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On supersingular varieties

. Frobenius supersingular varieties

L Definition

Let X be a smooth projective variety over [F.
The following are equivalent:

(i) There is a polynomial N(t) € Z[t] such that
[X(Fq)l = N(q")

for all v € Z~y.

(ii) The eigenvalues of the gth power Frobenius on the /-adic
cohomology ring are powers of g by integers.

If these are satisfied, then bp;_1(X) = 0 and

dim X

N(t)= > by(X)t'.
i=0

We say that X is Frobenius supersingular if (i) and (ii) are satisfied.
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. Frobenius supersingular varieties

L An example

If the cohomology ring of X is generated by the classes of algebraic
cycles over g, then X is Frobenius supersingular.

The converse is true if the Tate conjecture is assumed.

We have examples of Frobenius supersingular varieties of
non-negative Kodaira dimension.

Theorem

The Fermat variety
X = {Xg+1 + 4 Xg,::j_l =0} c p?mt!

of dimension 2m and degree q + 1 regarded as a variety over F is
Frobenius supersingular.

This follows from

IX(Fp)l =14 ¢+ -+ "™ + (bam(X) — 1)g*™.
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. Frobenius supersingular varieties

I—Problems

Problems on Frobenius supersingular varieties

m Construct non-trivial examples.
m Prove (or disprove) the unirationality.

m Present explicitly algebraic cycles that generate the
cohomology ring.

m Investigate the lattice given by the intersection pairing of
algebraic cycles.

m Produce dense lattices by the intersection pairing in small
characteristics.

We discuss these problems
for the classical example of Fermat varieties of degree g+ 1, and
for the new example of Frobenius incidence varieties.
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I—Problems

Unirationality and Supersingularity

A variety X is called (purely-inseparably) unirational if there is a
dominant (purely-inseparable) rational map

P"..— X.

Theorem (Shioda)

Let S be a smooth projective surface defined over k = k. If S is
unirational, then the Picard number p(S) is equal to by(S); that is,
S is supersingular in the sense of Shioda.

The converse is conjectured to be true for K3 surfaces.
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. Frobenius supersingular varieties

I—Problems
Artin-Shioda conjecture

Every supersingular K3 surface S (in the sense of Shioda) is
conjectured to be (purely-inseparably) unirational.

The discriminant of the Néron-Severi lattice NS(S) is —p?7(%),
where o(S) is a positive integer < 10, which is called the Artin
invariant of S.

The conjecture is confirmed to be true in the following cases:

m p odd and o(S) < 2 (Ogus and Shioda):
m p = 2 (Rudakov and Shafarevich, S.-):
mp=3ando(S) <6

(Rudakov and Shafarevich, S.- and De Qi Zhang):
m p=>5and 0(S) <3 (S.- and Pho Duc Tai).

Method: The structure theorem for NS(S) by
Rudakov-Shafarevich.
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L Fermat varieties
I—Unirat:ionality

Fermat variety of degree g + 1

Unirationality of the Fermat variety

Theorem (Shioda-Katsura, S.-)

The Fermat variety X of degree g + 1 and dimension n > 2 in
characteristic p > 0 is purely-inseparably unirational, where g = p".

Indeed, X contains a linear subspace A C P"*! of dimension [n/2)].
The unirationality is proved by the projection from the center A.
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L Fermat varieties

|—Terminologies about lattices

Lattice

By a quasi-lattice, we mean a free Z-module L of finite rank
with a symmetric bilinear form

(,): LxL—>Z

If the symmetric bilinear form is non-degenerate, we say that
L is a lattice.

If L is a quasi-lattice, then L/L* is a lattice, where

[t :={xel | (x,y)=0forallyelL}.
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L Fermat varieties

I—Lattice of algebraic cycles

Lattices associated with the Fermat varieties

The Fermat variety
X = {xg+1 + Xgn—:-lrl =0} c p2mtt

of dimension 2m and degree g + 1 contains many m-dimensional
linear subspaces A;. The number is

m

[ +1).

v=0
Each of them is defined over qu.

Let N(X) C A™(X) be the Z-module generated by the rational
equivalence classes of A;, where A(X) is the Chow ring.

By the intersection pairing
NX)x N(X) — 7,

we can consider N'(X) as a quasi-lattice.



On supersingular varieties

L Fermat varieties

I—Lattice of algebraic cycles

Let V(X) := N(X)/N(X)* be the associated lattice.

Theorem (Tate, S.-)

(1) The rank of N(X) is equal to bym(X).
(2) The discriminant of N/(X) is a power of p.

Corollary

The cycle map induces an isomorphism N (X) ® Q; = H>™(X, Q).
The assertion (2) is an analogue of the result that the discriminant

of the Néron-Severi lattice NS(S) of a supersinglar K3 surface S is
a power of p.

