
NONPARAMETRIC KERNEL REGRESSION FOR

MULTINOMIAL DATA

HIDENORI OKUMURAa and KANTA NAITOb

aDepartment of Information Science and Business Management, Chugoku Junior
College, Okayama 701-0197, Japan [E-mail: okumura@cjc.ac.jp];
bDepartment of Mathematics, Shimane University, Matsue 690-8504, Japan

Abstract

This paper presents a kernel smoothing method for multinomial regression. A class of esti-
mators of the regression functions is constructed by minimizing a localized power-divergence
measure. These estimators include the bandwidth and a single parameter originating in the
power-divergence measure as smoothing parameters. An asymptotic theory for the estima-
tors is developed and the bias-adjusted estimators are obtained. A data-based algorithm for
selecting the smoothing parameters is also proposed. Simulation results and an application
to a real data set reveal that the proposed algorithm works efficiently.
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1 Introduction

This paper is concerned with the smoothing problem for multinomial data. Suppose that at
each covariate x, the joint distribution of the random vector Y(x) = (Y1(x), . . . , Yr(x))T is the
multinomial distribution MN(p1(x), . . . , pr(x);N(x)), where for any x,

∑r
j=1 pj(x) = 1 and N(x)

is a positive constant with N(x) =
∑r

j=1 Yj(x). The distribution of Y(x) given x is expressed
as

Pr(Y(x) = y(x)) = N(x)!
r∏

j=1

pj(x)yj(x)

yj(x)!
,

where y(x) = (y1(x), . . . , yr(x))T is an observation of Y(x). If r = 2, then the above distribution
represents a binomial regression model. In this paper, our problem is to estimate the regression
functions pj(x)(j = 1, . . . , r) that yield the probabilities of each r category at covariate x.

We observe Yi = (Yi1, . . . , Yir)T ∼ MN(p1(xi), . . . , pr(xi);N(xi)) independently at covariates
xi(i = 1, . . . ,K), where Yij = Yj(xi)(j = 1, . . . , r). For simplicity, assume that all xi are
equispaced. Without lack of generality, it can be assumed that xi = (i − 1)/K(i = 1, . . . ,K).
However, this assumption can be relaxed as discussed in Müller and Schmitt [11]. Put Ȳij =
Yij/Ni(i = 1, . . . ,K), where Ni = N(xi) =

∑r
j=1 Yij.

Multinomial regression is used in various fields, and recently an important and promising
application of multinomial regression has been the multiple classification problem. This problem
aims to determine arg maxj pj(x); see Albert and Chib [3], and Hastie et al. ([8], Chapter 4).
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It should be noted that the setting in this paper is different from that of the so-called sparse
multinomial data discussed in Simonoff [18], Aerts at al. [1] and Augustyns and Wand [2]. In a
sparse multinomial setting, the aim is to smooth the estimated probabilities of all categories for
the situation where the number of categories increases with the sample size. Hence, it can be
understood that K = 1 and r → ∞ in our setting corresponds to a sparse multinomial setting.
For such a situation, it is known that exploiting a smoothing method provides more accurate
estimates than usual parametric estimates, especially for categories with a low probability. An
elegant summary of tackling this issue by kernel smoothing is given in Simonoff [18].

Although our setting of the problem is different, we too utilize the kernel smoothing approach.
For the same setting, Tutz [19] discussed the use of Nadaraya-Watson type estimators. The
local likelihood approach was used to check the goodness of fit for the parametric model in
Tutz and Kauermann [20] and Tutz [21]. In this study, we claim that the Nadaraya-Watson
estimator and its variant have an advantage over the local likelihood approach. The advantage
is that Nadaraya-Watson type estimators always exist; it is always expressed in an explicit form.
However, the local likelihood approach does not always yield an estimator since the optimization
steps sometimes cannot find a solution. This difficulty in the local likelihood approach was also
pointed out in Okumura and Naito [15] in a binomial setting. Therefore, in this paper we
propose the use of a more efficient estimator that is a variant of Nadaraya-Watson estimators
of pj(x)(j = 1, . . . , r).

