The graphs of Hoffman-Singleton, Higman-Sims, McLaughlin, and the Hermitian curve of degree 6 in characteristic 5

Ichiro Shimada

Hiroshima University

2014.06. Tohoku

Let $\Gamma = (V, E)$ be a graph, where

- V is the set of vertices and
- $E \subset \binom{V}{2}$ is the set of edges.

We assume that V is finite.

For $p \in V$, we put

$$L(p) := \{ p' \in V \mid pp' \in E \}.$$

We say that Γ is *regular* of degree k if k := |L(p)| does not depend on $p \in V$.

We say that Γ is a *strongly regular* graph with the parameter (v, k, λ, μ) (srg (v, k, λ, μ)) if Γ is regular of degree k with |V| = v such that, for distinct vertices $p, p' \in V$, we have

$$|L(p) \cap L(p')| = \begin{cases} \lambda & \text{if } pp' \in E, \\ \mu & \text{otherwise.} \end{cases}$$

Definition-Example

We put $[m] := \{1, 2, \dots, m\}.$

The triangular graph T(m) is defined to be the graph (V, E) such that

- $V = {[m] \choose 2}$, and
- $E = \{\{\{i,j\},\{i',j'\}\} \mid \{i,j\} \cap \{i',j'\} \neq \emptyset\}.$

Then T(m) is

$$srg(m(m-1)/2, 2(m-2), m-2, 4).$$

Definition-Theorem

- The Hoffman-Singleton (**HfSg**) graph is the unique srg(50, 7, 0, 1).
- The Higman-Sims graph (**HgSm**) is the unique srg(100, 22, 0, 6).
- The McLaughlin graph (McL) is the unique srg(275, 112, 30, 56).

Theorem

- $\operatorname{Aut}(\mathbf{HfSg}) \supset \operatorname{PSU}_3(\mathbb{F}_{25})$ as index 2 subgroup.
- $Aut(HgSm) \supset HS$ as index 2 subgroup.
- $Aut(McL) \supset McL$ as index 2 subgroup.

These graphs are related to the Leech lattice. A part of Table 10.4 of Conway-Sloane's book:

Name	Order	Structure
.533	$2^4 \cdot 3^2 \cdot 5^3 \cdot 7$	$\mathrm{PSU}_3(\mathbb{F}_{25})$
·7	$2^9 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 11$	HS
$\cdot 10_{33}$	$2^{10}\cdot 3^2\cdot 5^3\cdot 7\cdot 11$	<i>HS</i> .2
⋅332	$2^9\cdot 3^2\cdot 5^3\cdot 7\cdot 11$	HS
·5	$2^8 \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11$	McL.2
·8 ₃₂	$2^7 \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11$	McL
.322	$2^7 \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11$	McL
.522	$2^7 \cdot 3^6 \cdot 5^3 \cdot 7 \cdot 11$	McL.2

Constructions of these graphs by the Leech lattice are known.

The aim of this talk:

We present algebro-geometric constructions of these graphs.

Hermitian curve

We fix a power $q:=p^{\nu}$ of an *odd* prime integer p, and work over an algebraically closed field of characteristic p. We consider the Hermitian curve

$$X: x^{q+1} + y^{q+1} + z^{q+1} = 0$$

of degree q + 1.

We say that a point P of X is *special* if P satisfies the following equivalent conditions.

- (i) P is an \mathbb{F}_{q^2} -rational point of X.
- (ii) $T_P \cap X = \{P\}$, where $T_P \subset \mathbb{P}^2$ is the tan. line to X at P.
- (iii) P is a Weierstrass point of the curve X.

We denote by \mathcal{P}_X the set of special points of X. We have

$$|\mathcal{P}_X| = q^3 + 1,$$

and $\operatorname{Aut}(X) = \operatorname{PGU}_3(\mathbb{F}_{q^2})$ acts on \mathcal{P}_X double-transitively.

Definition

A smooth conic $C \subset \mathbb{P}^2$ is *totally tangent* to X if C is tangent to X at distinct q+1 points. Let \mathcal{Q}_X denote the set of smooth conics totally tangent to X.

