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Example
Consider two surfaces S+ and S− in C3 defined by

w 2(G (x , y)±
√

5 · H(x , y)) = 1, where

G (x , y) := −9 x4 − 14 x3y + 58 x3 − 48 x2y 2 − 64 x2y

+10 x2 + 108 xy 3 − 20 xy 2 − 44 y 5 + 10 y 4,

H(x , y) := 5 x4 + 10 x3y − 30 x3 + 30 x2y 2 +

+20 x2y − 40 xy 3 + 20 y 5.

Since S+ and S− are conjugate by Gal(Q(
√

5)/Q),
they can not be distinguished algebraically.
But S+ and S− are not homeomorphic (in the classical
topology).

Many examples of non-homeomorphic conjugate complex
varieties are known since Serre (1964).
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Introduction
Definition

A smooth projective surface X is called a K3 surface if

∃ a nowhere vanishing holomorphic 2-form ωX on X , and

π1(X ) = {1}.

We consider the following geometric problems on K3 surfaces:

enumerate elliptic fibrations on a given K3 surface,

enumerate elliptic K3 surfaces up to some equivalence
relation,

enumerate projective models of a given K3 surface,

enumerate projective models of K3 surfaces,

determine the automorphism group of a given K3 surface,

. . . .
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Thanks to the theory of period mapping, some of these
problems are reduced to computational problems in lattice
theory, and the latter can often be solved by means of
computer.

In this talk, we explain how to use lattice theory and computer
in the study of K3 surfaces.

We then demonstrate this method on the problems of
constructing Zariski pairs of plane curves of degree 6.

4 / 26



Introduction Lattice theory Polarizations Zariski pairs

A lattice is a free Z-module L of finite rank with a
non-degenerate symmetric bilinear form

〈 〉 : L× L → Z.

Let L be a lattice of rank n. We choose a basis e1, . . . , en of L.
The lattice L is given by the Gram matrix

G := (〈ei , ej〉)i ,j=1,...,n .

O(L) is the group of all isometries of L.

L is unimodular if det G = ±1.

The signature sgn(L) is the signature L⊗ R.

A lattice L is said to be hyperbolic if sgn(L) = (1, n − 1),
and is positive-definite if sgn(L) = (n, 0).

A lattice L is even if v 2 ∈ 2Z for all v ∈ L.

A sublattice L′ of L is primitive if L/L′ is torsion free.
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Lattices associated to a K3 surface

K3 surfaces are diffeomorphic to each other.
Suppose that X is a K3 surface. Then H2(X ,Z) with the cup
product is an even unimodular lattice of signature (3, 19), and
hence is isomorphic to

U⊕3 ⊕ E−⊕2
8 ,

where U is the hyperbolic plane with a Gram matrix

(
0 1
1 0

)
,

and E−
8 is the negative definite root lattice of type E8.
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


−2 0 0 1 0 0 0 0

0 −2 1 0 0 0 0 0

0 1 −2 1 0 0 0 0

1 0 1 −2 1 0 0 0

0 0 0 1 −2 1 0 0

0 0 0 0 1 −2 1 0

0 0 0 0 0 1 −2 1

0 0 0 0 0 0 1 −2




The Gram matrix of E−
8
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The Néron-Severi lattice

SX := H2(X ,Z) ∩ H1,1(X )

of cohomology classes of divisors on X is an even hyperbolic
lattice of rank ≤ 20. Moreover the sublattice SX of H2(X ,Z)
is primitive.

Problem

Suppose that an even hyperbolic lattice of rank ≤ 20 is given.
Is there a K3 surface X such that S ∼= SX?

8 / 26



Introduction Lattice theory Polarizations Zariski pairs

We have the following corollary of the surjectivity of the
period map:

Theorem

Let S be a primitive hyperbolic sublattice of U⊕3 ⊕ E−⊕2
8 .

Then ∃ a K3 surface X such that S ∼= SX .

Problem

Suppose that an even lattice L and an even unimodular lattice
M are given. Can L be embedded into M primitively?

A lattice L is canonically embedded into its dual lattice

L∨ := Hom(L,Z)

as a submodule of finite index. The finite abelian group

DL := L∨/L

is called the discriminant group of L.
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The symm. bil. form on L extends to a Q-valued symm. bil.
form on L∨, and it defines a finite quadratic form

qL : DL → Q/2Z, x̄ 7→ x2 mod 2Z.

Let M be an even unimodular lattice containing L primitively
with the orthogonal complement L⊥. Then we have

(DL, qL) ∼= (DL⊥ ,−qL⊥).