To construct an estimator, it is important to choose a reasonable criterion to yield an estima-
tor. Hence, it may be useful to refer to a goodness-of-fit test for multinomial data because our
data is multinomial. The power-divergence measure discussed in detail in Cressie and Read [7]
is famous as a measure of goodness of fit for multinomial data. The power-divergence measure
is defined as

Iλ(p : q) =
1

λ(1 − λ)

r∑
j=1

qj

{(
qj

pj

)λ

− 1

}
(1)

for λ in �, where p = (p1, ..., pr) and q = (q1, ..., qr) are the probability distributions on r

categories; I0(p : q) ≡ limλ→0 Iλ(p : q) and I−1(p : q) ≡ limλ→−1 Iλ(p : q). For the observed
frequency vector X and the expected frequency vector E, the family {2Iλ(X : E)} includes widely
known goodness-of-fit statistics; see Cressie and Read [7]. Furthermore, if we put λ = (α−1)/2,
then Iλ is nothing else than the α-divergence discussed in Amari and Nagaoka [4]. In this
manner, the power-divergence includes many efficient statistics, and hence, a unified argument
can be made using this divergence, as explained in Cressie and Read [7]. In this paper, we
construct a family of estimators of pj(x)(j = 1, . . . , r) including the Nadaraya-Watson estimator
as a special case by minimizing a localized version of the power-divergence measure.

This paper is organized as follows. In Section 2, a family of kernel estimators is derived
by means of a localized version of the power-divergence measure. The role of a new smoothing
parameter λ, which is essentially included in (1), is also depicted. The theoretical performance
of estimators is investigated in Section 3. Furthemore, a bias-adjusted estimator is naturally
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obtained in Section 3. In Section 4, a method is developed for a data-based choice of smoothing
parameters. We claim that λ as well as bandwidth should be selected based on the data. A
data-based choice of λ was not discussed in Cressie and Read [7]; therefore, this is a relatively
new argument in this research area. Simulation results are reported in Section 5, using which
we confirm a good performance of the algorithm developed in Section 4. Applications to a real
data set are discussed in Section 6, and final comments and notes are enumerated in Section 7.
Outlines of the proofs for theoretical results are included in the Appendix.

2 Kernel Estimator

2.1 Criterion

In order to construct estimators, we focus on the power-divergence measure with the parameter
λ provided in Cressie and Read [7]. Essentially, we consider a localized version of the power
divergence given by (1). For any fixed covariate x, the criterion is defined as

Lλ(β, γ) =
1

λ(λ + 1)

K∑
i=1

φh(xi − x)


 r∑

j=1

Ȳij

{(
Ȳij

βj

)λ

− 1

}
+ γ(1 −

r∑
j=1

βj)


 , (2)

where β = (β1, . . . , βr)T and γ is a Lagrange multiplier. Further φh(·) = φ(·/h)/h, where φ is
a kernel function with its support at [−1, 1]. A few special cases are defined using continuity:
L0(β, γ) ≡ limλ→0 Lλ(β, γ) and L−1(β, γ) ≡ limλ→−1 Lλ(β, γ). For each x, let

(β̂, γ̂) = arg min
β,γ

Lλ(β, γ).

Then, the estimator of pj(x) is given as

p̂j,λ(x;h) = β̂j =
{∑K

i=1 φh(xi − x)Ȳ λ+1
ij } 1

λ+1∑r
�=1{

∑K
i=1 φh(xi − x)Ȳ λ+1

i� } 1
λ+1

.

Note that 0 ≤ p̂j,λ(x;h) ≤ 1 and
∑r

j=1 p̂j,λ(x;h) = 1 for any x. If λ = 0, the estimator is the
Nadaraya-Watson estimator:

p̂j,0(x;h) =
∑K

i=1 φh(xi − x)Ȳij∑K
i=1 φh(xi − x)

. (3)

2.2 Family of Estimators

Let p̂λ(·;h) = (p̂1,λ(·;h), . . . , p̂r,λ(·;h))T . Then we see that {p̂λ(·;h);λ ∈ �, h > 0} forms
a family of estimators of p(·) = (p1(·), . . . , pr(·))T . Here, we attempt to explain the role of
λ. Mathematically, introducing λ is the same as increasing the dimension of the smoothing
parameter included in the estimators by one. We can easily understand the state of a low-
dimensional subspace from a higher dimensional space. By introducing λ, it appears to be
possible, in some sence, to find a more efficient estimator than the Nadaraya-Watson estimator
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(3), or at least, to evaluate the goodness of the Nadaraya-Watson estimator. Tackling the
problem by increasing the dimension generally seems to be common in mathematical science.
Recent works in statistical sciences using such an approach include Basu et al. [5], Jones et
al. [9], and Naito [12, 13]. It will be shown in the subsequent discussion that introducing λ by
means of the localized power divergence is essential for the theoretical aspect of this paper.

