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Problem

Let X be a smooth projective complex surface, and
let D =

∑

miCi be an effective divisor on X .

We regard
H2(X ) := H2(X , Z)/(torsion)

as a unimodular lattice by the cup-product. We consider the
submodule

L(X ,D) := 〈[Ci ]〉 ⊂ H2(X )

generated by the classes [Ci ] of reduced irreducible components Ci

of D, and its primitive closure

L̄(X ,D) := (L(X ,D) ⊗ Q) ∩ H2(X ) ⊂ H2(X ).

Problem

How to calculate the finite abelian group

A(X ,D) := L̄(X ,D)/L(X ,D)?
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Motivations

Motivation 1.

Let Xm be the Fermat surface

xm
0 + xm

1 + xm
2 + xm

3 = 0,

and let D be the union of the 3m2 lines on Xm. For simplicity, we
assume m ≥ 5. Shioda showed that

(m, 6) = 1 ⇐⇒ NS(Xm) = L̄(Xm,D),

and posed the problem

(m, 6) = 1 ⇐⇒ NS(Xm) = L(Xm,D)?

Recently, Schütt, Shioda and van Luijk showed the following by
modulo p reduction technique and computer-aided calculation:

Theorem

Let m be ≤ 100 and prime to 6. Then NS(Xm) = L(Xm,D). In

particular, A(Xm,D) = 0.
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Motivations

Motivation 2.

In 1930’s, Coble discovered a pair [S0,S1] of quartic surfaces in P3

with 8 nodes that can not be connected by equising deformation:
S0 is called azygetic, and S1 is called syzygetic.

They are distinguished by

h0(P3,IQ(2)) =

{

2 if Q = Sing S0,

3 if Q = Sing S1,

where IQ ⊂ OP3 is the ideal sheaf of Q ⊂ P3.

Let X0 and X1 be the minimal resolutions of S0 and S1,
respectively, and let D0 and D1 be the exceptional divisors.
Then we have

{

A(X0,D0) = L̄(X0,D0)/L(X0,D0) = 0

A(X1,D1) = L̄(X1,D1)/L(X1,D1) ∼= Z/2Z.
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Motivations

Using the Torelli theorem for complex K3 surfaces, we have found
a quartet [S0,S1,S2,S3] of quartic surfaces with RDPs of type

2A1 + 2A2 + 2A5

such that, for the minimal resolution Xi of Si and the exceptional
divisor Di on Xi , we have

A(X0,D0) = 0,
A(X1,D1) ∼= Z/2Z,
A(X2,D2) ∼= Z/3Z,
A(X3,D3) ∼= Z/6Z.
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Motivations

Motivation 3.

Let C1 and C2 be smooth conics on P2 in general position, and let
L1, . . . ,L4 be their common tangents. Consider the double
covering S → P2 branching along

T := C1 + C2 + L1 + L2 + L3 + L4.

Then S has RDPs of type 8A3 + 10A1. Let X → S be the minimal
resolution of S , and let D be the total transform of T . Then
A(X ,D) is non-trivial.

We have the following classical theorem due to Salmon:

Theorem

There is a conic passing through the eight tacnodes of T .
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An algorithm for computing the order of A(X , D)

Let X be a smooth projective complex surface,
and D =

∑

miCi an effective divisor on X .

For a submodule M ⊂ H2(X ), we put

discM := | det(S)|,

where S is the symmetric matrix expressing the cup-product
restricted to M. Then

M is a sublattice of H2(X ) ⇐⇒ discM 6= 0.

If L(X ,D) = 〈[Ci ]〉 is a sublattice, then so is L̄(X ,D) and

|A(X ,D)| =

√

discL(X ,D)

disc L̄(X ,D)
.

In particular, if discL(X ,D) is square-free, then A(X ,D) is trivial.
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An algorithm for computing the order of A(X , D)

If we know the configuration of irreducible components Ci of D,
then we can calculate L(X ,D) algebro-geometrically.

We present an algorithm to calculate disc L̄(X ,D).

Remark that

discL(X ,D), disc L̄(X ,D), and A(X ,D)

depend only on the open surface

X \ D ;

namely, if X ′ is another smooth projective surface containing X \D

such that D ′ := X ′ \ (X \ D) is a union of curves, then we have

discL(X ,D) = discL(X ′,D ′),

disc L̄(X ,D) = disc L̄(X ′,D ′),

A(X ,D) ∼= A(X ′,D ′).
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An algorithm for computing the order of A(X , D)

We show that, under certain assumptions, disc L̄(X ,D) can be
calculated topologically from X \ D.