Conversely, if R is an even lattice such that

(DL, qL) ∼= (DR ,−qR),

then there exist an even unimodular lattice M and a primitive
embedding L ↪→ M such that L⊥ ∼= R .
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Problem

Suppose that s+, s− ∈ Z≥0 and a finite quadratic form (D, q)
are given. Can we determine whether ∃ an even lattice L such
that sgn(L) = (s+, s−) and (DL, qL) ∼= (D, q)?

Theorem

YES.

Corollary

We can determine whether a given even hyperbolic lattice of
rank ≤ 20 is a Néron–Severi lattice of a K3 surface X or not.
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Polarized K3 surfaces

For v ∈ SX , let Lv → X be the corresponding line bundle.

Definition

For d ∈ Z>0, a vector h ∈ SX of h2 = d is a polarization of
degree d if |Lh| 6= ∅ and has no fixed-components.

Let h be a polarization of degree d . Then |Lh| defines
Φh : X → P1+d/2. We denote by

X
φh−→ Yh

ψh−→ P1+d/2

the Stein factorization of Φh. The normal surface Yh is the
projective model of (X , h), and has only rational double points
as its singularities.
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Example

A plane curve B is a simple sextic if B is of degree 6 and has
only simple singularities (ADE -singularities; ordinary nodes,
ordinary cusps, tacnodes, . . . ).

Let B be a simple sextic, and YB → P2 the double covering
branched along B . The minimal resolution XB of YB is a K3
surface.

We denote by
ΦB : XB → YB → P2

the composite of the min. resol. and the double covering, and
by hB ∈ SXB

the class of the pull-back of a line. Then hB is a
polarization of degree 2, and YB is its projective model.
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Problem

Suppose that h ∈ SX with h2 > 0 is given. Is h a polarization?
If so, what is the ADE-type of Sing(Yh)?

We consider the second question first.

Proposition

The ADE-type of Sing Yh is equal to the ADE-type of the
root system {r ∈ SX | 〈h, r〉 = 0, 〈r , r〉 = −2}.
The sublattice {x ∈ SX | 〈h, x〉 = 0} is negative-definite.

Problem

Given a positive-definite lattice L and an integer d. Calculate
the set {r ∈ L | 〈r , r〉 = d}.
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Suppose that we are given a triple [Q, λ, c], where

Q is a positive-definite n × n symmetric matrix with
entries in Q,

λ is a column vector of length n with entries in Q,

c ∈ Q.

For QT := [Q, λ, c], we define FQT : Rn → R by

FQT (v) := v Q tv + 2 v λ+ c .

We have an algorithm to calculate the finite set

E (QT ) := { v ∈ Zn | FQT (v) ≤ 0 }

by induction on n, and hence we can determine the ADE -type
of Sing Yh.
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Criterion for a polarization
Let L be an even hyperbolic lattice. Let PL be one of the two
connected components of {x ∈ L⊗ R | x2 > 0}.
We put

RL := { r ∈ L | r 2 = −2 }.
Each r ∈ RL defines a reflection sr into the hyperplane
(r)⊥ := {x ∈ PL | 〈x , r〉 = 0}:

sr : x 7→ x + 〈x , r〉r ,
The closure in PL of each connected component of

PL \
⋃

r∈RL
(r)⊥

is a standard fundamental domain of the action on PL of

W (L) := 〈 sr | r ∈ RL 〉.
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Let P(X ) ⊂ SX ⊗ R be the positive cone that contains an
ample class (e.g., the class of a hyperplane section). We put

N(X ) := {x ∈ P(X ) | 〈x , [C ]〉 ≥ 0 for any curve C on X }.

Proposition

This N(X ) is a standard fundamental domain of the action of
W (SX ) on P(X ).

It is obvious that, if h is a polarization, then h ∈ N(X ).

Proposition

Let h ∈ SX be a vector with h2 = 2. Then h is a polarization
if and only if h ∈ N(X ) and 6 ∃ e ∈ SX with e2 = 0 and
〈e, h〉 = 1.
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Problem

Suppose that h ∈ SX with h2 > 0 is given. Does h belong to
N(X )?

Since N(X ) is bounded by (r)⊥, this problem is reduced to the
following:

Problem

Suppose that we are given vectors h, h0 ∈ PL. Then, for a
negative integer d, calculate the set

{ r ∈ SX | 〈r , h〉 > 0, 〈r , h0〉 < 0, 〈r , r〉 = −2 }.

There is an algorithm for this task, and hence we can
determine whether a given h ∈ SX with h2 = 2 is a
polarization or not.
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Zariski pairs
For a simple sextic B ,

RB : the ADE -type of Sing B (or of Sing YB),

degs B the list of degrees of irreducible components of B .

