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Transcendental lattices of complex algebraic surfaces

Introduction

Let Aut(C) be the automorphism group of the complex number
field C.

For a scheme V → SpecC and an element σ ∈ Aut(C), we define
a scheme V σ → SpecC by the following Cartesian diagram:

V σ −→ V

↓ ¤ ↓
SpecC −→

σ∗
SpecC.

Two schemes V and V ′ over C are said to be conjugate
if V ′ is isomorphic to V σ over C for some σ ∈ Aut(C).
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Transcendental lattices of complex algebraic surfaces

Introduction

Conjugate complex varieties can never be distinguished by any
algebraic methods (they are isomorphic over Q),
but they can be non-homeomorphic in the classical complex
topology.

The first example was given by Serre in 1964.

Other examples have been constructed by:
Abelson (1974),
Grothendieck’s dessins d’enfants (1984),
Artal Bartolo, Carmona Ruber, and Cogolludo Agust (2004),
Easton and Vakil (2007), F. Charles (2009).

We will construct such examples by means of
transcendental lattices of complex algebraic surfaces.
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Transcendental lattices of complex algebraic surfaces

Introduction

Example (S.- and Arima)

Consider two smooth irreducible surfaces S± in C3 defined by

w2(G (x , y)±
√

5 · H(x , y)) = 1, where

G (x , y) := −9 x4 − 14 x3y + 58 x3 − 48 x2y2 − 64 x2y

+10 x2 + 108 xy3 − 20 xy2 − 44 y5 + 10 y4,

H(x , y) := 5 x4 + 10 x3y − 30 x3 + 30 x2y2 +

+20 x2y − 40 xy3 + 20 y5.

Then S+ and S− are not homeomorphic.
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Transcendental lattices of complex algebraic surfaces

Introduction

§ Definition of the transcendental lattice
§ The transcendental lattice is topological
§ The discriminant form is algebraic
§ Fully-rigged surfaces
§ Maximizing curves
§ Arithmetic of fully-rigged K3 surfaces
§ Construction of the explicit example
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Transcendental lattices of complex algebraic surfaces

Definition of the transcendental lattice

By a lattice, we mean a free Z-module L of finite rank with a
non-degenerate symmetric bilinear form

L× L → Z.

A lattice L is naturally embedded into the dual lattice

L∨ := Hom(L,Z).

The discriminant group of L is the finite abelian group

DL := L∨/L.

A lattice L is called unimodular if DL is trivial.
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Transcendental lattices of complex algebraic surfaces

Definition of the transcendental lattice

Let X be a smooth projective surface over C. Then

H2(X ) := H2(X ,Z)/(the torsion)

is regarded as a unimodular lattice by the cup-product.
The Néron-Severi lattice

NS(X ) := H2(X ) ∩ H1,1(X )

of classes of algebraic curves on X is a sublattice of signature

sgn(NS(X )) = (1, ρ− 1).

The transcendental lattice of X is defined to be the orthogonal
complement of NS(X ) in H2(X ):

T (X ) := NS(X )⊥.
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Transcendental lattices of complex algebraic surfaces

Definition of the transcendental lattice

Proposition (Shioda)

T (X ) is a birational invariant of algebraic surfaces.

Proof.

Suppose that X and X ′ are birational. There exists a smooth
projective surface X ′′ with birational morphisms

X ′′ → X and X ′′ → X ′.

Every birational morphism between smooth projective surfaces is a
composite of blowing-ups at points.
A blowing-up at a point does not change the transcendental
lattice.

Hence, for a surface S (possibly singular and possibly open),
the transcendental lattice T (S) is well-defined.
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Transcendental lattices of complex algebraic surfaces

The transcendental lattice is topological

Let X be a smooth projective surface over C,
and let C1, . . . , Cn ⊂ X be irreducible curves. Suppose that

[C1], . . . , [Cn] ∈ NS(X ) span NS(X )⊗Q over Q.

We consider the open surface

S := X \ (C1 ∪ · · · ∪ Cn).

By definition, we have T (S) = T (X ).

Consider the intersection pairing

ι : H2(S)× H2(S) → Z.

We put

H2(S)⊥ := { x ∈ H2(S) | ι(x , y) = 0 for all y ∈ H2(S) }.
Then H2(S)/H2(S)⊥ becomes a lattice.
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Transcendental lattices of complex algebraic surfaces

The transcendental lattice is topological

Proposition

The lattice T (S) = T (X ) is isomorphic to H2(S)/H2(S)⊥.

Proof.