Suppose that discL(X ,D) 6= 0. Then we have

L̄(X ,D) = (L(X ,D)⊥)⊥,

and, since H2(X ) is unimodular, we have

disc L̄(X ,D) = discL(X ,D)⊥.

Thus it is enough to calculate the orthogonal complement
L(X ,D)⊥.
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An algorithm for computing the order of A(X , D)

Proposition

By the Poincaré duality H2(X ) ∼= H2(X ), the orthogonal
complement L(X ,D)⊥ ⊂ H2(X ) is equal to the image of the
homomorphism

j∗ : H2(X \ D) → H2(X )

induced by the inclusion j : X \ D →֒ X .

The proof follows from the following commutative diagram:

H2(X \ D)
j∗

−→ H2(X )

| ≀ |≀

H2(X ,D) −→ H2(X ) −→ H2(D) =
⊕

H2(Ci ).

Remark

If L(X ,D)⊥ ∼= Im j∗ is of rank 0, then L̄(X ,D) = H2(X ) and
hence |A(X ,D)| =

√

discL(X ,D).
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An algorithm for computing the order of A(X , D)

Since j∗ : H2(X \ D) → H2(X ) preserves the intersection pairing

( , ) of topological cycles, we have the following:

Proposition

Suppose that discL(X ,D) 6= 0. Then the lattice
L(X ,D)⊥ ∼= Im j∗ is isomorphic to the lattice

H2(X \ D)/ ker(H2(X \ D)),

where ker(H2(X \ D)) denotes the submodule

{ x ∈ H2(X \ D) | (x , y) = 0 for all y ∈ H2(X \ D) }.

Therefore, to calculate disc L̄(X ,D), it is enough to calculate
H2(X \ D) and the intersection pairing on H2(X \ D).
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Covering of P
2 branching along 4 lines

We apply our method to coverings of P2 branching along 4 lines

B0, B1, B2, B3

in general position. Since

π1(P
2 \

⋃

Bi) = (Z γ0 ⊕ · · · ⊕ Z γ3)/〈γ0 + · · · + γ3〉

is abelian, where γ0, . . . , γ3 are simple loops around B0, . . . ,B3,
these coverings are necessarily abelian.
For a surjective homomorphism

ρ : π1(P
2 \ ∪Bi) → H

to a finite abelian group H, we denote by

φρ : Yρ → P2

the finite covering associated to ρ, and by

ϕρ : Xρ → Yρ → P2

the composite of the resolution Xρ → Yρ and the covering φρ.
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Covering of P
2 branching along 4 lines

As the divisor D, we consider the pull-back of the three lines

Λ1 + Λ2 + Λ3

passing through two of the six intersection points of B0, . . . ,B3:

Dρ := ϕ∗

ρ
(Λ1 + Λ2 + Λ3) ⊂ Xρ.

Thick lines are Bi , and
dash-lines are Λν

.

Note that Dρ contains the exceptional divisor of Xρ → Yρ.
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Covering of P
2 branching along 4 lines

When ρ is the maximal homomorphism

π1(P
2 \

⋃

Bi) = (Z γ0 ⊕ · · · ⊕ Z γ3)/〈γ0 + · · · + γ3〉

→ (Z/mZ)3 = (Z/mZ)e0 ⊕ (Z/mZ)e1 ⊕ (Z/mZ)e2

to the abelian group of exponent m given by

ρ(γi ) = ei (i = 0, 1, 2) and ρ(γ3) = −e0 − e1 − e2,

then Xρ is the Fermat surface of degree m, and Dρ is the union of
the 3m2 lines.
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Covering of P
2 branching along 4 lines

In general, Xρ is a resolution of a quotient Yρ of the Fermat
surface.

The divisor Dρ is the union of the images of the 3m2 lines and the
exceptional divisors of the resolution.

Since the singular points on Yρ are cyclic quotient singularities, we
can resolve them by Hirzebruch-Jung method. Thus we can
calculate the lattice L(Xρ,Dρ).

(Since L(Xρ,Dρ) contains a vector h with h2 > 0, we have
discL(Xρ,Dρ) 6= 0 by Hodge index theorem.)

On the other hand, we obtain disc L̄(Xρ,Dρ) by calculating the
intersection pairing on H2(Xρ \ Dρ).
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Covering of P
2 branching along 4 lines

We have carried out these calculations for all coverings associated
to homomorphisms

ρ : π1(P
2 \

⋃

Bi) → Z/mZ

to cyclic groups of order m ≤ 40.

In this case, the open surface Xρ \ Dρ is a quotient of

Xm \ (union of the 3m2 lines)

by the group (Z/mZ)2.