We say that B and B ′ are of the same config type and write
B ∼cfg B ′ if

RB = RB′ , degs B = degs B ′,
their intersection patterns of irred. comps are same.

Example

Zariski showed the existence of a pair [B ,B ′] such that

RB = RB′ = 6A2, degs B = degs B ′ = [6], and

π1(P2 \ B) ∼= Z/(2) ∗ Z/(3),
π1(P2 \ B ′) ∼= Z/(2)× Z/(3).
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For a simple sextic B with

ΦB : XB → YB → P2,

let EB be the set of exceptional curves of XB → YB , and let

ΣB := 〈 [E ] | E ∈ EB 〉 ⊕ 〈hB〉 ⊂ H2(XB ,Z),

where hB is the class of the pull-back of a line. We have

B ∼cfg B ′ ⇒ ΣB
∼= ΣB′ .

We denote the primitive closure of ΣB by

ΣB ⊂ SXB
⊂ H2(XB ,Z).

After the partial results by Urabe, Yang (1996) made the
complete list configuration type of simple sextics by classifying
all such ΣB .
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We write B ∼emb B ′ if there exists a homeomorphism

ψ : (P2,B) →∼ (P2,B ′).

We have B ∼emb B ′ =⇒ B ∼cfg B ′.

# of config types = 11159 < # of emb-top types =?

Definition

A Zariski pair is a pair [B ,B ′] of projective plane curves of the
same degree with only simple singularities such that
B ∼cfg B ′ but B 6∼embB

′.
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We consider the finite abelian group

G (B) := ΣB/ΣB .

We put
ΘB := (ΣB ⊂ H2(XB ,Z))⊥.

Theorem

If B ∼emb B ′, then ΘB
∼= ΘB′ .

In fact, ΘB is a topological invariant of the open surface

UB := Φ−1
B (P2 \ B) ⊂ XB ,

because we have ΘB
∼= H2(UB ,Z)/Ker, where

Ker := { v ∈ H2(UB) | 〈v , x〉 = 0 for all x ∈ H2(UB) }.
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Since the discriminant groups of ΣB and ΘB are isomorphic,
we have:

Corollary

If B ∼cfg B ′ but |G (B)| 6= |G (B ′)|, then B 6∼embB
′.

This corollary produces many examples of Zariski pairs.

Example

In Zariski’s example [B ,B ′] with RB = RB′ = 6A2,
degs B = degs B ′ = [6] and

π1(P2 \ B) ∼= Z/(2) ∗ Z/(3), π1(P2 \ B ′) ∼= Z/(2)× Z/(3),

we have G (B) ∼= Z/3Z and G (B ′) = 0.
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Singular K3 surfaces

Definition

A K3 surface X is called singular if rank(SX ) = 20.

Theorem (Shioda and Inose)

The map
X 7→ T (X ) := (SX ⊂ H2(X ,Z))⊥

is a bijection from the set of isom. classes of singular K3
surfaces to the set of isom. classes of oriented positive-definite
even lattices of rank 2.

Theorem (Shioda and Inose)

Every singular K3 surface X is defined over Q.
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Theorem (S. and Schütt)

Let X and X ′ be singular K3 surfaces over Q such that
qT (X )

∼= qT (X ′).

Then there ∃ σ ∈ Gal(Q/Q) such that X ′ ∼= X σ.

If B is a simple sextic with total Milnor number µ(B) = 19,
then XB is a singular K3 surface with ΘB

∼= T (XB).

Corollary

Let B be a sextic with µ(B) = 19 defined over Q.
If ∃ an even pos-def lattice T ′ of rank 2 with qT ′

∼= qT (XB)

and T ′ 6∼= T (XB),
then ∃ σ ∈ Gal(Q/Q) such that B 6∼embB

σ.
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The first example revisited
Consider the config type of sextics B = L + Q, where

deg L = 1, deg Q = 5,
L and Q are tangent at one point with multiplicity 5
(A9-singularity), and
Q has one A10-singular point.

Such sextics are projectively isomorphic to

z · (G (x , y , z)±
√

5 · H(x , y , z)) = 0,

where G (x , y , z) and H(x , y , z) are homogenizations of the
polynoms in the 1st slide with L = {z = 0}.
The genus corresponding to (DΣB

,−qΣB
) and signature (2, 0)

(that is, the genus containing T (XB)) consists of[
2 1
1 28

]
(for +

√
5),

[
8 3
3 8

]
(for −

√
5).
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