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Example

Consider two surfaces S; and S_ in C3 defined by

w?(G(x,y) £ V5-H(x,y)) =1, where

G(x,y) = —9x* —14x3y +58x3 — 48x%y% — 64 x°y
+10x% + 108 xy> — 20 xy? — 44y + 10 y*,
H(x,y) = 5x4+10x3y—30x3+30x2y2+

+20x2y — 40 xy> + 20 y°.

Since S, and S_ are conjugate by Gal(Q(v/5)/Q),
they can not be distinguished algebraically.

But S; and S_ are not homeomorphic (in the classical topology).

Many examples of non-homeomorphic conjugate complex varieties
are known since Serre (1964).
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Introduction

A smooth projective surface X is called a K3 surface if

® 3 a nowhere vanishing holomorphic 2-form wx on X, and
m m(X) ={1}.

We consider the following geometric problems on K3 surfaces:
m enumerate elliptic fibrations on a given K3 surface,

m enumerate elliptic K3 surfaces up to some equivalence
relation,

m enumerate projective models of a given K3 surface,
m enumerate projective models of K3 surfaces,
m determine the automorphism group of a given K3 surface,



Introduction

The aim of this talk

Thanks to the theory of period mapping for K3 surfaces and the
Torelli-type theorem due to Piatetski-Shapiro and Shafarevich,
some of these problems are reduced to computational problems in
lattice theory, and the latter can often be solved by means of
computer.

In this talk, we explain how to use lattice theory and computer in
the study of K3 surfaces.

We then demonstrate this method on the problems of constructing
Zariski pairs of plane curves of degree 6.
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A lattice is a free Z-module L of finite rank with a non-degenerate
symmetric bilinear form

( )LlLxL—Z.

Let L be a lattice of rank n. We choose a basis ey, ..., e, of L.
The lattice L is given by the Gram matrix

G = ((e, ej>)i,j:1,...,n'

m O(L) is the group of all isometries of L.

m L is unimodular if det G = £1.

m The signature sgn(L) is the signature of the real quadratic
space L ® R.

m A lattice L is said to be hyperbolic if sgn(L) = (1,n — 1), and
is positive-definite if sgn(L) = (n, 0).

m A lattice L is even if v2 € 2Z for all v € L.

m A sublattice L’ of L is primitive if L/L is torsion free.

5/29



Lattice theory

Lattices associated to a K3 surface

K3 surfaces are diffeomorphic to each other.

Suppose that X is a K3 surface.
Then H?(X,Z) with the cup product is an even unimodular lattice
of signature (3,19), and hence is isomorphic to the K3 lattice

®3 —Ph2
U3 @ E; 92,

where U is the hyperbolic plane with a Gram matrix

01
10)’
and Eg is the negative definite root lattice of type Eg.
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The Néron-Severi lattice
Sx = H*(X,Z) n HY(X)

is the sublattice of H?(X,Z) generated by classes of curves on X,
which is primitive. It is an even hyperbolic lattice of rank < 20.
Moreover the sublattice Sx of H?(X,Z) is primitive.

Our goal is to extract geometric information of X from the Gram
matrix of Sx.

Problem

Suppose that an even hyperbolic lattice S of rank < 20 is given.
Is there a K3 surface X such that S = Sx 7
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By the surjectivity of the period map, we have the following:

Theorem

Let S be a primitive hyperbolic sublattice of U3 @& Eg 92 Then
there exists a K3 surface X such that S = Sx.

Problem

Suppose that an even lattice L and an even unimodular lattice M
are given. Can L be embedded into M primitively?

A lattice L is canonically embedded into its dual lattice
LY := Hom(L,Z)
as a submodule of finite index. The finite abelian group
D, :=L"/L

is called the discriminant group of L.



Lattice theory

The symm. bil. form on L extends to a Q-valued symm. bil. form
on LV, and it defines a finite quadratic form

qr: D — Q/27Z, %+ x> mod 2Z.

The calculation of (D;, q;). Let G be a Gram matrix of L. We
have U,V € GL,(Z) such that

d
VGU! = ,
dn
withl=dy =---=dx <dks1 <--- < dy. Then
DL =P 7z/(dy).
i>k

The ith row vector of U, regarded as an element of LV with respect
to the dual basis e/, ..., e, generate the factor Z/(d;) of Dj.
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Theorem (Hasse principle)

Suppose that s ,s_ € Z>q and a finite quadratic form (D, q) are
given. We can determine by an effective method whether there
exists an even lattice L such that sgn(L) = (s;,s_) and

(D, q1) = (D, q).

