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An algorithm on a graph

We start with an easy general algorithm.

Let (V, E) be a simple non-oriented connected graph, where
o V is the set of vertices and,
o E is the set of edges, which is a set of non-ordered pairs of distinct
elements of V (no orientation, no loops, no multiple edges).

The set V may be infinite, but we assume the following
local effectiveness property:

For any v € V, the set

adj(v):={v eV |{v,V}€E}

is finite, and can be calculated effectively.
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Suppose that a group G (possibly infinite) acts on the graph (V, E) from
the right. Our goal is to calculate

@ a complete set of representatives of the orbits V /G, and
@ a generating set of the group G.
Again we assume the following local effectiveness properties on G:

@ For any v, v/ € V, we can determine effectively whether
Te(v,V):={geG|v&E=V}
is empty or not, and when T¢(v, V') # (), we can calculate an
element g € Tg(v, V).
@ For any v € V, the stabilizer subgroup T¢(v,v) of v in G is finitely

generated, and a finite set of generators of T¢(v, v) can be calculated
effectively.
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Let ~ denote the G-equivalence relation: v ~ v/ < Tg(v, V') # 0.
Suppose that Vp C V is a non-empty finite subset with the following
properties:

o If vivi € Vyand v # V/, then v £ V',
o We put Vg := Uv(gevo adj(v{). For each v € Vo, there is a vertex
v/ € Vg such that v ~ v/. Note that v/ is unique for each v € Vo.

For each v € Vp — Vo, we choose an element h(v) € Tg(v,v'), where
v/ € W, satisfies v ~ v/, and put H :={h(v) |[ve Vo — W} CG.

Proposition

Let vy be an element of V. The natural mapping
Vo=V —»V/~=V/G

is a bijection, and the group G is generated by Tg(vo, vo) U H.

For the proof, the connectedness of (V/, E) is crucial.
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We can calculate Vg and H by the following procedure. This procedure
terminates if and only if |V /G| < cc.

Initialize Vo := [w], H = {}, and i := 0.
while / < || do
Let v; be the (i + 1)st entry of the list V.
Let adj(v;) be the set of vertices adjacent to v;.
for each vertex v/ in adj(v;) do
Set flag := true.
for each v in Vj do
if Tg(v/,v") # 0 then
Add an element h of Tg(v/,v") to H.
Replace flag by false.
Break from the innermost for—loop.

if flag = true then
Append v’ to the list V{ as the last entry.

Replace i by i + 1.
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Terminologies about hyperbolic lattices

By a lattice, we mean a Z-lattice. We deal with even hyperbolic lattices,
that is, even lattices L with signature (1,rank L — 1).

A positive cone P of a hyperbolic lattice L is one of the two connected
components of { x € LQR | (x,x) > 0}. Then P/R~g is a model of the
hyperbolic space.

A vector r € L is called a (—2)-vector if (r,r) = —2.

Let L be an even hyperbolic lattice with a positive cone P. We put
O(L,P):={geO(L) | PE=P}.
For a vector v € L ® Q with (v, v) <0, we put
(W)t i={xeP|(v,x)=0}.
A (—2)-vector r € L defines the reflection into the mirror (r)*:

St X x4 (x,rr.
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The Weyl group W(L) is defined by
W(L) := (s | risa (—2)-vector) < O(L,P).

A standard fundamental domain of the action of W(L) on P is the closure
in P of a connected component of

P\ (0"

where r runs through the set of all (—2)-vectors.

Then W(L) acts on the set of standard fundamental domains
simple-transitively. Let N be a standard fundamental domain. We put

O(L,N) :={geO(L,P)| N6 =N}.
Then we have

W(L) = (s, |the hyperplane (r)* bounds N ),
O(L,P) = W(L) xO(L,N).
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Vinberg chamber

We put Ljg := an even unimodular hyperbolic lattice of rank 10.
Note that Lig is unique up to isomorphism (= U @ Eg).

Theorem (Vinberg)

A standard fumdamental domain of the action of W(Lyg) is bounded by
10 hyperplanes (r1)*, ..., (ri0)* defined by (—2)-vectors ry, ..., ro that
form the dual graph below. Since this graph has no non-trivial symmetries,
we have O(Lig, P) = W(Lio).

We call a standard fumdamental domain of the action of W/(Ljo)

a Vinberg chamber. The positive cone P of Ljg is tessellated by Vinberg
chambers, in such a way that each Vinberg chamber has 10 adjacent
Vinberg chambers.
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Application to Enriques surfaces

For simplicity, we work over C.

For a non-singular projective surface Z, we denote by Sz the lattice of
numerical equivalence classes of divisors on Z.

Suppose that Y is an Enriques surface. Then we have
Sy = Lio.

Let Py be the positive cone containing an ample class of Y. Then we
have a natural homomorphism

p: Aut(Y) — O(Sy, Py).
The nef-and-big cone of Y is defined by

Ny :={x € Py | (x,C) >0 for all curves C on Y }.
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Calculate the image G of p: Aut(Y) — O(Sy,Py), and the fundamental
domain Ny / Aut(Y') of the action of Aut(Y') on the cone Ny .

