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An algorithm on a graph

We start with an easy general algorithm.

Let (V ,E ) be a simple non-oriented connected graph, where

V is the set of vertices and,

E is the set of edges, which is a set of non-ordered pairs of distinct
elements of V (no orientation, no loops, no multiple edges).

The set V may be infinite, but we assume the following
local effectiveness property:
For any v ∈ V , the set

adj(v) := { v ′ ∈ V | {v , v ′} ∈ E }

is finite, and can be calculated effectively.
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Suppose that a group G (possibly infinite) acts on the graph (V ,E ) from
the right. Our goal is to calculate

a complete set of representatives of the orbits V /G , and

a generating set of the group G .

Again we assume the following local effectiveness properties on G :

1 For any v , v ′ ∈ V , we can determine effectively whether

TG (v , v ′) := { g ∈ G | vg = v ′ }

is empty or not, and when TG (v , v ′) 6= ∅, we can calculate an
element g ∈ TG (v , v ′).

2 For any v ∈ V , the stabilizer subgroup TG (v , v) of v in G is finitely
generated, and a finite set of generators of TG (v , v) can be calculated
effectively.
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Let ∼ denote the G -equivalence relation: v ∼ v ′ ⇐⇒ TG (v , v ′) 6= ∅.
Suppose that V0 ⊂ V is a non-empty finite subset with the following
properties:

If v , v ′ ∈ V0 and v 6= v ′, then v 6∼ v ′.

We put Ṽ0 :=
⋃

v ′0∈V0
adj(v ′0). For each v ∈ Ṽ0, there is a vertex

v ′ ∈ V0 such that v ∼ v ′. Note that v ′ is unique for each v ∈ Ṽ0.

For each v ∈ Ṽ0 − V0, we choose an element h(v) ∈ TG (v , v ′), where
v ′ ∈ V0 satisfies v ∼ v ′, and put H := { h(v) | v ∈ Ṽ0 − V0 } ⊂ G .

Proposition

Let v0 be an element of V0. The natural mapping

V0 ↪→ V →→ V /∼ = V /G

is a bijection, and the group G is generated by TG (v0, v0) ∪H.

For the proof, the connectedness of (V ,E ) is crucial.
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We can calculate V0 and H by the following procedure. This procedure
terminates if and only if |V /G | <∞.

Initialize V0 := [v0], H := {}, and i := 0.
while i < |V0| do

Let vi be the (i + 1)st entry of the list V0.
Let adj(vi ) be the set of vertices adjacent to vi .
for each vertex v ′ in adj(vi ) do

Set flag := true.
for each v ′′ in V0 do

if TG (v ′, v ′′) 6= ∅ then
Add an element h of TG (v ′, v ′′) to H.
Replace flag by false.
Break from the innermost for–loop.

if flag = true then
Append v ′ to the list V0 as the last entry.

Replace i by i + 1.
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Terminologies about hyperbolic lattices

By a lattice, we mean a Z-lattice. We deal with even hyperbolic lattices,
that is, even lattices L with signature (1, rank L− 1).
A positive cone P of a hyperbolic lattice L is one of the two connected
components of { x ∈ L⊗ R | 〈x , x〉 > 0 }. Then P/R>0 is a model of the
hyperbolic space.

A vector r ∈ L is called a (−2)-vector if 〈r , r〉 = −2.

Let L be an even hyperbolic lattice with a positive cone P. We put

O(L,P) := { g ∈ O(L) | Pg = P }.

For a vector v ∈ L⊗Q with 〈v , v〉 < 0, we put

(v)⊥ := { x ∈ P | 〈v , x〉 = 0 }.

A (−2)-vector r ∈ L defines the reflection into the mirror (r)⊥:

sr : x 7→ x + 〈x , r〉r .
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The Weyl group W (L) is defined by

W (L) := 〈 sr | r is a (−2)-vector 〉 C O(L,P).

A standard fundamental domain of the action of W (L) on P is the closure
in P of a connected component of

P \
⋃

(r)⊥,

where r runs through the set of all (−2)-vectors.