Theorem

Let M be an even unimodular lattice. We can see whether

3 a primitive embedding L — M

by seeing whether

3 the “orthogonal complement” of L in M,

which is characterized by the signature and the discriminant form.

Corollary

We can determine whether a given even hyperbolic lattice of rank
< 20 is a Néron—Severi lattice of a K3 surface X or not.
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Polarized K3 surfaces

We consider the projective models of X. For h € Sx = Pic(X), let
Lp — X be a line bundle whose class is h.

Definition

A vector h € Sx of h> = d > 0 is a polarization of degree d if
|Lh| # 0 and has no fixed-components.

Let h be a polarization of degree d. Then |L}| defines
®p 0 X — P14/2 We denote by

X — X, — P1td/2

the Stein factorization of ®,. The normal surface X} is the
projective model of (X, h), and has only rational double points as
its singularities.
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Example

A plane curve B C P? is a simple sextic if B is of degree 6 and has
only simple singularities (ADE-singularities). Let B be a simple
sextic, and Yg — IP? the double covering branched along B. The
minimal resolution Xg of Ypg is a K3 surface.

We denote by
®p: Xg — Yg — P2

the composite of the min. resol. and the double covering, and by
hg € Sx, the class of the pull-back of a line. Then hg is a
polarization of degree 2, and Ypg is its projective model.
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Problem

Suppose that h € Sx with h> > 0 is given. Is h a polarization?
If so, what is the ADE-type of Sing X, ?

We consider the second problem first. Suppose that h is a
polarization.

Proposition

The ADE-type of Sing X, is equal to the ADE-type of the root
system {r € Sx | (h,r) =0,(r,r) = —2}.

The sublattice {x € Sx | (h, x) = 0} is negative-definite.

Problem

Given a positive-definite lattice L. Calculate the set
{relL|(r,r)=2}.
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For a triple QT := [Q, A, c], where
m @ is a pos-def n x n symmetric matrix with entries in Q,
m A is a column vector of length n with entries in Q,
mcecQ

we define For : R" — R by

For(v) =vQ'v+2vi+ec.
We have an algorithm to calculate the finite set

E(QT):={veZ" | For(v)<0}.

Corollary

When a polarization h is given, we can determine the ADE-type of
Sing Xp,.
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Polarized K3 surfaces

Let L be an even hyperbolic lattice. Let P, be one of the two
connected components of {x € L ® R|x? > 0}.
For v € L ® R with v? < 0, we put

(Wt ={xeP. | (x,v)=0}.

We put
Ry ={rel|rr=-2}

Each r € R, defines a reflection s, € O(L) into (r)*:
SrixX X+ (x,r)r.
The closure in P, of each connected component of
P\ U reRL(r)l
is a standard fundamental domain of the action on P; of
W(L):= (s |reRL).
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Let P(X) C Sx ® R be the positive cone that contains an ample
class (e.g., the class of a hyperplane section).

Proposition

By Riemann-Roch, we see that the cone
N(X) :={x € P(X) | (x,[C]) = 0 for any curve C on X }.
is a std. fund. domain of the action of W(Sx) on P(X).

It is obvious that, if h is a polarization, then h € N(X). For the
converse, we need an additional condition. For example,

Proposition

A vector h € Sx with h?> = 2 is a polarization of degree 2 if and
only if h € N(X) and {e € Sx |e? =0, (e, h) =1} = 0.
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Problem

Suppose that h € Sx with h*> > 0 is given.
Does h belong to N(X)?

When we have an ample vector hg € N(X), this problem is reduced
to the following:

Problem
Suppose that we are given vectors hyg, h € P;. Calculate the set

{rel | {(ryho) >0, (r,h) <0, (r,r) =-21}.

There is an algorithm for this task.
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Polarized K3 surfaces
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Zariski pairs

For a simple sextic B C P?,

m Rp : the ADE-type of Sing B,

m degs B : the list of degrees of irreducible components of B.
We say that B and B’ are of the same config type and write
B ~s B if

m Rg = Rp/, degs B = degs B/,

m their intersection patterns of irreducible comps are same.