In practical situations, λ as well as h should be selected based on the data. This data-
based choice of λ was not addressed in the parametric setting in Cressie and Read [7]. They
recommended the use of λ = 2/3 based on several factors, but it was not a data-based choice.
This paper addresses this problem in Section 4.

3 Theoretical Performance

3.1 Asymptotics for Estimators

Under the following regularity conditions, we can obtain the asymptotic bias, variance and
normality of p̂j,λ(x;h). The notations µk(f) =

∫ 1
−1 xkf(z)dz and R(f) =

∫ 1
−1 f(z)2dz for a

function f defined on [−1, 1] are used throughout.

ASSUMPTION 1 h → 0 and Ni → ∞ as K → ∞ for i = 1, . . . ,K in a manner such that
Kh3+ε = O(1) and N1h

2−ε = O(1) for some 0 < ε < 1, and Ni/N1 = 1 + o(h2).

ASSUMPTION 2 The support of the kernel φ(x) is [−1, 1] and φ(x) has continuous and
bounded derivatives of order n for any x in [−1, 1] with φ(k)(−1) = φ(k)(1) = 0 and

(−1)k
∫ 1

−1
x�φ(k)(x)dx =




0, � < k or � = k + 1,
�!, � = k,

c�,k, otherwise,

where 0 ≤ k ≤ n and all c�,k are some positive constants.

ASSUMPTION 3 The curves pj(x), j = 1, . . . , r have continuous and bounded derivatives
of order n + 2 for any x in [0,1] and satisfy 0 < pj(x) < 1, j = 1, . . . , r and

∑r
j=1 pj(x) = 1 for

any x in [0, 1].

Theorem 1 Under assumption 1-3 with n ≥ 0, we have as K → ∞,

Bias[p̂j,λ(x;h)] =
λ

2N1
b1j(x) + h2b2j(x) + O

(
1

Kh
+

h2

N1

)
,

V [p̂j,λ(x;h)] =
pj(x)(1 − pj(x))R(φ)

N1Kh
+ O

(
1

N2
1 Kh

+
h

N1K

)
.

where

b1j(x) = 1 − rpj(x),
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b2j(x) =
µ2(φ)

2

{
ληj(x) + p

(2)
j (x)

}
,

ηj(x) = pj(x)



(

p
(1)
j (x)
pj(x)

)2

−
r∑

�=1

p�(x)

(
p
(1)
� (x)
p�(x)

)2

 .

We note that each ηj(x) is pj(x) times centred (p(1)
j (x)/pj(x))2 with its centre (weighted mean)

at
∑r

�=1 p�(x)(p(1)
� (x)/p�(x))2. Since p

(1)
j (x)/pj(x) = (d/dx) log pj(x), ηj(x) can be viewed as

a functional of a squared score function (note that pj(x) itself is not a density but a smooth
function). This ηj has a key role in developing the algorithm for the data-based choice of (λ, h),
as described in Section 4. The next theorem reveals the pointwise asymptotic normality of
p̂λ(x;h):

Theorem 2 Under assumptions 1-3 with n ≥ 0, if
√

N1Kh5 converges to a constant ρ, we have
for any r-vector α = (α1, ..., αr)T ,

√
N1KhαT {p̂λ(x;h) − p(x) − λ(2N1)−1b1(x)} →d N(ραT b2(x),R(φ)αT Σ(x)α),

where b1(x) = (b11(x), . . . , b1r(x))T , b2(x) = (b21(x), . . . , b2r(x))T and

Σ(x) = diag(p(x)) − p(x)p(x)T .

3.2 Asymptotics for Bias-Adjusted Estimators

Define
p̃j,λ(x;h) = p̂j,λ(x;h) − λ

2N1
(1 − rp̂j,λ(x;h)).