Then W (L) acts on the set of standard fundamental domains
simple-transitively. Let N be a standard fundamental domain. We put

O(L,N) := { g ∈ O(L,P) | Ng = N }.

Then we have

W (L) = 〈 sr | the hyperplane (r)⊥ bounds N 〉,
O(L,P) = W (L) o O(L,N).
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Vinberg chamber

We put L10 := an even unimodular hyperbolic lattice of rank 10.
Note that L10 is unique up to isomorphism (∼= U ⊕ E8).

Theorem (Vinberg)

A standard fumdamental domain of the action of W (L10) is bounded by
10 hyperplanes (r1)⊥, . . . , (r10)⊥ defined by (−2)-vectors r1, . . . , r10 that
form the dual graph below. Since this graph has no non-trivial symmetries,
we have O(L10,P) = W (L10). b

b b b b b b b b b
We call a standard fumdamental domain of the action of W (L10)
a Vinberg chamber. The positive cone P of L10 is tessellated by Vinberg
chambers, in such a way that each Vinberg chamber has 10 adjacent
Vinberg chambers.
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Application to Enriques surfaces

For simplicity, we work over C.

For a non-singular projective surface Z , we denote by SZ the lattice of
numerical equivalence classes of divisors on Z .

Suppose that Y is an Enriques surface. Then we have

SY ∼= L10.

Let PY be the positive cone containing an ample class of Y . Then we
have a natural homomorphism

ρ : Aut(Y )→ O(SY ,PY ).

The nef-and-big cone of Y is defined by

NY := { x ∈ PY | 〈x ,C 〉 ≥ 0 for all curves C on Y }.
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Goal

Calculate the image G of ρ : Aut(Y )→ O(SY ,PY ), and the fundamental
domain NY /Aut(Y ) of the action of Aut(Y ) on the cone NY .

It is well-known that NY is bounder by hyperplanes (C )⊥, where C are
smooth rational curves on Y , and 〈C ,C 〉 = −2 for a smooth rational
curve C . Therefore NY is a union of Vinverg chambers of SY ∼= L10, that
is, the cone NY is tessellated by Vinberg chambers.
We apply the general algorithm to the following:

V := the set of Vinberg chambers D contained in NY ,

E := the set of pairs {D,D ′} of distinct Vinberg chambers in NY

such that D and D ′ share a common wall,

G := Im(ρ : Aut(Y )→ O(SY ,PY )).

These data (V ,E ) and G have the local effectiveness properties, under
certain assumptions.
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Let X → Y be the universal covering of Y . Then X is a K3 surface, and
we have a primitive embedding

SY (2) ↪→ SX .

Let PX ⊂ SX ⊗ R be the positive cone containing an ample class and
NX ⊂ PX the nef-and-big cone of X . We regard PY as a subspace of PX .
Then we have

NY = NX ∩ PY .

Let a ∈ SY be an ample class of Y . Then a is regarded as an ample class
of X by SY (2) ↪→ SX . By Riemann-Roch, we have the following:

Proposition

The cone NX is equal to the standard fundamental domain of the action
of the Weyl group W (SX ) on PX containg the ample class a.
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Hence a vector v ∈ SX ∩ PX belongs to NX if and only if the set of
separating (−2)-vectors

SX (a, v) := { r ∈ SX | 〈r , r〉 = −2, 〈r , a〉 · 〈r , v〉 < 0 }

is empty. We have an algorithm to calculate this set.

A Vinberg chamber D ′ is contained in NY if and only if SX (a, v) = ∅ for
an interior point v of D ′. Hence we can determine whether D ′ ∈ V or not.
In particular, for D ∈ V , we can determine which of the 10 Vinberg
chambers D ′ adjacent to D belong to V , that is, we can calculate adj(D).

Hence the local effectiveness for (V ,E ) holds.
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Suppose that rankSX < 20 and that the period ω of X is general enough
so that

{ g ∈ O(TX ) | ωg ∈ Cω } = {±1},

where TX is the transcendental lattice of X . If D,D ′ are Vinberg
chambers in NY , then there exists a unique element g ∈ O(SY ,PY ) such
that Dg = D ′, because O(L10,P) = W (L10) acts on the set of Vinberg
chambers simple-transitively. By Torelli theorem for K3 surfaces, we have
the following:

Proposition

An isometry g ∈ O(SY ,PY ) belongs to G = Im(Aut(Y )→ O(SY ,PY ))
if and only if g lifts to an isometry g̃ of SX that preserves NX and acts as
±1 on the discriminant group of SX .