It is well-known that Ny is bounder by hyperplanes (C)*, where C are
smooth rational curves on Y, and (C, C) = —2 for a smooth rational
curve C. Therefore Ny is a union of Vinverg chambers of Sy = Ly¢, that
is, the cone Ny is tessellated by Vinberg chambers.

We apply the general algorithm to the following:

vV =
E =

G =

the set of Vinberg chambers D contained in Ny,

the set of pairs {D, D'} of distinct Vinberg chambers in Ny
such that D and D’ share a common wall,

Im(p: Aut(Y) — O(Sy,Py)).

These data (V, E) and G have the local effectiveness properties, under
certain assumptions.
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Let X — Y be the universal covering of Y. Then X is a K3 surface, and
we have a primitive embedding

5y(2) — Sx.

Let Px C Sx ® R be the positive cone containing an ample class and
Nx C Px the nef-and-big cone of X. We regard Py as a subspace of Px.
Then we have

Ny = Nx N Py.

Let a € Sy be an ample class of Y. Then a is regarded as an ample class
of X by Sy(2) — Sx. By Riemann-Roch, we have the following:

Proposition

The cone Nx is equal to the standard fundamental domain of the action
of the Weyl group W(Sx) on Px containg the ample class a.
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Hence a vector v € Sx N Px belongs to Nx if and only if the set of
separating (—2)-vectors

Sx(a,v):={reSx| (r,r)=-2, {r,a)-(r,v) <0}

is empty. We have an algorithm to calculate this set.

A Vinberg chamber D’ is contained in Ny if and only if Sx(a,v) =0 for
an interior point v of D’. Hence we can determine whether D’ € V or not.
In particular, for D € V/, we can determine which of the 10 Vinberg
chambers D" adjacent to D belong to V, that is, we can calculate adj(D).

Hence the local effectiveness for (V, E) holds.
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Suppose that rank Sx < 20 and that the period w of X is general enough
so that
{g€O(Tx) | w8 € Cw} = {1},

where Tx is the transcendental lattice of X. If D, D’ are Vinberg
chambers in Ny, then there exists a unique element g € O(Sy, Py) such
that D& = D', because O(L1g, P) = W(L1p) acts on the set of Vinberg
chambers simple-transitively. By Torelli theorem for K3 surfaces, we have
the following:

Proposition

An isometry g € O(Sy, Py) belongs to G = Im(Aut(Y) — O(Sy, Py))
if and only if g lifts to an isometry g of Sx that preserves Nx and acts as
+1 on the discriminant group of Sx.

Hence the local effectiveness for G holds, provided that we know the
embedding Sy (2) < Sx explicitly.
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Thus we can apply the general algorithm, and calculate a complete set of
representatives for V' /G and a finite set of generators of G.

Note that the size |V /G| can be regarded as a volume of the fundamental
domain of the action of Aut(Y') on the cone Ny (the volume measured by
the number of Vinberg chambers). We define

vol(Ny / Aut(Y)) := |V/G]|.

This naive method does not work in general, because the computation is
too heavy.
We have an example due to Barth-Peters (1983).
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Let Y be a generic Enriques surface. Since Y has no smooth rational
curves, we have Ny = Py, and hence V is the set of all Vinberg chambers.
Theorem (Barth-Peters (1983))

The fundamental domain of the action of Aut(Y') on the cone Ny = Py
is a union of

|O(L1p ® Fo)| = 2% .35.52.7.17 - 31 = 46998591897600 ~ 47 x 10'°

copies of Vinberg chambers.

Therefore we have to go through the while—loop about 47 x 10'? times.

To overcome this difficulty, we employ Borcherds’ method. This is the
technical core of our computation. For details, see

Borcherds’ Method for Enriques Surfaces
Simon Brandhorst, Ichiro Shimada:
arXiv:1903.01087
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Main results

We need the notion of (7, 7)-generic Enriques surfaces, where 7 and T are
ADE-types of the same rank.

Examples
@ The generic Enriques surface of Barth-Peters is (0, 0)-generic.

@ A general nodal Enriques surface is (A1, A1)-generic. More generally,
if Y is an Enriques surface that is very general in the moduli of
Enriques surfaces containing n disjoint smooth rational curves, then
Y is (nA1, nA1)-generic.

o If Y is very general in the moduli of Enriques surfaces containing two
smooth rational curves whose dual graph is o—o, then Y is

(A2, Az)-generic. We say that such an Enriques surface Y is general
cuspidal.

There are 156 types (7,7) for which (7, 7)-generic Enriques surfaces exist.
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Volume formula

We put 1gp := 46998591897600. (BP stands for Barth-Peters.)

Theorem

Let Y be a (7, T)-generic Enriques surface. Then we have

vol(Ny / Aut(Y)) = |V/G| = —TD_ 100,
[W(R)|
where W(R;) is the Weyl group of type 7, and ¢ 7) € {1,2} is the
number of numerically trivial automorphisms of Y, that is, the size of the
kernel of p: Aut(Y) — O(Sy, Py).

