On supersingular varieties

Ichiro Shimada

Hiroshima University

24 September, 2010, Nagoya

└ Definition

Let X be a smooth projective variety over \mathbb{F}_q . The following are equivalent:

(i) There is a polynomial $N(t) \in \mathbb{Z}[t]$ such that

$$|X(\mathbb{F}_{q^{\nu}})| = N(q^{\nu})$$

for all $\nu \in \mathbb{Z}_{>0}$.

(ii) The eigenvalues of the *q*th power Frobenius on the *l*-adic cohomology ring are powers of *q* by integers.

If these are satisfied, then $b_{2i-1}(X) = 0$ and

$$N(t) = \sum_{i=0}^{\dim X} b_{2i}(X) t^{i}.$$

We say that X is Frobenius supersingular if (i) and (ii) are satisfied.

└An example

If the cohomology ring of X is generated by the classes of algebraic cycles over \mathbb{F}_q , then X is Frobenius supersingular.

The converse is true if the Tate conjecture is assumed.

We have examples of Frobenius supersingular varieties of **non-negative Kodaira dimension**.

Theorem

The Fermat variety

$$X := \{x_0^{q+1} + \dots + x_{2m+1}^{q+1} = 0\} \subset \mathbb{P}^{2m+1}$$

of dimension 2m and degree q+1 regarded as a variety over \mathbb{F}_{q^2} is Frobenius supersingular.

This follows from

$$|X(\mathbb{F}_{q^2})| = 1 + q^2 + \dots + q^{4m} + (b_{2m}(X) - 1)q^{2m}.$$

Problems on Frobenius supersingular varieties

- Construct non-trivial examples.
- Prove (or disprove) the unirationality.
- Present explicitly algebraic cycles that generate the cohomology ring.
- Investigate the lattice given by the intersection pairing of algebraic cycles.
- Produce dense lattices by the intersection pairing in small characteristics.

We discuss these problems for the classical example of **Fermat varieties of degree** q+1, and for the new example of **Frobenius incidence varieties**.

Unirationality and Supersingularity

A variety X is called *(purely-inseparably) unirational* if there is a dominant (purely-inseparable) rational map

$$\mathbb{P}^n \cdots \rightarrow X$$
.

Theorem (Shioda)

Let S be a smooth projective surface defined over $k = \bar{k}$. If S is unirational, then the Picard number $\rho(S)$ is equal to $b_2(S)$; that is, S is supersingular in the sense of Shioda.

The converse is conjectured to be true for K3 surfaces.

Artin-Shioda conjecture

Every supersingular K3 surface S (in the sense of Shioda) is conjectured to be (purely-inseparably) unirational.

The discriminant of the Néron-Severi lattice NS(S) is $-p^{2\sigma(S)}$, where $\sigma(S)$ is a positive integer ≤ 10 , which is called the *Artin invariant* of S.

The conjecture is confirmed to be true in the following cases:

- p odd and $\sigma(S) \leq 2$ (Ogus and Shioda):
- p = 2 (Rudakov and Shafarevich, S.-):
- p = 3 and $\sigma(S) \le 6$ (Rudakov and Shafarevich, S.- and De Qi Zhang):
- p = 5 and $\sigma(S) \le 3$ (S.- and Pho Duc Tai).

Method: The structure theorem for NS(S) by Rudakov-Shafarevich.

Fermat variety of degree q+1

Unirationality of the Fermat variety

Theorem (Shioda-Katsura, S.-)

The Fermat variety X of degree q+1 and dimension $n\geq 2$ in characteristic p>0 is purely-inseparably unirational, where $q=p^{\nu}$.

Indeed, X contains a linear subspace $\Lambda \subset \mathbb{P}^{n+1}$ of dimension [n/2]. The unirationality is proved by the projection from the center Λ .

Lattice

By a quasi-lattice, we mean a free \mathbb{Z} -module L of finite rank with a symmetric bilinear form

$$(,): L \times L \to \mathbb{Z}.$$

If the symmetric bilinear form is non-degenerate, we say that L is a *lattice*.