10/28
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L Fermat varieties

I—Lattice of algebraic cycles

Let h € N(X) be the numerical equivalence class of a linear plane
section X NPM+L,

We put

Nprim(X) 1= { x e N(X) | (x,h) =0} = (h)*

Theorem
The lattice [—1]"Nprim(X) is positive-definite.

Here [—1]™Nprim(X) is the lattice obtained from Npyim(X) by
changing the sign with (—1)".

11/28
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L Fermat varieties

I—Definition of dense lattices

Dense lattices

Let L be a positive-definite lattice of rank m.
The minimal norm of L is defined by

Ninin(L) := min{x?|x € L, x # 0},
and the normalized center density of L is defined by
(L) := (disc L)™Y2 - (Niyin(L)/4)™/2.

Minkowski and Hlawka proved in a non-constructive way that, for
each m, there is a positive-definite lattice L of rank m with

¢(m)

o(L) > MH(m) = STy

where V,, is the volume of the m-dimensional unit ball.
12/28
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L Fermat varieties

I—Definition of dense lattices

We say that a positive-definite lattice L of rank m is dense if

5(L) > MH(m).

The intersection pairing of algebraic cycles in positive
characteristic has been used to construct dense lattices.

For example, Elkies and Shioda constructed many dense lattices as
Mordell-Weil lattices of elliptic surfaces in positive characteristics.

13/28
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L Fermat varieties

I—Dense lattice in characteristic 2

Dense lattices arising from Fermat varieties

Let X be the Fermat cubic variety of dimension 2m

in characteristic 2.
Recall that X contains many m-dimensional linear subspaces A;.

We consider the positive-definite lattice
(M= 1IN € [=1]" Noprim (X)

generated by the classes [A;] — [A;]. Their properties are as follows:

dimX rank Npi,  logyd logo MH  name
2 6 2 —3.792.. -—-7344.. Es
4 22 4  —1.792... —-13915.. Axp
6 86 8  34.207.. 19.320... Mg

14 /28
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L Frobenius incidence varieties

L Definition

Frobenius incidence variety

We fix an n-dimensional linear space V over [F, with n > 3.

We denote by G, = G,’,’_’ the Grassmannian variety of
I-dimensional subspaces of V.

Let F be a field of characteristic p, and consider an F-rational
linear subspace L € G, (F) of V.

Let ¢ be the pth power Frobenius morphism of G, ;. For a positive
integer v, we put

L) = ¢¥(L).

15/28
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L Frobenius incidence varieties

L Definition
Let / and ¢ be positive integers such that / 4+ ¢ < n.

We denote by Z; , the incidence subvariety of G,; x G:

ni(F) ={(L,M) € Gni(F) x G5(F) | LC M}.

n,l

Let r := p? and s := p® be powers of p by positive integers. We
define the Frobenius incidence variety X:, by

XS = (¢ xid)* 5, N (id x ¢°)* I¢,.
Then X¢, is defined over Fj,, and we have

S(F) = {(LM)€Gy(F)x G5(F) | LDc M and Lc MB)}
= {(L,M) € Goy(F) x GS(F) | L+ LU c mMB)}
= {(L,M) e Goy(F)x GS(F) | LD c MMy,

16 /28
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I—Frobenius supersingularity

(1) The scheme X, is smooth and geometrically irreducible of
dimension (n — 1 — ¢)(/ + ¢).

(2) If XS, is regarded as a scheme over /s, then XS, is Frobenius
supersingular.

The smoothness of X[, is proved by computing the dimension of
Zariski tangent spaces.

We prove the second assertion by counting the number of
F(ys)v-rational points of X .
We put

q :=rs.

17 /28
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L Frobenius incidence varieties

I—Frobenius supersingularity

The main ingredient of the proof is the finite set
T14(9,9") = { L€ Gp(Fgr) | dim(LNLD) =d }.
When | = d, we have T;(q,q") = G, (Fq) for any v.
For d < I, we calculate the cardinality of the set
P o= {(L,M)€ Guy(Fgr) X Gnor—a(Fqr) | L+ LD M}
= {(L,M) € Goy(Fqv) X Gpoi—a(Fqr) | L9 c MM},

in two ways using the projections
77 — G,,J(Fqu) and P — G,,}Q/,d(Fqu).
Then we get

/
Z |T/,t(q7 q,,)| : |Gn—2l+t,t—d(Fq”)|

2/—d
> 1 Tora.u(@: @) - |G (Fgv ).
u=|

18 /28
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L Frobenius incidence varieties

I—Frobenius supersingularity

By this equality, we obtain a recursive formula for |T; 4(q, ")

Using the projection X /(Fg) — Gy (Fgv), we obtain the
following:

/

IXE1(Fq)l =D 1 T1a(a, ") - 1GS oy a(Far)l-
d=0

By the recursive formula for | T} 4(q, g")|, we prove that there is a
monic polynomial N7 (t) of degree (/+ c)(n — I — c) such that

X1 (Fq)l = Ny (")

Therefore X<, is Frobenius supersingular.
Since N7 (t) is monic, X7, is geometrically irreducible.
Moreover we obtain the Betti numbers of X¢ .