We put C := C1 ∪ · · · ∪ Cn. Consider the diagram:

H2(S)
j∗−→ H2(X )

↓ o ↓ o
H2(X , C ) −→ H2(X )

rC−→ H2(C ) =
⊕

H2(Ci ),

where j : S ↪→ X is the inclusion. From this, we see that
Im j∗ = T (X ). Since T (X ) is non-degenerate, we have
Ker j∗ = H2(S)⊥.
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Transcendental lattices of complex algebraic surfaces

The transcendental lattice is topological

Let σ be an element of Aut(C). Then

[Cσ
1 ], . . . , [Cσ

n ] ∈ NS(Xσ) span NS(X σ)⊗Q over Q,

because the intersection pairing on NS(X ) is defined algebraically.

Since the lattice H2(S)/H2(S)⊥ is defined topologically, we obtain
the following:

Corollary

If Sσ and S are homeomorphic, then T (Sσ) = T (X σ) is
isomorphic to T (S) = T (X ).

Corollary

If T (X ) and T (X σ) are not isomorphic, then there exists a Zariski
open subset S ⊂ X such that S and Sσ are not homeomorphic.
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Transcendental lattices of complex algebraic surfaces

The discriminant form of the transcendental lattice is algebraic

Let L be a lattice. The Z-valued symmetric bilinear form on L
extends to

L∨ × L∨ → Q.

Hence, on the discriminant group DL := L∨/L of L, we have a
quadratic form

qL : DL → Q/Z, x̄ 7→ x2 mod Z,

which is called the discriminant form of L.

A lattice L is said to be even if x2 ∈ 2Z for any x ∈ L.
If L is even, then qL : DL → Q/Z is refined to

qL : DL → Q/2Z.
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Transcendental lattices of complex algebraic surfaces

The discriminant form of the transcendental lattice is algebraic

Since H2(X ) is unimodular and both of T (X ) and NS(X ) are
primitive in H2(X ), we have the following:

Proposition

(DT (X ), qT (X )) ∼= (DNS(X ),−qNS(X )).

Since the Néron-Severi lattice is defined algebraically, we obtain
the following:

Corollary

For any σ ∈ Aut(C), we have

(DT (X ), qT (X )) ∼= (DT (Xσ), qT (Xσ)).
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Transcendental lattices of complex algebraic surfaces

Fully-rigged surfaces

Recall that:

Our aim is to construct conjugate open surfaces S and Sσ that are
not homeomorphic.

For this, it is enough to construct conjugate smooth projective
surfaces X and X σ with non-isomorphic transcendental lattices
T (X ) 6∼= T (X σ).

But T (X ) and T (X σ) have isomorphic discriminant forms.

Problem

To what extent does the discriminant form determine the lattice?
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Transcendental lattices of complex algebraic surfaces

Fully-rigged surfaces

Proposition

Let L and L′ be even lattices of the same rank.
If L and L′ have isomorphic discriminant forms and
the same signature, then L and L′ belong to the same genus.

Theorem (Eichler)

Suppose that L and L′ are indefinite.
If L and L′ belong to the same spinor-genus, then L and L′ are
isomorphic.

The difference between genus and spinor-genus is not big.

Hence we need to search for X such that T (X ) is definite.
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Transcendental lattices of complex algebraic surfaces

Fully-rigged surfaces

Definition (Katsura)

Let S be a surface with a smooth projective birational model X .

S is fully-rigged

⇐⇒ rank(NS(X )) = h1,1(X )

⇐⇒ rank(T (S)) = 2pg (X )

⇐⇒ T (S) is positive-definite.

Remark

For abelian surfaces or K3 surfaces, fully-rigged surfaces are called
“singular”.
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Transcendental lattices of complex algebraic surfaces

Maximizing curves

Definition (Persson)

A reduced (possibly reducible) projective plane curve B ⊂ P2 of
even degree 2m is maximizing if the following hold:

B has only simple singularities (ADE -singularities), and

the total Milnor number of B is 3m2 − 3m + 1.

Equivalently, B ⊂ P2 is maximizing if and only if

the double cover YB → P2 of P2 branching along B has only
RDPs, and

for the minimal resolution XB of YB , the classes of the
exceptional divisors span a sublattice of NS(XB)
with rank h1,1(XB)− 1.

In particular, XB is fully-rigged.
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Transcendental lattices of complex algebraic surfaces

Maximizing curves

Persson (1982) found many examples of maximizing curves.

Example

The projective plane curve

B : xy(xn + yn + zn)2 − 4xy((xy)n + (yz)n + (zx)n) = 0

has singular points of type

2n × Dn+2 + n × An−1 + A1.

It is maximizing.
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Transcendental lattices of complex algebraic surfaces

Maximizing curves

If B ⊂ P2 is of degree 6 and has only simple singularities, then the
minimal resolution XB of the double cover of P2 branching along B
is a K3 surface.

