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Introduction

Introduction

A K3 surface is called supersingular if its Picard number is 22.
Let Y be a supersingular K3 surface in characteristic p > 0.
Let Sy be its Néron-Severi lattice, and put Sy := Hom(Sy, Z).
The intersection form on Sy yields Sy < Sy.

Artin proved that
Sy /Sy = (Z/pL)*,

where o is an integer such that 1 < o < 10,
which is called the Artin invariant of Y.

Ogus and Rudakov-Shafarevich proved that
a supersingular K3 surface with Artin invariant 1 in characteristic
p is unique up to isomorphisms.
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Introduction

We consider the supersingular K3 surface X in characteristic 5
with Artin invariant 1.

We work in characteristic 5.

Let Br be the Fermat sextic curve (or the Hermitian curve) in P2:
P4y 4+ 28=0 (xx+yy+2zz=0).
Let ¢ : X — P2 be the double cover of P? branched along Br:
X w? =x% 4+ y0 4 20

Then X is a supersingular K3 surface in characteristic 5 with Artin
invariant 1
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Introduction

Proof.

Let P be an Fys-rational point of Br,

and /p the tangent line to Br at P.

Then £p intersects Br at P with multiplicity 6,

and hence ﬂ,?l(fp) splits into two smooth rational curves.

Since ’BF(F25)’ = 126,

we obtain 252 smooth rational curves on X.

Calculating the intersection numbers of these 252 smooth rational
curves, we see that

their classes span a lattice of rank 22 (hence X is supersingular)
with discriminant —25 (hence o = 1). O
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Introduction

In fact, the lattice Sx is generated by appropriately chosen 22
curves among these 252 curves.

Corollary
Every class of Sx is represented by a divisor defined over Fs.

Corollary
Every projective model of X can be defined over Fos.

Remark
Schiitt proved the above results for supersingular K3 surfaces of
Artin invariant 1 in any characteristics.
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Problem: Find distinct projective models of X (especially of
degree 2) as many as possible.

We put
Py :={ he Sx | hisa polarization of degree 2 },

that is, h € Sx belongs to P, if and only if the line bundle £ — X
corresponding to h gives a double covering @ : X — P2
Let By, be the branch curve of ® . : X — P2,

For h,h' € P,, we say h ~ h" if there exists g € Aut(X) such that
g*(h) = K, or equivalently, there exists ¢ € PGL3(k) such that
d(By) = By.

Problem: Describe P,/ ~.
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The lattice Sx is characterized as the unique even hyperbolic
lattice of rank 22 with Sy//Sx = (Z/5Z)>.

Therefore we can obtain a list of combinatorial data of these By, by
lattice theoretic method, which was initiated by Yang.

We try to find defining equations of these Bj, and understand their
relations.
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Introduction Problem Naive method

m Naive method.
Projective models of the supersingular K3 surface with Artin
invariant 1 in characteristic 5. J. Algebra 403 (2014), 273-299.

m Specialization from ¢ = 3 (joint work with Pho Duc Tai).
Unirationality of certain supersingular K3 surfaces in
characteristic 5. Manuscripta Math. 121 (2006), no. 4,
425-435.

m Ballico-Hefez curve (joint work with Hoang Thanh Hoai).
On Ballico-Hefez curves and associated supersingular surfaces,
to appear in Kodai Math. J.

m Borcherds' method (joint work with T. Katsura and
S. Kondo).
On the supersingular K3 surface in characteristic 5 with Artin
invariant , preprint, arXiv:1312.0687



Naive method
Classification by relative degrees with respect to hg.

We have the polarization hg € P, that gives the Fermat double
sextic plane model 7f : X — P?:

he =[1,1,0,...,0].

We have
Aut(X, hF) = PGU3(F25).2,

which is of order 756000.

For a € Z~¢, we put

Pz(a) = { he P, | <hF,h> =a }
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For any a € Z~¢, the set
W(a):={heSx | =2, (he,h)=2a}

is finite.

Then h € V»(a) belongs to P»(a) if h is nef and not of the form
2-f+z with f2=0,22=-2,(f,z) = 1.

The vector h € V5 is nef if and only if there are no vectors r € Sx
such that
r?= -2, (hg,r) >0, (hr)<O0.

Thus we can calculate P»(a) for a given a € Z+.
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We have calculated P,(a) for a < 5.
Their union consists of 146,945, 851 vectors.

From the defining ideals of the 22 lines on Xg we have chosen as a
basis of Sy,

we can calculate the defining equations of By, for each h, and
hence we can determine whether h ~ h’ or not.

Under ~, they are decomposed into 65 equivalence classes.
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0: Sing =0: N =13051: h = [1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] :
X0 4y 41

1: Sing = 6A;: N = 5607000: h = [0,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,0,0,1] :

X0 4330y +xy2 42530 10 1 3x £3x%2 £ x84 3y +2)2 + 4

2: Sing = 7A;: N = 6678000: h = [0, 0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,1,0,0,0,0,0] :

x4 2xy2 Py 12y et 42yt 12Xy +2)8 +3)2 13y 2

3: Sing = 3A; + 2A;: N = 2268000: h = [0,0,0,0,0,0,0,0,1,1,1,0,1,0,1,0,0,0,0,0,0,0] :
x6+3x3y3+y6+3x3y+2y2+2

4: Sing = 8A;: N = 2457000: h = [0,0,0,0,1,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0,0] :