19/28
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L Examples

Let (x1 :-+-:xp)and (y1: -+ yn) be homogeneous coordinates of
Gn1 =P.(V) and G} = P*(V) that are dual to each other. Then
Iy 1 = {>"xiyi = 0}, and hence X}, is defined by

X{y1+- -+ xpyn =0,
Y]+t Xn s =0,

The Betti numbers of X,}’l are as follows:

i+1 ifi<n—2
i = b _9\_n; = ’
b2i = ba(n-2)-2 {n—2+(q"—1)/(q—1) ifi=n—2.

When r = s =2 (and hence g = 4), X31,1 is the supersingular K3
surface with Artin invariant 1 (Mukai's model).

20/28
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L Examples

The Betti numbers of X7272 are calculated as follows:

bo = b24 .
by = by :
b4 = b20 .
bg = big :
bg = b1 :
bio = b1s :
b12 o

1

2

5

P+ +q¢*+¢*+q¢°+qg +8

2(®°+q°+q*+q>+q*+q) +12
3(¢°+¢°+q* + ¢ +q*+q) +14
g0 +q°+2¢8+2q" +64°+
+6q°+6q*+5¢3+5q¢%>+4q+ 16.

21/28
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L Frobenius incidence varieties

I—Unirat:ionality

Unirationality of X¢,

Theorem

The Frobenius incidence variety X, is purely-inseparably
unirational.

Idea of the proof for the case 2/ + ¢ < n.
We define X C Gn, % G5 by
X(FY={(L,M) | LcM, L)cMm}.
The projection X — Gn,/ is dominant. Using this projection, we

can show that X is rational. The map (L, M) — (L, M) is a
dominant morphism from X to X,i,.

22/28
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L Frobenius incidence varieties

I—Algebraic cycles

Algebraic cycles on X

Let A be an [ s-rational linear subspace of V such that
I <dimA < n—c. We define XA C G, x GS by

SAF) = { (L,M) € Goy(F) x GE(F) | LC A and A c M }.
It follows from A("S) = A that ¥, is contained in X;,.
When | = ¢, we have 2dim X = dim X,/,’,.

We can calculate the intersection numbers of these X5 on X,’, /-

23 /28
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L Frobenius incidence varieties

|—Algebraic cycles

We consider the case where | = ¢ = 1:
X311 C P (V) x P*(V).

We put

H = Tm( AP 2(BL(V) x P*(V)) — A" 2(XLy) ).
By the intersection pairing, we can consider the submodule

K[(Xr},l) =H+([ZA]) C An_2(Xr},l)
as a quasi-lattice. Let
N(Xr},l) = /\7(Xr},1)//\N/’(Xr},l)L
be the associated lattice, and put
Nprim(Xr},l) =H" C N(Xr},l)'

24 /28
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L Frobenius incidence varieties

L Algebraic cycles

Theorem

(1) The rank of V(X7 ,) is b2(,, 2)(Xn1)-

(2) The discriminant of N(X n 1.) is a power of p.
(3) The lattice [—1]"Nprim (X, 1) is positive-definite.

Corollary

The cohomology ring of Xll is generated by the classes of > and
the image of A(P.(V) x P*(V)) — A(X) ;).

25/28
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I—Dense lattices in characteristic 2

Dense lattices of rank 84 and 85

Theorem

Suppose that p = r = s =2. Then Nprim(Xj,l) is an even
positive-definite lattice of rank 84, with discriminant 85 - 216 and
with minimal norm 8.

In fact, Nprim(Xi]_) is a section of a larger lattice M¢ of rank

85 = |P°(F4)|
constructed by the projective geometry over F4 and a code over
R :=7/87.
We put
T := P3(IF,).

For S C T, we denote by vs € RT and /s € ZT the characteristic

functions of S.
26 /28
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I—Dense lattices in characteristic 2

Let C C RT be the submodule generated by

22ik(Vp — Vp/)7

where P and P’ are Fs-rational linear subspaces of P2 of dimension
k (k=0,1,2), and let M¢ be the pull-back of C by ZT — RT.

We define a Q-valued symmetric bilinear form on ZT by
(V{t}, \N/{t/}) = 5tt’/4 (t, t e T)
Then M¢c C Z7 is a lattice.

name rank  disc Ny, log,d  log, MH
Norim(X3,) 84 85-2'® 8 30.795.. 17.546...
Me 85 220 8 325  18.429...
N 86 3.-21° 8 34207.. 19.320...

27 /28
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L Frobenius incidence varieties

|—Dense lattices in characteristic 2

Thank you!

28 /28
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