If L is a quasi-lattice, then L/L^{\perp} is a lattice, where

$$L^{\perp} := \{ x \in L \mid (x, y) = 0 \text{ for all } y \in L \}.$$

Lattices associated with the Fermat varieties

The Fermat variety

$$X := \{x_0^{q+1} + \dots + x_{2m+1}^{q+1} = 0\} \subset \mathbb{P}^{2m+1}$$

of dimension 2m and degree q+1 contains many m-dimensional linear subspaces Λ_i . The number is

$$\prod_{\nu=0}^{m} (q^{2\nu+1}+1).$$

Each of them is defined over \mathbb{F}_{q^2} .

Let $\mathcal{N}(X) \subset A^m(X)$ be the \mathbb{Z} -module generated by the rational equivalence classes of Λ_i , where A(X) is the Chow ring.

By the intersection pairing

$$\widetilde{\mathcal{N}}(X) \times \widetilde{\mathcal{N}}(X) \rightarrow \mathbb{Z},$$

we can consider $\widetilde{\mathcal{N}}(X)$ as a quasi-lattice.

Let $\mathcal{N}(X) := \widetilde{\mathcal{N}}(X)/\widetilde{\mathcal{N}}(X)^{\perp}$ be the associated lattice.

Theorem (Tate, S.-)

- (1) The rank of $\mathcal{N}(X)$ is equal to $b_{2m}(X)$.
- (2) The discriminant of $\mathcal{N}(X)$ is a power of p.

Corollary

The cycle map induces an isomorphism $\mathcal{N}(X) \otimes \mathbb{Q}_I \cong H^{2m}(X,\mathbb{Q}_I)$.

The assertion (2) is an analogue of the result that the discriminant of the Néron-Severi lattice NS(S) of a supersinglar K3 surface S is a power of p.

Let $h \in \mathcal{N}(X)$ be the numerical equivalence class of a linear plane section $X \cap \mathbb{P}^{m+1}$.

We put

$$\mathcal{N}_{\text{prim}}(X) := \{ x \in \mathcal{N}(X) \mid (x, h) = 0 \} = \langle h \rangle^{\perp}.$$

Theorem

The lattice $[-1]^m \mathcal{N}_{\text{prim}}(X)$ is positive-definite.

Here $[-1]^m \mathcal{N}_{\text{prim}}(X)$ is the lattice obtained from $\mathcal{N}_{\text{prim}}(X)$ by changing the sign with $(-1)^m$.

Dense lattices

Let L be a positive-definite lattice of rank m.

The *minimal norm* of *L* is defined by

$$N_{\min}(L) := \min\{x^2 \mid x \in L, x \neq 0\},\$$

and the *normalized center density* of L is defined by

$$\delta(L) := (\operatorname{disc} L)^{-1/2} \cdot (N_{\min}(L)/4)^{m/2}.$$

Minkowski and Hlawka proved in a non-constructive way that, for each m, there is a positive-definite lattice L of rank m with

$$\delta(L) > \mathrm{MH}(m) := \frac{\zeta(m)}{2^{m-1}V_m},$$

where V_m is the volume of the *m*-dimensional unit ball.

We say that a positive-definite lattice L of rank m is dense if

$$\delta(L) > MH(m)$$
.

The intersection pairing of algebraic cycles in positive characteristic has been used to construct dense lattices.

For example, Elkies and Shioda constructed many dense lattices as Mordell-Weil lattices of elliptic surfaces in positive characteristics.

Dense lattices arising from Fermat varieties

Let X be the Fermat *cubic* variety of dimension 2m in characteristic 2.

Recall that X contains many m-dimensional linear subspaces Λ_i .

We consider the positive-definite lattice

$$\langle [\Lambda_i] - [\Lambda_j] \rangle \subset [-1]^m \mathcal{N}_{\text{prim}}(X)$$

generated by the classes $[\Lambda_i] - [\Lambda_j]$. Their properties are as follows:

$\dim X$	rank	N_{\min}	$\log_2 \delta$	$\log_2\mathrm{MH}$	name
2	6	2	-3.792	−7.344	E_6
4	22	4	-1.792	-13.915	Λ_{22}
6	86	8	34.207	19.320	\mathcal{N}_{86}

Frobenius incidence variety

We fix an *n*-dimensional linear space V over \mathbb{F}_p with $n \geq 3$.