X0 4 3xty2 byt a3y 1 ayd ot 1232 13yt p2xPy 1 ax? 42 pay

5. Sing = 84;: N = 2268000: h = [0,0,0,0,0,1,0,0,1,0,0,0,1,0,0,1,0,0,1,0,0,0] :
A4t 2t 4 H At R ay? 44

6: Sing = 6A; + Ay: N = 1512000: h = [0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,1,1,0,1,0,0] :
O+ axty? 422 1252y 43 44

7: Sing = 6A; + Ay: N = 4914000: h = [0,0,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,1,0,1] :
V2533 4 (1+3\/§)x2y4 +x* 4 (2+2\/§)x3y+ (1+4\/§)x2y2 + xy3 + (2+2\/§)y4 +
\/§x2+(1+3\/§)xy
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11: Sing = 94;: N = 84000: h = [0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,0,1,1, —1,0,0,0] :
X0 +ax33 14y0 1t 4axd +3x2+4

24: Sing = 5A; + 2A;: N = 378000: h = [0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,0,1,0,0] :

x3y3 +x* Jr><2y2 +y4 + xy

32 Sing = 10A;: N = 226800: h = [0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,1] :
S r2xty +y5 +4x22 43 +4x% 14y

33: Sing = 104;: N = 756000: h = [0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,1,0,0,1,0,0] :
X0+ x4y? 1353y +3x%% +2y0 +x%% 4 axy + 4

Remark. Up to (h, hg) <5, only A; and A; appear as singularities
of Bh.
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Introduction Problem e Specialization

Specialization from 0 =3
For a polynomial f € k[x] of degree < 6, let Bf C IP? be the
projective plane curve of degree 6 whose affine part is

y® —f(x)=0.

(If deg f < 6, we add the line at infinity.)
Remark If f is general of degree 6, then Sing(Bs) is 5A,.

Theorem

If Bf has only ADE-singularities, then the minimal resolution
Ws — Y¢ of the double cover Y¢ — IP? branched along By is
supersingular with Artin invariant < 3.

Conversely, for any supersingular K3 surface W with Artin
invariant < 3, there is a polynomial f such that W = Wk.
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Specialization

Let w € Fps be a root of w? +w +1=0.

Theorem
The Artin invariant of W is 1 if and only if Bf C P? is projectively
isomorphic to one of the following. We put f(x) = x?(x — 1)?g(x).

No. g Sing(Bf)
1 x(x —1) 2Es + A4
2 X Ag =+ Eg -+ A4
3 x(x —2) Eg +3A4
4 1 Ag + 3A4
5 XxX+2w+3 Ag + 3A4
6 x2 —x+2 5A,
7 (x+1)(x+3) 5A4
8 X2 — wx +w 5A4
8 x-—ox+w 5A4

These 9 models are not projectively isomorphic.
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Ballico-Hefez

Ballico-Hefez curve (joint work with Hoang Thanh
Hoai)

Let k = k be of characteristic p, and g a power of p.
A Ballico-Hefez curve B is a projective plane curve defined by

1 1 1
X+l 4 ya+l  za+1 = (),
More precisely, B is the image of x + y + z = 0 by the morphism

[x:y:z]— [xITL:yatl . zaF1]
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Ballico-Hefez

Then B has the following properties:

m of degree g + 1 with (g2 — q)/2 ordinary nodes as its only
singularities,

m the dual curve BY is of degree 2,

m the natural morphism C(B) — BV has inseparable degree g,
where C(B) C P2 x P2V is the conormal variety of B.

Ballico and Hefez proved the following.

Theorem

Let D C P? be an irreducible singular curve of degree g + 1 such
that DY is of degree > 1 and the natural morphism C(D) — DV
has inseparable degree g. Then D is projectively isomorphic to the
Ballico-Hefez curve.

18 /22



Ballico-Hefez

Proposition
When p is odd, B is defined by

a+1

2(x9y 4+ xy9) — 29T — (22 —4yx) 2 =0.

Proposition
Let d be a divisor of g+ 1. Then the cyclic cover S of P? of degree
d branched along B is unirational and hence is supersingular.

Proposition
Suppose that p = g =25 and d = 2. Then S is the supersingular
K3 surface X in characteristic 5 with Artin invariant 1 with 10A;.
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Borcherds’ method (joint work with Katsura and
Kondo)

The lattice Sx can be embedded primitively

into an even unimodular hyperbolic lattice L of rank 26,
which is unique up to isomorphisms.

The chamber decomposition of the positive cone of L into
standard fundamental domains of the Weyl group W(L) was
determined by Conway.

The tessellation by Conway chambers induces a chamber
decomposition of the positive cone of Sx,

and the nef cone of X is a union of induced chambers.

In an attempt to determine Aut(X), we have investigated several
induced chambers in the nef cone of X, and obtained the following
polarizations with big automorphism groups.
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Theorem

(1) There exist 300 polarizations h; with the following properties.
h? = 60, (hr, h1) = 15.
Aut(X, hy) = s.
The minimal degree of curves on (X, hy) is 5,
(X, h1) contains exactly 168 smooth rational curves of degree
5, on which Aut(X, h1) acts transitively.

Under suitable definition of adjacency relation, these 300
polarizations form 6 Hoffman-Singleton graphs.
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(2) There exist 15700 polarizations hy with the following
properties.
h3 =80, (hf, hy) = 40.
Aut(X, hy) =2 (Z/27)* x (/37 x G4) (order 1152).
The minimal degree of curves on (X, hy) is 5,
and (X, h2) contains exactly 96 smooth rational curves of
degree 5, which decompose into two orbits under the action of
Aut(X, h2).
These 96 curves form six (16¢)-configurations.
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