Example
o If Y is generic, then |V /G| = 1gp. This is the definition of 1pp.
e If Y is general nodal, then |V /G| = 1gp/2.
If Y is general n-nodal, then |V /G| = 1gp/2"n! for n < 8.
e If Y is general cuspidal, then |V/G| = 1gp/6.
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There are two good things about this formula.
@ We have a proof that does not use computer.

@ We can make an explicit list of representatives of V/ /G, and hence we
can confirm the formula by computer.

We have geometric applications of the explicit computation of V/G.

First, we obtain a finite set of generators of
G =Im(p: Aut(Y) — O(Sy, Py)).

Second, we can calculate the sets

R(Y) := the set of smooth rational curves on Y, and
E(Y) := the set of elliptic fibrations Y — P*

modulo the action of Aut(Y).
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Geometric applications

Application to rational curves on Y.

We put R(Y) := the set of smooth rational curves on Y.

Let Y be a (7, T)-generic Enriques surface. Suppose that rank(7) < 6.
Then |R(Y)/ Aut(Y)| is equal to the number of connected components
of the Dynkin graph of T.

Example

e If Y is general nodal, then |R(Y)/ Aut(Y)| = 1. This had been
proved by Cossec-Dolgachev.

e If Y is general n-nodal with n <6, then |R(Y)/Aut(Y)| = n.
e If Y is general cuspidal, then |R(Y)/ Aut(Y)| = 1.

I. Shimada (Hiroshima University) Computations on Enriques surfaces 2021 Oct 14 19/25



Application to elliptic fibrations on Y.

We put
E(Y) := the set of elliptic fibrations Y — P!

Theorem (Barth-Peters)
Let Y be a generic Enriques surface. Then |E(Y)/ Aut(Y)| = 527.

We generalize this theorem as follows:

Theorem

Let Y be a general nodal Enriques surface. Then
IE(Y)/ Aut(Y)| = 136 + 255.

In the representatives of elements of £(Y)/ Aut(Y),
136 elliptic fibrations have no reducible fibers, and
255 elliptic fibrations have one non-multiple reducible fiber of type A;.
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Theorem

Let Y be a general 2-nodal Enriques surface. Then
IE(Y)/ Aut(Y)| =36+ 1 + 128 + 126;

36 elliptic fibrations have no reducible fiber,

1 elliptic fibrations have one multiple reducible fiber of type Az,

128 elliptic fibrations have one non-multiple reducible fiber of type A1,
126 elliptic fibrations have one non-multiple reducible fiber of type A;.

Theorem

Let Y be a general cuspidal Enriques surface. Then
IE(Y)/ Aut(Y)| = 136 + 119;

136 elliptic fibrations have one non-multiple reducible fiber of type A1, and
119 elliptic fibrations have one non-multiple reducible fiber of type As.
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The definition of (7, 7)-generic Enriques surfaces

For an ADE-lattice R, let 7(R) denote the ADE-type of R. Let R be an
ADE-sublattice of Lig, and R the primitive closure of R in Lig. Then R is
also an ADE-sublattice of Lig.

Proposition

(1) Let R" be another ADE-sublattice of L1g with the primitive closure R.
Then R and R’ are in the same orbit under the action of O(L1g,P) if and

only if _ _
(7(R), 7(R)) = (r(R)), 7(R)).

(2) There exist exactly 184 pairs (7,7) of ADE-types that are equal to
(7(R),7(R)) of an ADE-sublattice R of Lyp.

1 (Al,Al) 7 (4A1,4A1) 115 (D5+A2+A1,D5+A2+A1)
2 (2A1, 2A1) 8 (4A1, D4) ce
184 (Do, D)
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Let R be an ADE-sublattice of L1g. We denote by tg: R < Lig the
inclusion. We define Mg to be the Z-submodule of (L19(2) ® R(2)) @ Q
generated by L10(2) and (tr(v),£v)/2 € (L10 ® R) ® Q, where v runs
through R. By definition, Mg is an even hyperbolic lattice with a chosen
primitive embedding

WR: L10(2) — MR.

Let Y be an Enriques surface with the universal covering 7: X — Y.
Then the étale double covering 7w induces a primitive embedding

7 Sy(2) — Sx.

I. Shimada (Hiroshima University) Computations on Enriques surfaces 2021 Oct 14 23 /25



Let (7,7) be one of the 184 pairs in the previous proposition, and let R be
an ADE-sublattice of L1p with (7(R),7(R)) = (7, 7).

Definition

An Enriques surface Y is said to be (7, T)-generic if the following
conditions are satisfied.
o
O(Tx,w) ={ge€O(Tx) | w® € Cw} = {£1}.

@ There exist isometries g: L1g — Sy and g: Mg = Sx that make the
following commutative diagram

L10(2) — MR

g g
Sy(2) &0 sy

Among 184 types, 156 types (7, 7) appear as (7, T)-generic Enriques
surfaces.
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Our preprint is available from:

Automorphism groups of certain Enriques surfaces
Simon Brandhorst, Ichiro Shimada
arXiv:2012.10622

Thank you very much for listening!
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