We denote by $G_{n,l} = G_n^{n-l}$ the Grassmannian variety of l-dimensional subspaces of V.

Let F be a field of characteristic p, and consider an F-rational linear subspace $L \in G_{n,l}(F)$ of V.

Let ϕ be the p th power Frobenius morphism of $G_{n,l}$. For a positive integer ν , we put

$$L^{(p^{\nu})}:=\phi^{\nu}(L).$$

└ Definition

Let I and c be positive integers such that I + c < n.

We denote by $\mathcal{I}_{n,l}^c$ the incidence subvariety of $G_{n,l} \times G_n^c$:

$$\mathcal{I}_{n,l}^c(F) = \{ (L,M) \in G_{n,l}(F) \times G_n^c(F) \mid L \subset M \}.$$

Let $r := p^a$ and $s := p^b$ be powers of p by positive integers. We define the **Frobenius incidence variety** $X_{n,l}^c$ by

$$X_{n,l}^c := (\phi^a \times \mathrm{id})^* \mathcal{I}_{n,l}^c \cap (\mathrm{id} \times \phi^b)^* \mathcal{I}_{n,l}^c.$$

Then $X_{n,l}^c$ is defined over \mathbb{F}_p , and we have

$$\begin{split} X_{n,l}^c(F) &= \{ (L,M) \in G_{n,l}(F) \times G_n^c(F) \mid L^{(r)} \subset M \text{ and } L \subset M^{(s)} \} \\ &= \{ (L,M) \in G_{n,l}(F) \times G_n^c(F) \mid L + L^{(rs)} \subset M^{(s)} \} \\ &= \{ (L,M) \in G_{n,l}(F) \times G_n^c(F) \mid L^{(r)} \subset M \cap M^{(rs)} \}. \end{split}$$

Theorem

- (1) The scheme $X_{n,l}^c$ is smooth and geometrically irreducible of dimension (n-l-c)(l+c).
- (2) If $X_{n,l}^c$ is regarded as a scheme over \mathbb{F}_{rs} , then $X_{n,l}^c$ is Frobenius supersingular.

The smoothness of $X_{n,l}^c$ is proved by computing the dimension of Zariski tangent spaces.

We prove the second assertion by counting the number of $\mathbb{F}_{(rs)^{\nu}}$ -rational points of $X_{n,l}^c$.

We put

$$q := rs$$
.

The main ingredient of the proof is the finite set

$$T_{l,d}(q,q^{\nu}) := \{ L \in G_{n,l}(\mathbb{F}_{q^{\nu}}) \mid \dim(L \cap L^{(q)}) = d \}.$$

When I=d, we have $T_{I,I}(q,q^{\nu})=G_{n,I}(\mathbb{F}_q)$ for any ν .

For d < I, we calculate the cardinality of the set

$$\mathcal{P} := \{ (L, M) \in G_{n,l}(\mathbb{F}_{q^{\nu}}) \times G_{n,2l-d}(\mathbb{F}_{q^{\nu}}) \mid L + L^{(q)} \subset M \}$$

$$= \{ (L, M) \in G_{n,l}(\mathbb{F}_{q^{\nu}}) \times G_{n,2l-d}(\mathbb{F}_{q^{\nu}}) \mid L^{(q)} \subset M \cap M^{(q)} \},$$

in two ways using the projections

$$\mathcal{P} o \mathit{G}_{\mathit{n},\mathit{l}}(\mathbb{F}_{q^{
u}})$$
 and $\mathcal{P} o \mathit{G}_{\mathit{n},2\mathit{l}-\mathit{d}}(\mathbb{F}_{q^{
u}}).$

Then we get

$$|\mathcal{P}| = \sum_{t=d}^{l} |T_{l,t}(q,q^{\nu})| \cdot |G_{n-2l+t,t-d}(\mathbb{F}_{q^{\nu}})|$$

$$= \sum_{u=l}^{2l-d} |T_{2l-d,u}(q,q^{\nu})| \cdot |G_{u,l}(\mathbb{F}_{q^{\nu}})|.$$

By this equality, we obtain a recursive formula for $|T_{l,d}(q,q^{\nu})|$.

