairs parametrized by a unit disc ∆
such that (Bt , Γt) ∈ λ for t 6= 0, and (B0, Γ0) ∈ λ0.

We are going to classify the lattice types of lattice-generic Z -pairs
(B, Γ) with deg Γ ≤ 2 from which all lattice types are obtained by
specializations.
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Theorem (Classification of Z -splitting lines)

Let λ be the lattice type of a lattice-generic Z -pair (B, Γ) with
deg Γ = 1. Then the order d of λ is 6, 8, 10 or 12, and λ is a
specialization of the following lattice type λlin,d = λ(Bd , Γd):

RBd
degrees of irreducible components

λlin,6 3A5 [3, 3] (the cubics are smooth)
λlin,8 A3 + 2A7 [2, 4] (the quartic has A3)
λlin,10 2A4 + A9 [1, 5] (the quintic has 2A4)
λlin,12 A3 + A5 + A11 [2, 4] (the quartic has A5).

For each λlin,d = λ(Bd , Γd), the Z -splitting line Γd passes through
the three singular points of Bd . The finite abelian group ΣBd

/ΣBd

is cyclic of order d , and is generated by the class [(Γd)+] of the lift.
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Theorem (Classification of Z -splitting conics)

Let λ be the lattice type of a lattice-generic Z -pair (B, Γ) with
deg Γ = 2. Then the order d of λ is 3, 4, 5, 6, 7 or 8, and λ is a
specialization of the following lattice type λcon,d = λ(Bd , Γd):

RBd
degs

λcon,3 6A2 [6]
λcon,4 2A1 + 4A3 [2, 4] (the quartic has 2A1)
λcon,5 4A4 [6]
λcon,6 2A1 + 2A2 + 2A5 [2, 4] (the quartic has 2A2)
λcon,7 3A6 [6]
λcon,8 A1 + A3 + 2A7 [2, 4] (the quartic has A1 + A3).

The finite abelian group ΣBd
/ΣBd

is cyclic of order d , and is gener-
ated by the class [(Γd)+] of the lift.
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Each of the simple sextics in these “generating” lattice types

λlin,d (d = 6, 8, 10, 6= 12) and λcon,d (d = 3, . . . , 8)

is a member of lattice Zariski k-plets (k > 1).

Example

The simple sextic in λcon,3 (RB = 6A2,degs = [6]) is the torus curve
Btrs of Zariski. It has a non-torus partner Bntrs .

Example

The simple sextic in λlin,8 (RB = A3 + 2A7, degs = [2, 4]) is a
member of the lattice Zariski triple presented above.
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What classes generates the finite abelian group ΣB/ΣB?

Let B be a lattice-generic simple sextic.

Σ′B ⊂ H2(XB ,Z) : the sublattice generated by ΣB and the
reduced parts of the strict transforms of the irred components of B.

ΣB ⊂ Σ′B ⊂ ΣB .

Theorem (Exceptional simple sextic)

(1) If ∃ a Z -splitting curve of degree ≤ 2, then ΣB/Σ′B is generated
by the classes of the lifts of these Z -splitting curves.

(2) There exists a lattice-generic Bexc with RBexc = 3A1 + 4A3 and
degsBexc = [2, 4] (the quartic has 3A1) such that Σ′Bexc

6= ΣBexc but
there are no Z -splitting curves of degree ≤ 2.

(3) If Σ′B 6= ΣB but there are no Z -splitting curves of degree ≤ 2,
then the lattice type of B is a specialization of that of Bexc .
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The group ΣBexc /ΣBexc is cyclic of order 4, and is generated by the
classes of the lift [Γ+] of Z -splitting cubic curves Γ. Hence we
have

Corollary

For a lattice-generic B, ΣB = NS(XB) is generated over Σ′B by the
classes of the lifts of Z -splitting curves of degree ≤ 3.

Remark

The exceptional simple sextic Bexc = C ∪ Q is a member of lattice
Zariski couple. Let B ′exc = C ′ ∪ Q ′ be a lattice-generic member of
the partner in this lattice Zariski couple. Then ΣB′exc /ΣB′exc is also
cyclic of order 4. There exists a Z -splitting conic Γ for B ′exc and
ΣB′exc /ΣB′exc is generated by [Γ+].
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§4 Comparison of ∼lat and ∼top

Recall the implications:

B ∼lat B ′⇒ ⇒
B ∼eqs B ′ B ∼cfg B ′⇒ ⇒

B ∼top B ′

For a simple sextic B, we denote by

TB ⊂ H2(XB ,Z)

the orthogonal complement of ΣB ⊂ H2(XB ,Z). (If B is
lattice-generic, then TB is the transcendental lattice of XB .)

Theorem

If B ∼top B ′, then the lattices TB and TB′ are isomorphic.
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Proof

We consider the open K3 surface UB := ρ−1(P2 \ B) ⊂ XB . We
put

J∞(UB) :=
⋂

K Im(H2(UB \ K ,Z) → H2(UB ,Z)),

where K runs through the set of compact subsets of UB , and put
V2(UB) := H2(UB ,Z)/J∞(UB). Then the intersection pairing

ιB : H2(UB ,Z)× H2(UB ,Z) → Z

induces ῑB : V2(UB)× V2(UB) → Z. By construction, we have

B ∼top B ′ =⇒ (V2(UB), ῑB) ∼= (V2(UB′), ῑB′).