Since the conic $x^2 + y^2 + z^2 = 0$ is a member of \mathcal{Q}_X , we have $\mathcal{Q}_X \neq \emptyset$.

Theorem (Segre, S.-)

Suppose that and $q \geq 5$. Then $\operatorname{Aut}(X)$ acts on \mathcal{Q}_X transitively with the stab. subgr. isom. to $\operatorname{PGL}_2(\mathbb{F}_q)$. Hence

$$|\mathcal{Q}_X|=q^2(q^3+1).$$

Moreover, every $C \in \mathcal{Q}_X$ is defined over \mathbb{F}_{q^2} and satisfies $C \cap X \subset \mathcal{P}_X$.

Definition

A line $L \subset \mathbb{P}^n$ is a special secant line of X if L contains distinct two points of \mathcal{P}_X .

We denote by S_X the set of special secant lines of X.

We have

$$|\mathcal{S}_X|=q^4-q^3+q^2.$$

Every $L \in \mathcal{S}_X$ intersects X transversely, and satisfies $L \cap X \subset \mathcal{P}_X$.

Definition

A special secant line L of X is said to be a *special secant line* of $Q \in \mathcal{Q}_X$ if L passes through two distinct points of $Q \cap X$. We denote by $\mathcal{S}(Q)$ the set of special secant lines of Q.

We obviously have $|\mathcal{S}(Q)| = q(q+1)/2$.

Construction I

We work over an algebraically closed field of characteristic 5, and consider the Hermitian curve

$$X: x^6 + y^6 + z^6 = 0$$

of degree 6. We have

$$|\operatorname{Aut}(X)| = 378000, \ |\mathcal{P}_X| = 126, \ |\mathcal{Q}_X| = 3150, \ |\mathcal{S}_X| = 525.$$

We define a graph G = (V, E) by

- $V := \mathcal{Q}_X$, and
- $E := \{QQ' \mid |Q \cap Q'| = 4 \text{ and } |\mathcal{S}(Q) \cap \mathcal{S}(Q')| = 3 \}.$

Proposition

The graph G has exactly 150 connected components, and each connected component is isomorphic to the triangular graph T(7), which is srg(21, 10, 5, 4).

Let \mathcal{D} denote the set of connected components of G. Each $D \in \mathcal{D}$ is a collection of 3150/150 = 21 conics in \mathcal{Q}_X .

Proposition

Let $D \in \mathcal{D}$ be a connected component of G. Then

$$Q \cap Q' \cap X = \emptyset$$

for any distinct conics $Q, Q' \in D$.

Since

$$|D| \times |Q \cap X| = 126 = |\mathcal{P}_X|,$$

each connected component D of G gives rise to a decomposition of \mathcal{P}_X into a disjoint union of 21 sets of 6 points.

Proposition

Suppose that $Q \in \mathcal{Q}_X$ and $D' \in \mathcal{D}$ satisfy $Q \notin D'$. Then one of the following holds:

$$(\alpha) \qquad |Q \cap Q' \cap X| = \begin{cases} 2 & \text{for 3 conics } Q' \in D', \\ 0 & \text{for 18 conics } Q' \in D'. \end{cases}$$

$$(\beta) \qquad |Q \cap Q' \cap X| = \begin{cases} 2 & \textit{for } 1 \textit{ conic } Q' \in D', \\ 1 & \textit{for } 4 \textit{ conics } Q' \in D', \\ 0 & \textit{for } 16 \textit{ conics } Q' \in D'. \end{cases}$$

$$(\gamma) \qquad |Q \cap Q' \cap X| = \begin{cases} 1 & \textit{for 6 conics } Q' \in D', \\ 0 & \textit{for 15 conics } Q' \in D'. \end{cases}$$

We define t(Q, D') to be α, β or γ according to the cases.