Then, this is a bias-adjusted estimator of pj(x), which does not include the term O(N−1
1 ) that

appeared in the bias of p̂j(x;h) in Theorem 1. However, the asymptotic variances of p̂j,λ(x;h)
and p̃j,λ(x;h) are the same. Furthermore, the total sum condition

∑r
j=1 p̃j,λ(x;h) = 1 remains

to hold. We summarize these facts:

Corollary 1 Under assumptions 1-3 with n ≥ 0, we have as K → ∞,

Bias[p̃j,λ(x;h)] = h2b2j(x) + O

(
1

N2
1

+
1

Kh

)
, (4)

V [p̃j,λ(x;h)] =
pj(x)(1 − pj(x))R(φ)

N1Kh
+ O

(
1

N2
1 Kh

+
h

N1K

)
. (5)

Note that the leading bias term of p̃j,λ(x;h) is linear in λ. In Section 4, it will be made apparent
that this property is quite essential to identify the best estimator in {p̃λ(·;h);λ ∈ �, h > 0},
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where p̃λ(·;h) = (p̃1,λ(·;h), . . . , p̃r,λ(·;h))T . The pointwise asymptotic normality also holds for
p̃λ(·;h).

Corollary 2 Under assumptions 1-3 with n ≥ 0, if
√

N1Kh5 converges to a constant ρ, we
have for any r-vector α = (α1, ..., αr)T ,

√
N1KhαT {p̃λ(x;h) − p(x)} →d N(ραTb2(x),R(φ)αT Σ(x)α).

4 Choice of Smoothing Parameters

4.1 Optimal Parameters

As a criterion to evaluate estimators, we use the MISE (mean integrated squared error) of an
estimator of pj(·). The MISE is defined as the integral of the MSE (mean squared error) of the
estimator over the interval [δ1, 1−δ2](⊂ [h, 1−h]), where δ1 and δ2 are positive constants. Using
(4) and (5), the approximate MISE (AMISE) of p̃j,λ(·;h) is given as

AMISE[p̃j,λ(·;h)] =
h4µ2(φ)2

4
(B1jλ

2 + 2B2jλ + B3j) +
VjR(φ)
N1Kh

, (6)

where for j = 1, . . . , r,

B1j =
∫ 1−δ2

δ1

ηj(x)2dx, B2j =
∫ 1−δ2

δ1

ηj(x)p(2)
j (x)dx, B3j =

∫ 1−δ2

δ1

p
(2)
j (x)2dx, (7)

and

Vj =
∫ 1−δ2

δ1

pj(x)(1 − pj(x))dx.

B1j ,B2j ,B3j and Vj are functionals of pj depending on δ1 and δ2. Put Bt =
∑r

j=1 Btj , t = 1, 2, 3
and V =

∑r
j=1 Vj. The facts that the bias is linear in λ and the variance does not primarily

depend on λ, as pointed out in Section 3, imply that the AMISE is a quadratic function of λ as
shown in (6). A global measure of accuracy of p̃λ(·;h) is naturally defined as

r∑
j=1

AMISE[p̃j,λ(·;h)], (8)

which is also a quadratic function in λ, and hence, the optimal λ can be easily derived as

λopt = −B2

B1
.

Furthermore, the optimal bandwidth h should also be defined as the minimizer of the global
measure (8). A suboptimal h depending on a fixed λ can be defined as

hopt(λ) =
(

R(φ)
µ2(φ)2

)1/5 ( V

Θ(λ)

)1/5

(N1K)−1/5,
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where Θ(λ) = B1λ
2 + 2B2λ + B3. Hence the optimal h is defined as

hopt = hopt(λopt) =
(

R(φ)
µ2(φ)2

)1/5 (V

Θ

)1/5

(N1K)−1/5,

where Θ = Θ(λopt) = B3 − B−1
1 B2

2 .
When we choose only the bandwidth h by a data-based method, it implies that an estimate

of hopt(λ) is constructed for a fixed λ. On the other hand, obtaining an estimate of (λopt, hopt)
makes our procedure completely data-based.