Hence the local effectiveness for G holds, provided that we know the
embedding SY (2) ↪→ SX explicitly.
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Thus we can apply the general algorithm, and calculate a complete set of
representatives for V /G and a finite set of generators of G .

Note that the size |V /G | can be regarded as a volume of the fundamental
domain of the action of Aut(Y ) on the cone NY (the volume measured by
the number of Vinberg chambers). We define

vol(NY /Aut(Y )) := |V /G |.

This naive method does not work in general, because the computation is
too heavy.
We have an example due to Barth-Peters (1983).
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Let Y be a generic Enriques surface. Since Y has no smooth rational
curves, we have NY = PY , and hence V is the set of all Vinberg chambers.

Theorem (Barth-Peters (1983))

The fundamental domain of the action of Aut(Y ) on the cone NY = PY
is a union of

|O(L10 ⊗ F2)| = 221 · 35 · 52 · 7 · 17 · 31 = 46998591897600 ≈ 47× 1012

copies of Vinberg chambers.

Therefore we have to go through the while–loop about 47× 1012 times.

To overcome this difficulty, we employ Borcherds’ method. This is the
technical core of our computation. For details, see

Borcherds’ Method for Enriques Surfaces
Simon Brandhorst, Ichiro Shimada:
arXiv:1903.01087
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Main results

We need the notion of (τ, τ̄)-generic Enriques surfaces, where τ and τ̄ are
ADE-types of the same rank.

Examples

The generic Enriques surface of Barth-Peters is (0, 0)-generic.

A general nodal Enriques surface is (A1,A1)-generic. More generally,
if Y is an Enriques surface that is very general in the moduli of
Enriques surfaces containing n disjoint smooth rational curves, then
Y is (nA1, nA1)-generic.

If Y is very general in the moduli of Enriques surfaces containing two
smooth rational curves whose dual graph is c c, then Y is
(A2,A2)-generic. We say that such an Enriques surface Y is general
cuspidal.

There are 156 types (τ, τ̄) for which (τ, τ̄)-generic Enriques surfaces exist.
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Volume formula

We put 1BP := 46998591897600. (BP stands for Barth-Peters.)

Theorem

Let Y be a (τ, τ̄)-generic Enriques surface. Then we have

vol(NY /Aut(Y )) = |V /G | =
c(τ,τ̄)

|W (Rτ )|
· 1BP,

where W (Rτ ) is the Weyl group of type τ , and c(τ,τ̄) ∈ {1, 2} is the
number of numerically trivial automorphisms of Y , that is, the size of the
kernel of ρ : Aut(Y )→ O(SY ,PY ).

Example

If Y is generic, then |V /G | = 1BP. This is the definition of 1BP.

If Y is general nodal, then |V /G | = 1BP/2.
If Y is general n-nodal, then |V /G | = 1BP/2nn! for n ≤ 8.

If Y is general cuspidal, then |V /G | = 1BP/6.
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There are two good things about this formula.

We have a proof that does not use computer.

We can make an explicit list of representatives of V /G , and hence we
can confirm the formula by computer.

We have geometric applications of the explicit computation of V /G .

First, we obtain a finite set of generators of
G = Im(ρ : Aut(Y )→ O(SY ,PY )).

Second, we can calculate the sets

R(Y ) := the set of smooth rational curves on Y , and

E(Y ) := the set of elliptic fibrations Y → P1

modulo the action of Aut(Y ).
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Geometric applications

Application to rational curves on Y .

We put R(Y ) := the set of smooth rational curves on Y .

Theorem

Let Y be a (τ, τ̄)-generic Enriques surface. Suppose that rank(τ) ≤ 6.
Then |R(Y )/Aut(Y )| is equal to the number of connected components
of the Dynkin graph of τ .