Proposition

Suppose that $D, D' \in \mathcal{D}$ are distinct, and hence disjoint as subsets of \mathcal{Q}_X . Then one of the following holds:

$$\begin{aligned} &(\beta^{21}) & t(Q,D') = \beta & \textit{for all } Q \in D. \\ &(\gamma^{21}) & t(Q,D') = \gamma & \textit{for all } Q \in D. \\ &(\alpha^{15}\gamma^6) & t(Q,D') = \begin{cases} \alpha & \textit{for 15 conics } Q \in D, \\ \gamma & \textit{for 6 conics } Q \in D. \end{cases} \\ &(\alpha^3\gamma^{18}) & t(Q,D') = \begin{cases} \alpha & \textit{for 3 conics } Q \in D, \\ \gamma & \textit{for 18 conics } Q \in D. \end{cases}$$

We define T(D, D') to be β^{21} , γ^{21} , $\alpha^{15}\gamma^{6}$ or $\alpha^{3}\gamma^{18}$ according to the cases. We have T(D, D') = T(D', D).

We define H = (V, E) by

- $V := \mathcal{D}$,
- $E := \{DD' \mid T(D, D') = \alpha^{15} \gamma^6\}.$

Theorem

The graph H has exactly three connected components, and each connected component is the Hoffman-Singleton graph.

Proposition

If D and D' are in the same connected component of H, then

$$T(D, D') = \gamma^{21} \text{ or } \alpha^{15} \gamma^6.$$

If D and D' are in different connected components of H, then

$$T(D, D') = \beta^{21} \ or \ \alpha^3 \gamma^{18}.$$

We denote by C_1, C_2, C_3 the set of vertices of the connected components of H.

The orbit of an element $D \in \mathcal{D}$ by the subgroup $\mathrm{PSU}_3(\mathbb{F}_{25}) \subset \mathrm{Aut}(X)$ of index 3 is one of \mathcal{C}_i .

We define H' = (V', E') by

- $V' := \mathcal{D}$,
- $E' := \{DD' \mid T(D, D') = \alpha^{15} \gamma^6 \text{ or } \beta^{21} \}.$

Then H' is a connected regular graph of valency 37.

Theorem

For any i and j with $i \neq j$, the restriction $H'|(C_i \cup C_j)$ of H' to $C_i \cup C_j$ is the Higman-Sims graph.

Using our results, we can recast the construction of the McLaughlin graph by Inoue into a simpler form.

Let \mathcal{E}_1 denote the set of edges of the Hoffman-Singleton graph $H|\mathcal{C}_1$; that is,

$$\mathcal{E}_1 := \{ \{D_1, D_2\} \mid D_1, D_2 \in \mathcal{C}_1, T(D_1, D_2) = \alpha^{15} \gamma^6 \}.$$

We define a symmetric relation \sim on \mathcal{E}_1 by $\{D_1,D_2\}\sim\{D_1',D_2'\}$ if and only if

- $lacksquare \{D_1,D_2\}$ and $\{D_1',D_2'\}$ are disjoint, and
- there exists an edge $\{D_1'', D_2''\} \in \mathcal{E}_1$ that has a common vertex with each of $\{D_1, D_2\}$ and $\{D_1', D_2'\}$.

Theorem

Let H'' be the graph whose set of vertices is $\mathcal{E}_1 \cup \mathcal{C}_2 \cup \mathcal{C}_3$, and whose set of edges consists of

- $lackbox{\{}E,E'lackbox{\}}$, where $E,E'\in\mathcal{E}_1$ are distinct and satisfy $E\sim E'$,
- $\{E, D\}$, where $E = \{D_1, D_2\} \in \mathcal{E}_1$, $D \in \mathcal{C}_2 \cup \mathcal{C}_3$, and both of $T(D_1, D)$ and $T(D_2, D)$ are $\alpha^3 \gamma^{18}$, and
- $\{D, D'\}$, where $D, D' \in C_2 \cup C_3$ are distinct and satisfy and $T(D, D') = \alpha^{15} \gamma^6$ or $\alpha^3 \gamma^{18}$.

Then H" is the McLaughlin graph.

Proof of Theorems.

We make the list of defining equations of the conics in \mathcal{Q}_X , and calculate the adjacency matrices of G, H, H' and H''. We then show that

```
H|C_i is srg(50, 7, 0, 1), H'|(C_i \cup C_j) is srg(100, 22, 0, 6), and H'' is srg(275, 112, 30, 56).
```

Remark

There are many other geometric ways to define the edges of H and H'.

Remark

The above construction can be expressed in terms of the structure of subgroups of $\operatorname{Aut}(X) = \operatorname{PGU}_3(\mathbb{F}_{25})$, as follows.