Then Theorem follows from

(V2(UB), ῑB) ∼= TB .
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We have obtained following theorem by means of the Shioda-Inose
construction of the singular K3 surfaces (the complex K3 surfaces
with Picard number 20).

Theorem (S.- and Schütt)

Let X and X ′ be singular K3 surfaces defined over Q such that their
transcendental lattices are in the same genus. Then X and X ′ are
conjugate under the action of Gal(Q/Q).

Corollary

Let B be a simple sextic with µB = 19 defined over Q. If the
genus containing TB contains more than one isomorphism classes of
lattices, then ∃ σ ∈ Gal(Q/Q) such that B ∼lat Bσ and B 6∼topB

σ.
(Remark that the lattice type is determined algebraically.)

Can this corollary be generalized to equisingular families of simple
sextics with µB < 19?
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Example (Arima and S.-)

Consider B± : z · (G (x , y , z)±√5 · H(x , y , z)) = 0, where

G (x , y , z) := −9 x4z − 14 x3yz + 58 x3z2 − 48 x2y2z − 64 x2yz2

+10 x2z3 + 108 xy3z − 20 xy2z2 − 44 y5 + 10 y4z ,

H(x , y , z) := 5 x4z + 10 x3yz − 30 x3z2 + 30 x2y2z +

+20 x2yz2 − 40 xy3z + 20 y5.

We have degsB± = [1, 5] with the quintic having A10 and RB± =
A10 + A9. Their transcendental lattices are

TB+
∼=

[
2 1
1 28

]
, TB−

∼=
[

8 3
3 8

]
.

Hence we have B+ ∼lat B− but B+ 6∼topB−.
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Does B ∼top B ′ imply B ∼lat B ′?
Since H2(XB ,Z) is unimodular, we have | discTB | = |discΣB |.

Proposition

Suppose that B ∼cfg B ′ (and hence ΣB
∼= ΣB′). Then

[ΣB : ΣB ] 6= [ΣB′ : ΣB′ ] =⇒ B 6∼topB
′.

In many cases (but not in all cases), the lattice types in a
configuration type are distinguished by [ΣB : ΣB ].

Proposition

Let B and B ′ be simple sextics such that

B ∼cfg B ′, [ΣB : ΣB ] = [ΣB′ : ΣB′ ], B 6∼latB
′.

Then either the lattice types of [B, B ′] are specializations of those
of [Bexc , B

′
exc ], or RB = A1 + A3 + 2A7 and degsB = [2, 4].
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§5 Comparison of ∼lat and ∼eqs

B ∼lat B ′⇒ ⇒
B ∼eqs B ′ B ∼cfg B ′⇒ ⇒

B ∼top B ′

Using the refined version of the surjectivity of the period mapping
for complex K3 surfaces, Degtyarev (2008) has given an algorithm
to determine the connected components of the equisingular family
(the equivalence classes of ∼eqs) in a given lattice type.

His algorithm involves a calculation of the orthogonal group
O(TB). Since TB is indefinite for µB < 19, the complete table of
the connected components of the equisingular family has not yet
obtained except for the case µB = 19.
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λ : a given lattice type.

We want to calculate

CES(λ) := λ/ ∼eqs : the set of connected components of the
equisingular family in λ.

I Σ : the Néron-Severi lattice of λ; sgnΣ = (1, µ).

I G ⊂ O(Σ) : the subgroup of isometries of Σ preserving the
set of exceptional (−2)-curves [E ] and the polarization h.

I T s : the set of isomorphism classes of even lattices T with
sgnT = (2, 19− µ) whose discriminant form is (−1) times
the discriminant form of Σ (the set of possible transcendental
lattices).

We have a natural projection

p : CES(λ)→→T s.
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For T ∈ T s, we put

I L(Σ,T ) : the set of even unimodular overlattices L of Σ⊕ T
in which Σ and T are primitive (these L are the K3 lattice).

I cΩ(T ) : the set of connected components of the cone
{x ∈ T ⊗ R | x2 > 0}.

Theorem (Degtyarev)

We have

p−1(T ) ∼= (G × O(T ))\(L(Σ, T )× cΩ(T )).

We say that a connected component is real if the corresponding
(G × O(T ))-orbit ⊂ L(Σ,T )× cΩ(T ) is stable under the
interchanging of the two elements of cΩ(T ).
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Example

The simple sextics with RB = A18 + A1 form one lattice type. The
equisingular family has three connected components; one is real and
the other two are non-real. Artal, Carmona and Cogolludo (2002)
constructed these simple sextics defined over Q(α), where α is a
root of

19x3 + 50x2 + 36x + 8 = 0,

which has one real root and two non-real roots. Their transcendental
lattices are
[

38 0
0 2

]
(for real),

[
8 ±2
±2 10

]
(for non-real).
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Example

The simple sextics with RB = A19 form one lattice type. The eq-
uisingular family has two connected components, and both are real.
Artal et al. showed that they are conjugate by Gal(Q(

√
5)/Q).

Their transcendental lattices are
[

2 0
0 20

]
.

We would like to know whether these two are ∼top or not.
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Example

The simple sextics with RB = A14 + A4 + A1 form one lattice
type. The equisingular family has six non-real connected compo-
nents. Their transcendental lattices are all isomorphic to

[
10 0
0 30

]
.
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Summary

The “zoology” of simple sextics is interesting.
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