In the paper

Yang, Jin-Gen
Sextic curves with simple singularities
Tohoku Math. J. (2) 48 (1996), no. 2, 203–227,

Yang classified all sextic curves with only simple singularities by
means of Torelli theorem for complex K3 surfaces.

His method also gives the transcendental lattices of the fully-rigged
K3 surfaces XB obtained as the double plane sextics.
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Transcendental lattices of complex algebraic surfaces

Arithmetic of fully-rigged (singular) K3 surfaces

(We use the terminology “fully-rigged K3 surfaces” rather than
the traditional “singular K3 surfaces”.)

Let X be a fully-rigged K3 surface; that is, X is a K3 surface with
the Picard number 20. Then the transcendental lattice T (X ) is a
positive-definite even lattice of rank 2.
The Hodge decomposition

T (X )⊗ C = H2,0(X )⊕ H0,2(X )

induces an orientation on T (X ). We denote by

T̃ (X )

the oriented transcendental lattice of X .
By Torelli theorem, we have

T̃ (X ) ∼= T̃ (X ′) =⇒ X ∼= X ′.
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Transcendental lattices of complex algebraic surfaces

Arithmetic of fully-rigged (singular) K3 surfaces

Construction by Shioda and Inose.

Every fully-rigged K3 surface X is obtained as a certain double
cover of the Kummer surface

Km(E × E ′),

where E and E ′ are elliptic curves with CM by some orders of

Q(
√
−|discT (X )|).

Theorem (Shioda and Inose)

(1) For any positive-definite oriented even lattice T̃ of rank 2,
there exists a fully-rigged K3 surface X such that T̃ (X ) ∼= T̃ .
(2) Every fully-rigged K3 surface is defined over a number field.
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Transcendental lattices of complex algebraic surfaces

Arithmetic of fully-rigged (singular) K3 surfaces

The class field theory of imaginary quadratic fields tells us how the
Galois group acts on the j-invariants of elliptic curves with CM.
Using this, S.- and Schütt (2007) proved the following:

Theorem

Let X and X ′ be fully-rigged K3 surfaces defined over Q.
If

(DT (X ), qT (X )) ∼= (DT (X ′), qT (X ′))

(that is, if T (X ) and T (X ′) are in the same genus),
then X and X ′ are conjugate.

Therefore, if the genus contains more than one isomorphism class,
then we can construct non-homeomorphic conjugate surfaces
as Zariski open subsets of fully-rigged K3 surfaces.
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Transcendental lattices of complex algebraic surfaces

Constructing explicit examples

From Yang’s table, we know that there exists a sextic curve

B = L + Q,

where Q is a quintic curve with one A10-singular point,
and L is a line intersecting Q at only one smooth point of Q.
Hence B has A9 + A10.

The Néron-Severi lattice NS(XB) is an overlattice of

RA9+A10 ⊕ 〈h〉

with index 2,
where RA9+A10 is the negative-definite root lattice of type A9 +A10,
and h is the vector [OP2(1)] with h2 = 2.
(The extension comes from the fact that B is reducible.)
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Transcendental lattices of complex algebraic surfaces

Constructing explicit examples

The genus of even positive-definite lattices of rank 2 corresponding
to the discriminant form

(DNS(XB),−qNS(XB)) ∼= (Z/55Z, [2/55] mod 2)

consists of two isomorphism classes:

[
2 1
1 28

]
,

[
8 3
3 8

]
.
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Transcendental lattices of complex algebraic surfaces

Constructing explicit examples

On the other hand, the maximizing sextic B is defined by the
normal form

B± : z · (G (x , y , z)±
√

5H(x , y , z)) = 0, where

G = −9 x4z − 14 x3yz + 58 x3z2 − 48 x2y2z − 64 x2yz2 +

10 x2z3 + 108 xy3z − 20 xy2z2 − 44 y5 + 10 y4z ,

H = 5 x4z + 10 x3yz − 30 x3z2 + 30 x2y2z +

20 x2yz2 − 40 xy3z + 20 y5.
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Transcendental lattices of complex algebraic surfaces

Constructing explicit examples

Hence the étale double covers S± of the complements P2 \ B± are
conjugate but non-homeomorphic. Indeed, we have

T (S+) ∼=
[

2 1
1 28

]
and T (S−) ∼=

[
8 3
3 8

]
.

Remark

There is another possibility

T (S+) ∼=
[

8 3
3 8

]
and T (S−) ∼=

[
2 1
1 28

]
.

The verification of the fact that the first one is the case needs a
careful topological calculation.
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Transcendental lattices of complex algebraic surfaces

Constructing explicit examples

Thank you!
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