Note that a large value of B1 means that if the value of (8) for λ = 0 is not the smallest,
there will exist many p̃λ(·;h) that have smaller values of (8). On the other hand, estimators in
{p̃λ(·;h);λ ∈ �, h > 0} are almost equivalent in terms of the AMISE provided that the value
of B1 is small. This B1, therefore, has a special role in evaluating the validity for considering
the family {p̃λ(·;h);λ ∈ �, h > 0}. Further, it is a function of the squared integral of ηj(x)(j =
1, ..., r), which shows the importance of ηj(x), as mentioned in Section 3.

4.2 Rule-of-Thumb method

The easiest and most reliable data-based method for the choice of smoothing parameters is the
so-called ROT (rule of thumb) method, which exploits a certain parametric model as a target
function. Here, we utilize a multinomial logit polynomial model given as

pj(x; θ) =
exp(θT

j x)∑r
�=1 exp(θT

� x)
,

where θ = (θ1, ..., θr), θj = (θj0, θj1, . . . , θjm)T and x = (1, x, . . . , xm)T . In order to uniquely
obtain the maximum likelihood estimator (MLE) of θ, we put θ1 = 0. Then we have

p1(x; θ) =
1

1 +
∑r

�=2 exp(θT
� x)

and pj(x; θ) =
exp(θT

j x)

1 +
∑r

�=2 exp(θT
� x)

, j = 2, ..., r.

The log-likelihood function excluding the constant term can be written as

LL(θ) =
K∑

i=1

r∑
j=2

xT
i θjYij −

K∑
i=1

Ni log


1 +

r∑
j=2

exp(xT
i θj)


 ,

where xi = (1, xi, . . . , x
m
i )T , i = 1, ...,K. We can then obtain the MLE θ̂ that maximizes LL(θ)

on θ = (0, θ2, ..., θr), from which we have the parametric estimators pj(x; θ̂) for j = 1, ..., r. Note
that if m = 1, B1 = B2 = B3. Hence, λopt = −1 can be derived; however, hopt does not exist.
In the sequel, we denote the estimators of λopt and hopt based on the ROT method as λ̂ROT and
ĥROT, respectively.

4.3 Plug-in Method

The PI (plug-in) method for the optimal parameters (λopt, hopt) is developed by the same pro-
cedure as discussed in Ruppert et al. [17]. To construct consistent estimators of λopt and hopt,
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we exploit a convenient estimator of pj(x) defined as

p̄j(x; g) = p̂j,0(x; g) =
∑K

i=1 φg(xi − x)Ȳij∑K
i=1 φg(xi − x)

.

Let us define

η̄j(x; g) = p̄j(x; g)



(

p̄
(1)
j (x; g)
p̄j(x; g)

)2

−
r∑

�=1

(
p̄
(1)
� (x; g)
p̄�(x; g)

)2

 ,

which is a direct estimate of ηj(x), using p̄j(x; g). For practical purposes, we define η̄j(x; g) = 0 if
p̄j(x; g) = 0. By substituting p̄

(2)
j (x; g) and η̄j(x; g) into (7), the estimators B̄tj(g) are obtained,

and we put B̄t(g) =
∑r

j=1 B̄tj(g), t = 1, 2, 3. Then we have a consistent estimator of λopt with
the bandwidth g1 defined as

λ̄opt(g1) = −B̄2(g1)
B̄1(g1)

.

To select the optimal g1 that minimizes the MSE of λ̄opt(g1), we use the following assumption:

ASSUMPTION 4 g1 → 0 and Ni → ∞ as K → ∞ for i = 1, . . . ,K in a manner such that
Kg4+ε

1 = O(1) and N1g
1−ε
1 = O(1) for some 1/2 < ε < 1, and Ni/N1 = 1 + o(g2

1).

Theorem 3 Under assumptions 2-4 with n ≥ 2, we have as K → ∞,

MSE[λ̄opt(g1)] =
(

g2
1∆11 +

∆12

N1Kg3
1

)2

+
∆13

N1K3g10
1

+ O

(
1

N2
1 K3g10

1

)
, (9)

where ∆1t, t = 1, 2, 3 are given in Appendix.