Example

Zariski showed the existence of a pair [B, B'] such that
®m Rg = Rgr = 6A;, degs B = degs B’ = [6], and
m mi(P2\ B) 2 Z/(2) * Z/(3), m(P?\ B') 2 Z/(2) x Z/(3).
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For a simple sextic B with
b5 Xg — Yg — P?,
let £ be the set of exceptional curves of Xg — Ypg, and let
Yp:=([E] | E€ &)@ (hg) C Sx, C H*(Xg,Z),

where hg is the class of the pull-back of a line. We denote the
primitive closure of X g by

Yg C Sx; C H*(Xg,Z).

After the partial results by Urabe, Yang (1996) made the complete
list configuration type of simple sextics by classifying all such ¥,
and found 11159 types.
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We write B ~cn, B’ if there exists a homeomorphism
¥ : (P?, B) % (P?, B').
We have B ~emh B = B~ B

# of config types = 11159 < # of emb-top types =7

Definition

A Zariski pair is a pair [B, B'] of simple sextics such that
B ~egy B’ but Boboyi B,
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We consider the finite abelian group
G(B) :=Xp/Tp.

We put
O = (Xp C H*(Xs,Z))*.

Theorem
If B ~cmb B’, then O©p = Op.

In fact, ©p is a topological invariant of the open surface
Ug := d5H(P2\ B) C Xg,
because we have ©g = H?(Ug,Z)/ Ker, where

Ker := { v € H*(Ug) | (v,x) =0 for all x € H*(Ug) }.
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Since ©4 = g, the discriminant groups of g and ©p are
isomorphic,

Corollary

If B ~egy B! but |G(B)| # |G(B')

, then Bty B'.

This corollary produces many examples of Zariski pairs.

Example

In Zariski's example [B, B'] with Rg = Rgr = 6A,,
degs B = degs B’ = [6] and

m(P?\ B) = Z/(2) xZ/(3), m(P*\ B') = Z/(2) x Z/(3),

we have G(B) = Z/3Z and G(B') = 0.
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Singular K3 surfaces

A K3 surface X is called singular if rank(Sx) = 20.

Theorem (Shioda and Inose)

The map
X = T(X) = (Sx € H*(X,Z))*

is a bijection from the set of isom. classes of singular K3 surfaces
to the set of isom. classes of oriented pos.-definite even lattices of
rank 2.

In fact, Shioda and Inose gave a recipe to construct the singular
K3 surface X form the lattice T(X).

In particular, every singular K3 surface X is defined over Q, and a
Gram matrix of Sx is always available.

26/29



Introduction Lattice theory Polarized K3 surfaces Zariski pairs Singular K3 surfaces

Theorem (S. and Schiitt)

Let X and X' be singular K3 surfaces defined over Q such that
q7(x) = q7(x1). Then there exists o € Gal(Q/Q) such that
X' = X,

If B is a simple sextic with total Milnor number 19, then Xg is a
singular K3 surface with ©g = T(Xp).

Corollary

Let B be a simple sextic with total Milnor number 19 defined over

Q. If the genus containing T(Xg) contains more than one isom.
class of lattices, then 3 o € Gal(Q/Q) such that By, B?.

Thus we obtain example of arithmetic Zariski pairs.
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Singular K3 surfaces

The first example revisited
Consider the config type of sextics B = L + Q, where
mdegl=1,degQ =5,
m L and @ are tangent at one point with multiplicity 5
(Ao-singularity), and
m Q has one Ajp-singular point.
Such sextics are projectively isomorphic to

z-(G(x,y,2) £V5- H(x,y,2)) = 0,

where G(x,y,z) and H(x, y, z) are homogenizations of the
polynoms in the 1st slide with L = {z = 0}.
The genus containing T(Xg) consists of

[ i 218 } (for +/5), [ 2 g } (for —v/5).
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Singular K3 surfaces

Example

Consider two surfaces S; and S_ in C3 defined by

w?(G(x,y) £ V5-H(x,y)) =1, where

G(x,y) = —9x* —14x3y +58x3 — 48x%y% — 64 x°y
+10x% + 108 xy> — 20 xy? — 44y + 10 y*,
H(x,y) = 5x4+10x3y—30x3+30x2y2+

+20 x%y — 40 xy> 4 20 y/5.

Since S, and S_ are conjugate by Gal(Q(v/5)/Q),
they can not be distinguished algebraically.

But S; and S_ are not homeomorphic (in the classical topology).

Many examples of non-homeomorphic conjugate complex varieties
are known since Serre (1964).
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