For an element a of a set A on which $\operatorname{Aut}(X) = \operatorname{PGU}_3(\mathbb{F}_{25})$ acts, we denote by $\operatorname{stab}(a)$ the stabilizer subgroup in $\operatorname{PGU}_3(\mathbb{F}_{25})$ of a.

For $Q \in \mathcal{Q}_X$, we have $\mathrm{stab}(Q) \cong \mathrm{PGL}_2(\mathbb{F}_5) \cong \mathfrak{S}_5$.

Theorem

Let Q and Q' be distinct elements of Q_X .

Then Q and Q' are adjacent in the graph G if and only if $\operatorname{stab}(Q) \cap \operatorname{stab}(Q') \cong \mathfrak{A}_4$, and Q and Q' are in the same connected component of G if and only if $\langle \operatorname{stab}(Q), \operatorname{stab}(Q') \rangle \cong \mathfrak{A}_7$.

Proposition

For each $D \in \mathcal{D}$, the action of $\operatorname{stab}(D)$ on the triangular graph $D \cong T(7)$ identifies $\operatorname{stab}(D)$ with the subgroup \mathfrak{A}_7 of $\operatorname{Aut}(T(7)) \cong \mathfrak{S}_7$.

Theorem

Let D and D' be distinct elements of \mathcal{D} . Then T(D, D') is

$$\begin{cases} \beta^{21} & \text{if and only if } \operatorname{stab}(D) \cap \operatorname{stab}(D') \cong \operatorname{PSL}_2(\mathbb{F}_7), \\ \gamma^{21} & \text{if and only if } \operatorname{stab}(D) \cap \operatorname{stab}(D') \cong \mathfrak{A}_5, \\ \alpha^{15} \gamma^6 & \text{if and only if } \operatorname{stab}(D) \cap \operatorname{stab}(D') \cong \mathfrak{A}_6, \\ \alpha^3 \gamma^{18} & \text{if and only if } \operatorname{stab}(D) \cap \operatorname{stab}(D') \cong (\mathfrak{A}_4 \times 3) : 2. \end{cases}$$

Remark

By ATLAS, we see that the maximal subgroups of \mathfrak{A}_7 are

$$\mathfrak{A}_{6}$$
, $\mathrm{PSL}_{2}(\mathbb{F}_{7})$, $\mathrm{PSL}_{2}(\mathbb{F}_{7})$, \mathfrak{S}_{5} , $(\mathfrak{A}_{4} \times 3) : 2$.

Construction II

Let Y be a smooth projective surface.

A divisor D on Y is numerically equivalent to zero if

$$D \cdot C = 0$$
 for any curve C on Y ,

where $D \cdot C$ is the intersection number of D and C on Y.

Let S_Y be the \mathbb{Z} -module of numerical equivalence classes of divisors on Y. Then S_Y with the symmetric bilinear form $\langle \cdot, \cdot \rangle$ induced by the intersection pairing becomes a lattice, which is called the *Néron–Severi lattice* of Y.

We work over an algebraically closed field of characteristic 5, and consider the smooth surface Y defined by

$$w^2 = x^6 + y^6 + z^6$$

in the weighted projective space $\mathbb{P}(3,1,1,1)$. Then Y is a double over of \mathbb{P}^2 branched along the Hermitian curve $X \subset \mathbb{P}^2$.

Proposition

The Néron–Severi lattice S_Y is isomorphic to the unique lattice characterized by the following properties:

- \blacksquare S_Y is even, hyperbolic, and of rank 22,
- $S_Y^{\vee}/S_Y\cong (\mathbb{Z}/5\mathbb{Z})^2.$

In S_Y , we have the class

$$h_0 \in S_Y$$

of the pull-back of a line of \mathbb{P}^2 by the double covering $Y \to \mathbb{P}^2$.

Conway theory

Let U be the hyperbolic plane

$$\left(\begin{array}{cc}0&1\\1&0\end{array}\right),$$

and let Λ be the *negative definite* Leech lattice. We put

$$L_{26}=U\oplus \Lambda,$$

which is an even unimodular hyperbolic lattice of rank 26.