Using the projection $X^c_{n,l}(\mathbb{F}_{q^{\nu}}) \to G_{n,l}(\mathbb{F}_{q^{\nu}})$, we obtain the following:

$$|X_{n,l}^c(\mathbb{F}_{q^{\nu}})| = \sum_{d=0}^l |T_{l,d}(q,q^{\nu})| \cdot |G_{n-2l+d}^c(\mathbb{F}_{q^{\nu}})|.$$

By the recursive formula for $|T_{l,d}(q,q^{\nu})|$, we prove that there is a monic polynomial $N_{n,l}^c(t)$ of degree (l+c)(n-l-c) such that

$$|X_{n,l}^c(\mathbb{F}_{q^{\nu}})|=N_{n,l}^c(q^{\nu}).$$

Therefore $X_{n,l}^c$ is Frobenius supersingular. Since $N_{n,l}^c(t)$ is monic, $X_{n,l}^c$ is geometrically irreducible. Moreover we obtain the Betti numbers of $X_{n,l}^c$. └─ Examples

Example

Let $(x_1:\dots:x_n)$ and $(y_1:\dots:y_n)$ be homogeneous coordinates of $G_{n,1}=\mathbb{P}_*(V)$ and $G_n^1=\mathbb{P}^*(V)$ that are dual to each other. Then $\mathcal{I}_{n,1}^1=\{\sum x_iy_i=0\}$, and hence $X_{n,1}^1$ is defined by

$$\begin{cases} x_1^r y_1 + \dots + x_n^r y_n = 0, \\ x_1 y_1^s + \dots + x_n y_n^s = 0. \end{cases}$$

The Betti numbers of $X_{n,1}^1$ are as follows:

$$b_{2i} = b_{2(n-2)-2i} =$$

$$\begin{cases} i+1 & \text{if } i < n-2, \\ n-2+(q^n-1)/(q-1) & \text{if } i = n-2. \end{cases}$$

When r = s = 2 (and hence q = 4), $X_{3,1}^1$ is the supersingular K3 surface with Artin invariant 1 (Mukai's model).

L Examples

Example

The Betti numbers of $X_{7,2}^2$ are calculated as follows:

$$\begin{array}{lll} b_0 = b_{24}: & 1 \\ b_2 = b_{22}: & 2 \\ b_4 = b_{20}: & 5 \\ b_6 = b_{18}: & q^6 + q^5 + q^4 + q^3 + q^2 + q & + 8 \\ b_8 = b_{16}: & 2\left(q^6 + q^5 + q^4 + q^3 + q^2 + q\right) & + 12 \\ b_{10} = b_{14}: & 3\left(q^6 + q^5 + q^4 + q^3 + q^2 + q\right) & + 14 \\ b_{12}: & q^{10} + q^9 + 2 q^8 + 2 q^7 + 6 q^6 + \\ & & + 6 q^5 + 6 q^4 + 5 q^3 + 5 q^2 + 4 q + 16. \end{array}$$

└─ Unirationality

Unirationality of $X_{n,l}^c$

Theorem

The Frobenius incidence variety $X_{n,l}^c$ is purely-inseparably unirational.

Idea of the proof for the case $2l + c \le n$.

We define $\widetilde{X} \subset G_{n,l} \times G_n^c$ by

$$\widetilde{X}(F) = \{ (L, M) \mid L \subset M, L^{(rs)} \subset M \}.$$

The projection $\widetilde{X} \to G_{n,l}$ is dominant. Using this projection, we can show that \widetilde{X} is rational. The map $(L,M) \mapsto (L,M^{(s)})$ is a dominant morphism from \widetilde{X} to $X_{n,l}^c$.

Algebraic cycles on $X_{n,l}^l$

Let Λ be an \mathbb{F}_{rs} -rational linear subspace of V such that $I \leq \dim \Lambda \leq n-c$. We define $\Sigma_{\Lambda} \subset G_{n,I} \times G_n^c$ by

$$\Sigma_{\Lambda}(F) := \{ \ (L,M) \in G_{n,I}(F) \times G_n^c(F) \ | \ L \subset \Lambda \ \text{and} \ \Lambda^{(r)} \subset M \ \}.$$

It follows from $\Lambda^{(rs)} = \Lambda$ that Σ_{Λ} is contained in $X_{n,l}^c$.