It turns out that the finite abelian groups

A(Xρ,Dρ) = L̄(Xρ,Dρ)/L(Xρ,Dρ)

are non-trivial for many cases.
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Covering of P
2 branching along 4 lines

Let
R0, R1, R2, R3

be the reduced irreducible curves on Xρ that are mapped to the
branching lines B0,B1,B2,B3, respectively. It is easy to see that

[Ri ] ∈ L̄(Xρ,Dρ).

Theorem

Let ρ : π1(P
2 \

⋃

Bi) → Z/mZ be a surjective homomorphism to a

cyclic group of order m with 4 ≤ m ≤ 40. Then

L̄(Xρ,Dρ) = L(Xρ,Dρ) + 〈[R0], [R1], [R2], [R3]〉.
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Covering of P
2 branching along 4 lines

We put

L′(Xρ,Dρ) := L(Xρ,Dρ) + 〈[R0], [R1], [R2], [R3]〉

= L(Xρ,Dρ + R0 + R1 + R2 + R3).

We can calculate discL′(Xρ,Dρ) algebro-geometrically.

The statement of Theorem is equivalent to say that L′(Xρ,Dρ) is
primitive in H2(Xρ) for 4 ≤ m ≤ 40.

All we have to do is to calculate disc(L(Xρ,Dρ)
⊥) and to show

discL′(Xρ,Dρ) = disc(L(Xρ,Dρ)
⊥).

Problem

Is L′(Xρ,Dρ) primitive for all m and ρ?
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Example

The homomorphism ρ : π1(P
2 \

⋃

Bi) → Z/mZ is given by

[a0, a1, a2, a3] := [ρ(γ0), ρ(γ1), ρ(γ2), ρ(γ3)].

Example

The following is the table of discL′(Xρ,Dρ) and discL(Xρ,Dρ) for
m = 12:

[a0, a1, a2, a3] discL′(Xρ,Dρ) discL(Xρ,Dρ) rank

[0, 0, 1, 11] 1 1 62
[0, 1, 1, 10] 1 (2)4(3)4 62
[0, 1, 2, 9] 1 (2)4 50
[0, 1, 3, 8] 1 1 46
[0, 1, 4, 7] 1 (3)4 50
[0, 1, 5, 6] 1 (2)4 50
[1, 1, 1, 9] (2)2(3) (2)10(3)5 44
[1, 1, 2, 8] (2)4(3) (2)8(3)5 36
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Example

Example

[a0, a1, a2, a3] discL′(Xρ,Dρ) discL(Xρ,Dρ) rank

[1, 1, 3, 7] (3)3 (2)6(3)7 30
[1, 1, 4, 6] 1 (2)4(3)4 38
[1, 1, 5, 5] (2)6 (2)14(3)4 40

[1, 1, 11, 11] 1 (2)6(3)4 38
[1, 2, 2, 7] (2)4(3)3 (2)10(3)7 38
[1, 2, 3, 6] (2)2(3)2 (2)8(3)2 34
[1, 2, 4, 5] (2)4 (2)8(3)4 31

[1, 2, 10, 11] 1 (2)6(3)4 38
[1, 3, 3, 5] (2)4(3)2 (2)10(3)2 30
[1, 3, 4, 4] (3)3 (3)7 34
[1, 3, 9, 11] 1 (2)6 26
[1, 3, 10, 10] (3)3 (2)6(3)7 40
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Example

Example

[a0, a1, a2, a3] discL′(Xρ,Dρ) discL(Xρ,Dρ) rank

[1, 4, 8, 11] 1 (3)4 28
[1, 4, 9, 10] (3) (2)4(3)5 33
[1, 5, 7, 11] 1 (2)6(3)4 26
[1, 5, 9, 9] (2)6 (2)14 28
[1, 6, 6, 11] 1 (2)6 34
[1, 6, 7, 10] (3)2 (2)6(3)6 34
[1, 6, 8, 9] (2)2 (2)6 30
[1, 7, 8, 8] (2)4(3)3 (2)4(3)7 26
[2, 3, 3, 4] (2)4 (2)8 34
[2, 3, 9, 10] 1 (2)6 34
[3, 4, 8, 9] 1 1 30
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Calculation of the intersection pairing on H2(X \ D)

We explain the method to calculate H2(Xρ \ Dρ) in detail.

First remark that, if Γ is an arbitrary line on P2, then

L(Xρ,Dρ) ⊂ L(Xρ,Dρ + ϕ∗

ρ
(Γ)) ⊂ L̄(Xρ,Dρ),

and therefore we have

L(Xρ,Dρ)
⊥ = L(Xρ,Dρ + ϕ∗

ρ
(Γ))⊥.