Example

If Y is general nodal, then |R(Y )/Aut(Y )| = 1. This had been
proved by Cossec-Dolgachev.

If Y is general n-nodal with n ≤ 6, then |R(Y )/Aut(Y )| = n.

If Y is general cuspidal, then |R(Y )/Aut(Y )| = 1.

. . .
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Application to elliptic fibrations on Y .

We put
E(Y ) := the set of elliptic fibrations Y → P1.

Theorem (Barth-Peters)

Let Y be a generic Enriques surface. Then |E(Y )/Aut(Y )| = 527.

We generalize this theorem as follows:

Theorem

Let Y be a general nodal Enriques surface. Then

|E(Y )/Aut(Y )| = 136 + 255.

In the representatives of elements of E(Y )/Aut(Y ),
136 elliptic fibrations have no reducible fibers, and
255 elliptic fibrations have one non-multiple reducible fiber of type A1.
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Theorem

Let Y be a general 2-nodal Enriques surface. Then

|E(Y )/Aut(Y )| = 36 + 1 + 128 + 126;

36 elliptic fibrations have no reducible fiber,
1 elliptic fibrations have one multiple reducible fiber of type A1,
128 elliptic fibrations have one non-multiple reducible fiber of type A1,
126 elliptic fibrations have one non-multiple reducible fiber of type A2.

Theorem

Let Y be a general cuspidal Enriques surface. Then

|E(Y )/Aut(Y )| = 136 + 119;

136 elliptic fibrations have one non-multiple reducible fiber of type A1, and
119 elliptic fibrations have one non-multiple reducible fiber of type A2.

. . . . . . . . .
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The definition of (τ, τ̄)-generic Enriques surfaces

For an ADE-lattice R, let τ(R) denote the ADE-type of R. Let R be an
ADE-sublattice of L10, and R the primitive closure of R in L10. Then R is
also an ADE-sublattice of L10.

Proposition

(1) Let R ′ be another ADE-sublattice of L10 with the primitive closure R
′
.

Then R and R ′ are in the same orbit under the action of O(L10,P) if and
only if

(τ(R), τ(R)) = (τ(R ′), τ(R
′
)).

(2) There exist exactly 184 pairs (τ, τ̄) of ADE-types that are equal to
(τ(R), τ(R)) of an ADE-sublattice R of L10.

1 (A1,A1) 7 (4A1, 4A1) 115 (D5 + A2 + A1,D5 + A2 + A1)
2 (2A1, 2A1) 8 (4A1,D4) . . .

. . . . . . 184 (D9,D9)
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Let R be an ADE-sublattice of L10. We denote by ιR : R ↪→ L10 the
inclusion. We define MR to be the Z-submodule of (L10(2)⊕ R(2))⊗Q
generated by L10(2) and (ιR(v),±v)/2 ∈ (L10 ⊕ R)⊗Q, where v runs
through R. By definition, MR is an even hyperbolic lattice with a chosen
primitive embedding

$R : L10(2) ↪→ MR .

Let Y be an Enriques surface with the universal covering π : X → Y .
Then the étale double covering π induces a primitive embedding

π∗ : SY (2) ↪→ SX .
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Let (τ, τ̄) be one of the 184 pairs in the previous proposition, and let R be
an ADE-sublattice of L10 with (τ(R), τ(R)) = (τ, τ̄).

Definition

An Enriques surface Y is said to be (τ, τ̄)-generic if the following
conditions are satisfied.

1

O(TX , ω) := { g ∈ O(TX ) | ωg ∈ Cω } = {±1}.
2 There exist isometries g : L10

∼−→ SY and g̃ : MR
∼−→ SX that make the

following commutative diagram

L10(2)
$R
↪→ MR

g ↓o g̃ ↓o
SY (2)

π∗
↪→ SX .

Among 184 types, 156 types (τ, τ̄) appear as (τ, τ̄)-generic Enriques
surfaces.

I. Shimada (Hiroshima University) Computations on Enriques surfaces 2021 Oct 14 24 / 25



Our preprint is available from:

Automorphism groups of certain Enriques surfaces
Simon Brandhorst, Ichiro Shimada
arXiv:2012.10622

Thank you very much for listening!
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