When I = c, we have $2 \dim \Sigma_{\Lambda} = \dim X_{n,I}^I$.

We can calculate the intersection numbers of these Σ_{Λ} on $X_{n,l}^{l}$.

We consider the case where l = c = 1:

$$X_{n,1}^1 \subset \mathbb{P}_*(V) \times \mathbb{P}^*(V).$$

We put

$$\mathcal{H}:=\mathrm{Im}(\ A^{n-2}(\mathbb{P}_*(V)\times\mathbb{P}^*(V))\to A^{n-2}(X^1_{n,1})\).$$

By the intersection pairing, we can consider the submodule

$$\widetilde{\mathcal{N}}(X_{n,1}^1) := \mathcal{H} + \langle [\Sigma_{\Lambda}] \rangle \subset A^{n-2}(X_{n,1}^1)$$

as a quasi-lattice. Let

$$\mathcal{N}(X_{n,1}^1) := \widetilde{\mathcal{N}}(X_{n,1}^1)/\widetilde{\mathcal{N}}(X_{n,1}^1)^{\perp}$$

be the associated lattice, and put

$$\mathcal{N}_{\mathrm{prim}}(X_{n,1}^1) := \mathcal{H}^{\perp} \subset \mathcal{N}(X_{n,1}^1).$$

└ Algebraic cycles

Theorem

- (1) The rank of $\mathcal{N}(X_{n,1}^1)$ is $b_{2(n-2)}(X_{n,1}^1)$.
- (2) The discriminant of $\mathcal{N}(X_{n,1}^1)$ is a power of p.
- (3) The lattice $[-1]^n \mathcal{N}_{\text{prim}}(X_{n,1}^1)$ is positive-definite.

Corollary

The cohomology ring of $X_{n,1}^1$ is generated by the classes of Σ_{Λ} and the image of $A(\mathbb{P}_*(V) \times \mathbb{P}^*(V)) \to A(X_{n,1}^1)$.

Dense lattices of rank 84 and 85

Theorem

Suppose that p=r=s=2. Then $\mathcal{N}_{\text{prim}}(X_{4,1}^1)$ is an even positive-definite lattice of rank 84, with discriminant 85 \cdot 2¹⁶, and with minimal norm 8.

In fact, $\mathcal{N}_{\mathrm{prim}}(X^1_{4,1})$ is a section of a larger lattice $\mathcal{M}_\mathcal{C}$ of rank

$$85 = |\mathbb{P}^3(\mathbb{F}_4)|$$

constructed by the projective geometry over \mathbb{F}_4 and a code over

$$R := \mathbb{Z}/8\mathbb{Z}$$
.

We put

$$T := \mathbb{P}^3(\mathbb{F}_4).$$

For $S \subset T$, we denote by $v_S \in R^T$ and $\tilde{v}_S \in \mathbb{Z}^T$ the characteristic functions of S.

Let $C \subset R^T$ be the submodule generated by

$$2^{2-k}(v_P-v_{P'}),$$

where P and P' are \mathbb{F}_4 -rational linear subspaces of \mathbb{P}^3 of dimension k (k = 0, 1, 2), and let $\mathcal{M}_{\mathcal{C}}$ be the pull-back of \mathcal{C} by $\mathbb{Z}^T \to R^T$.

We define a \mathbb{Q} -valued symmetric bilinear form on \mathbb{Z}^T by

$$(\tilde{\mathbf{v}}_{\{t\}}, \tilde{\mathbf{v}}_{\{t'\}}) = \delta_{tt'}/4 \qquad (t, t' \in T).$$

Then $\mathcal{M}_{\mathcal{C}} \subset \mathbb{Z}^T$ is a lattice.

name	rank	disc	N_{\min}	$\log_2 \delta$	$\log_2\mathrm{MH}$
$\mathcal{N}_{\mathrm{prim}}(X^1_{4,1})$	84	$85\cdot2^{16}$	8	30.795	17.546
$\mathcal{M}_{\mathcal{C}}$	85	2^{20}	8	32.5	18.429
\mathcal{N}_{86}	86	$3\cdot 2^{16}$	8	34.207	19.320

Dense lattices in characteristic 2

Thank you!