The first term on the right hand side of (9) is the squared leading bias and the second term is
the leading term of the asymptotic variance. Under the assumptions in Theorem 3, the second
term converges faster than the first term. We obtain the optimal bandwidth g†1 that minimizes
the first term:

g†1 = C1

(
∆12

∆11

)1/5

(N1K)−1/5,

where

C1 =
{ −1 , ∆11∆12 < 0,

(3/2)1/5 , ∆11∆12 > 0.

This choice of g1 yields λ̄opt(g
†
1)/λopt(g

†
1) − 1 = OP ((N1K)−2/5) as K → ∞.

Next, we focus on the data-based choice of h. It is evident that an estimator of hopt(λ) with
the bandwidth g2 can be obtained as

h̄opt(g2, λ) =
(

R(φ)
µ2(φ)2

)1/5 ( V̄

Θ̄(g2, λ)

)1/5

(N1K)−1/5,

where V̄ =
∑r

j=1 V̄j, V̄j = K∗−1∑
i
∗Ni(Ni − 1)−1(Ȳij − Ȳ 2

ij) in which K∗ is the number of xi

falling into [δ1, 1 − δ2] and
∑

i
∗ is the summation for those xi, and Θ̄(g2, λ) = B̄1(g2)λ2 +
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2B̄2(g2)λ + B̄3(g2). Put Θ̄(g2) = Θ̄(g2,−B̄1(g2)−1B̄2(g2)) = B̄3(g2) − B̄1(g2)−1B̄2(g2)2. Then,
an estimator of hopt with the bandwidth g2 should be

h̄opt(g2) = h̄opt(g2,−B̄1(g2)−1B̄2(g2)) =
(

R(φ)
µ2(φ)2

)1/5 ( V̄

Θ̄(g2)

)1/5

(N1K)−1/5.

The following assumption is required to obtain the optimal g2 based on the MSE of h̄opt(g2).

ASSUMPTION 5 g2 → 0 and Ni → ∞ as K → ∞ for i = 1, . . . ,K in a manner such that
Kg6+ε

2 = O(1) and N1g
1−ε
2 = O(1) for some 0 < ε < 1, and Ni/N1 = 1 + o(h2).

Theorem 4 Under assumptions 2, 3 and 5, we have as K → ∞,

MSE[Θ̄(g2)] =
(

g2
2∆21 +

∆22

N1Kg5
2

)2

+
∆23

N1K2g9
2

+ O

(
1

N2
1 K2g9

2

)
, (10)

where ∆2t, t = 1, 2, 3 are given in Appendix.

We shall provide the same explanation as in the paragraph following Theorem 3. The first term
on the right hand side of (10) is the squared leading bias and the second term is the leading term
of the asymptotic variance. Under the assumptions in Theorem 4, the second term converges
faster than the first term. We obtain the optimal bandwidth g†2 that minimizes the first term:

g†2 = C2

(
∆22

∆21

)1/7

(N1K)−1/7,

where

C2 =
{ −1 , ∆21∆22 < 0,

(5/2)1/7 , ∆21∆22 > 0.

This choice of g2 yields h̄opt(g
†
2)/hopt(g

†
2) − 1 = OP ((N1K)−2/7) as K → ∞ since V̄ − V =

OP ((N1K)−1/2).

Instead of the optimal bandwidths g†1 and g†2, we use the ROT estimators ĝ1 and ĝ2 in the
same manner as described in subsection 4.1. Finally, we obtain the data-driven parameter
(λ̄opt(ĝ1), h̄opt(ĝ2)), which is expressed as (λ̃PI, h̃PI) in the sequel.

4.4 Summary of the Algorithm

In order to increase the level of sophistication, we summarize the algorithm of the PI method
for selecting λ̃PI and h̃PI and the ROT method for selecting λ̂ROT and ĥROT, as follows:
Algorithm 1: The PI power-divergence selector λ̃PI

1. Obtain the estimator of g†1, which is denoted as ĝ1, by the ROT method.

2. Calculate B̄t(ĝ1), t = 1, 2.
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3. The power-divergence selector is

λ̃PI = λ̄opt(ĝ1) = −B̄2(ĝ1)
B̄1(ĝ1)

.