Hence it is enough to take suitable lines Γ1, . . . ,Γk , put

U := P2 \ (
⋃

Bi ∪
⋃

Λν ∪
⋃

Γq),

and calculate the intersection form on H2(X
U), where

XU := ϕ−1
ρ

(U).
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Calculation of the intersection pairing on H2(X \ D)

We choose U in such a way that U admits a morphism

f : U → C \ {P1, . . . ,PN}

such that the composite

f ◦ ϕρ : XU → U → C \ {P1, . . . ,PN}

is a locally trivial fibration (in the classical topology) with fibers
being open Riemann surfaces.
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Calculation of the intersection pairing on H2(X \ D)

The thick lines are B0, . . . ,B3:
The x-axis and the y -axis are
Λ1 and Λ2 (Λ3 is the line at
infinity):

The fibration f is given by
(x , y) 7→ x , and hence we have
to remove two extra vertical
dash-lines Γ1 and Γ2.
In this case, we have N = 3.

24 / 30



Lattices of algebraic cycles on varieties of Fermat type (joint work with Nobuyoshi Takahashi)

Calculation of the intersection pairing on H2(X \ D)

We choose a base point

b ∈ C \ {P1,P2,P3},

and consider the open Riemann surface

Rb := (f ◦ ϕρ)
−1(b) ⊂ XU .

Then Rb is an étale cover of the punctured affine line

f −1(b) ⊂ U.

Thus we can calculate H1(Rb, Z) and the intersection pairing

Q : H1(Rb) × H1(Rb) → Z.

25 / 30



Lattices of algebraic cycles on varieties of Fermat type (joint work with Nobuyoshi Takahashi)

Calculation of the intersection pairing on H2(X \ D)

We choose a system of simple loops {σ1, σ2, σ3} with the base
point b on C \ {P1,P2,P3} as follows:

(The loops are σ1, σ2, σ3 from left to right.)

When t ∈ C moves along σi , the punctured and branching points
of

(f ◦ ϕρ)
−1(t) → f −1(t)

undergo the braid monodromies. Looking at them, we obtain the
monodromies along σi :

µi : H1(Rb) → H1(Rb).
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Calculation of the intersection pairing on H2(X \ D)

Since C \ {P1,P2,P3} is homotopically equivalent to the union of
σi , the open surface XU is homotopically equivalent to the union
of the fibers (f ◦ ϕρ)

−1(t) over these loops.

Let an element

([γ1], [γ2], [γ3]) ∈

3
⊕

i=1

H1(Rb)

represent a topological chain on XU that is the union of tubes
drawn by the topological cycle γi ⊂ Rb moving over σi .

Its boundary is in Rb, and the homology class of the boundary is

w([γ1], [γ2], [γ3]) :=
∑

(1 − µi)([γi ]) ∈ H1(Rb).

Hence H2(X
U) is equal to the kernel of

w :
3

⊕

i=1

H1(Rb) → H1(Rb).
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Calculation of the intersection pairing on H2(X \ D)

The intersection pairing on H2(X
U) is calculated by perturbing the

system of simple loops {σ1, σ2, σ3}:

For the perturbation above, we have

−( [γ1], [γ2], [γ3] ) · ( ([γ′

1], [γ
′

2], [γ
′

3] )

= Q((1 − µ1)([γ1]), (1 − µ2)([γ
′

2]))

+Q((1 − µ1)([γ1]), (1 − µ3)([γ
′

3]))

+Q((1 − µ2)([γ2]), (1 − µ3)([γ
′

3]))

+Q((1 − µ1)([γ1]),−µ1([γ
′

1])) + Q((1 − µ2)([γ2]),−µ2([γ
′

2]))

+ Q((1 − µ3)([γ3]),−µ3([γ
′

3])).
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Calculation of the intersection pairing on H2(X \ D)

Then we can calculate

ker(H2(X
U)) := { x ∈ H2(X

U) | (x , y) = 0 for all y ∈ H2(X
U) },

and the lattice

H2(X
U)/ ker(H2(X

U)) ∼= L(Xρ,Dρ)
⊥.

If H2(X
U) 6= ker(H2(X

U)), then we confirm

disc(H2(X
U)/ ker(H2(X

U))) = discL′(Xρ,Dρ).

If H2(X
U) = ker(H2(X

U)), then we confirm discL′(Xρ,Dρ) = 1.

Thus we can conclude that L′(Xρ,Dρ) is primitive.

Remark

For Shioda’s original problem of Fermat surface Xm of degree m,
we have to consider the covering XU → U of mapping degree m3.

Maple has run out of memory even when m = 6 (m3 = 216).
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Calculation of the intersection pairing on H2(X \ D)

Thank you!

30 / 30