Vectors of L_{26} are written as (a, b, λ) , where $a, b \in \mathbb{Z}$,

$$(a,b) \in U$$
 and $\lambda \in \Lambda$.

Let $\mathcal{P}(L_{26})$ be the connected component of $\{v \in L_{26} \otimes \mathbb{R} \mid v^2 > 0\}$ that contains

$$w_0 := (1,0,0)$$

on its boundary.

Each vector $r \in L_{26}$ with $r^2 = -2$ defines a reflection

$$s_r: x \mapsto x + \langle x, r \rangle r$$
.

Let $W(L_{26})$ denote the subgroup of $O(L_{26})$ generated by these reflections s_r . Then $W(L_{26})$ acts on $\mathcal{P}(L_{26})$. We put

$$\begin{split} \mathcal{R}_0 &:= \; \{\; r \in L_{26} \; \mid \; r^2 = -2, \; \; \langle r, w_0 \rangle = 1 \; \}, \\ \mathcal{D}_0 &:= \; \{\; x \in \mathcal{P}(L_{26}) \; \mid \; \langle x, r \rangle \geq 0 \; \; \mathrm{for \; any} \; \; r \in \mathcal{R}_0 \; \}. \end{split}$$

The map

$$\lambda \mapsto r_{\lambda} := (-1 - \lambda^2/2, 1, \lambda)$$

gives a bijection from Λ to $\mathcal{R}_0.$

Conway proved the following:

Theorem

The domain \mathcal{D}_0 is a standard fundamental domain of the action of $W(L_{26})$ on $\mathcal{P}(L_{26})$.

There exists a primitive embedding $S_Y \hookrightarrow L_{26}$ unique up to $O(L_{26})$. The orthogonal complement R of S_Y in L_{26} has a Gram matrix

$$\begin{bmatrix} -2 & -1 & 0 & 1 \\ -1 & -2 & -1 & 0 \\ 0 & -1 & -4 & -2 \\ 1 & 0 & -2 & -4 \end{bmatrix}.$$

We denote by

$$\operatorname{pr}_{S}: L_{26} \to S_{Y}^{\vee}, \quad \operatorname{pr}_{R}: L_{26} \to R^{\vee},$$

the orthogonal projections to S_Y^{\vee} and R^{\vee} , respectively.

Theorem (Katsura, Kondo, S.-)

There exists a primitive embedding $S_Y \hookrightarrow L_{26}$ such that $\operatorname{pr}_S(w_0) = h_0$.

In the following, we use this primitive embedding.

The set

$$\mathcal{V} := \{ r_{\lambda} \in \mathcal{R}_0 \mid \langle \operatorname{pr}_{\mathcal{S}}(r_{\lambda}), h_0 \rangle = 1, \operatorname{pr}_{\mathcal{S}}(r_{\lambda})^2 = -8/5 \}$$

consists of 300 elements.

For each $r_{\lambda} \in \mathcal{V}$, there exists a unique $r'_{\lambda} \in \mathcal{V}$ such that $\langle r_{\lambda}, r'_{\lambda} \rangle = 3$, and for any vector $r_{\mu} \in \mathcal{V}$ other than $r_{\lambda}, r'_{\lambda}$, we have that $\langle r_{\lambda}, r_{\mu} \rangle$ is 0 or 1.

Definition

Let F be the graph whose set of vertices is \mathcal{V} and whose set of edges is the set of pairs $\{r_{\lambda}, r_{\mu}\}$ such that $\langle r_{\lambda}, r_{\mu} \rangle = 1$.

The subset $\operatorname{pr}_R(\mathcal{V})$ of R^{\vee} consists of six elements ρ_1, \ldots, ρ_6 . We put

$$\mathcal{V}_i := \operatorname{pr}_R^{-1}(\rho_i) \cap \mathcal{V}.$$

Each V_i has 50 vertices.

Theorem

For each i, $F|\mathcal{V}_i$ is the Hoffman-Singleton graph. If $\langle \rho_i, \rho_{i'} \rangle = -1/5$, then $F|(\mathcal{V}_i \cup \mathcal{V}_{i'})$ is the Higman-Sims graph.

Thank you!