Algorithm 2: The PI bandwidth h̃PI

1. Obtain the estimator of g†2, which is denoted as ĝ2, by the ROT method.

2. Calculate B̄t(ĝ2), t = 1, 2, 3 and V̄ .

3. The bandwidth is

h̃PI = h̄opt(ĝ2) =
(

R(φ)
µ2(φ)2

)1/5 ( V̄

Θ̄(ĝ2)

)1/5

(N1K)−1/5,

where Θ̄(ĝ2) = B̄3(ĝ2) − B̄1(ĝ2)−1B̄2(ĝ2)2.

Algorithm 3: The ROT parameters λ̂ROT and ĥROT

1. Obtain the estimator of Bt(t = 1, 2, 3) and V by the ROT method, which are denoted as
B̂t(t = 1, 2, 3) and V̂ , respectively.

2. The ROT parameters are

λ̂ROT = −B̂2

B̂1

and ĥROT = ĥROT(λ̂ROT),

where

ĥROT(λ) =
(

R(φ)
µ2(φ)2

)1/5
(

V̂

B̂1λ2 + 2B̂2λ + B̂3

)1/5

(N1K)−1/5.

5 Simulation Study

The performance of the proposed methods was evaluated using estimates of the sums of MISEs of
the estimators p̃λ,j(·, h). In addition, the classical method corresponding to λ = 0 was compared
with the proposed methods. We calculated estimates of the sums of MISEs of estimators with
the following six pairs of (λ, h): (λ̃PI, h̃PI),(0, h̄0),(λ̂ROT, ĥROT), (0, ĥ0), (λopt, hopt) and (0, h0),
where h0 = hopt(0), h̄0 = h̄opt(ĝ2, 0) and ĥ0 = ĥROT(0); see Algorithms 1-3 in the previous
section. Two models for r = 3 were adopted as the true model. Let

pj(x) =
fj(x)∑3
�=1 f�(x)

,

for j = 1, 2, 3. Model 1 is a multinomial logit model defined as

f1(x) = 1, f2(x) = exp(2.5 − 6x + 2x2), f3(x) = exp(−2.5 + 6x − 2x2),

10



K = 100
N1 (λ̃PI, h̃PI) (0, h̄0) (λ̂ROT, ĥROT) (0, ĥ0) (λopt, hopt) (0, h0)
100 1194 251 17848 249 10679(.214) 247(.135)
200 111 135 832 134 366(.186) 133(.118)
300 76 100 92 99 91(.172) 99(.109)
400 60 82 59 82 58(.162) 81(.103)

K = 120
N1 (λ̃PI, h̃PI) (0, h̄0) (λ̂ROT, ĥROT) (0, ĥ0) (λopt, hopt) (0, h0)
100 228 217 15270 215 9624(.206) 214(.130)
200 92 117 293 116 225(.180) 116(.114)
300 65 86 73 86 72(.166) 86(.105)
400 51 69 50 68 49(.156) 68(.099)

Table 1: The MISEs (×106) for six pairs of (λ, h) for Model 1 with K = 100,120 and N1 =
100,200,300,400: (λ̃PI, h̃PI),(0, h̄0), (λ̂ROT, ĥROT), (0, ĥ0), (λopt, hopt) and (0, h0). The values of
the optimal bandwidth hopt for each (K,N1) are given in parentheses and λopt = −1.039.

K = 100
N1 (λ̃PI, h̃PI) (0, h̄0) (λ̂ROT, ĥROT) (0, ĥ0) (λopt, hopt) (0, h0)
100 405 333 91007 370 329(.117) 320(.100)
200 173 178 7488 202 156(.102) 172(.087)
300 123 132 1044 149 114(.098) 129(.080)
400 100 107 306 123 92(.089) 104(.075)

K = 120
N1 (λ̃PI, h̃PI) (0, h̄0) (λ̂ROT, ĥROT) (0, ĥ0) (λopt, hopt) (0, h0)
100 428 277 90979 309 270(.113) 266(.096)
200 151 158 6229 179 137(.098) 153(.084)
300 109 117 745 133 101(.091) 113(.077)
400 84 91 255 105 78(.086) 89(.073)

Table 2: The MISEs (×106) for six pairs of (λ, h) for Model 2 with K = 100,120 and N1 =
100,200,300,400: (λ̃PI, h̃PI), (0, h̄0),(λ̂ROT, ĥROT), (0, ĥ0), (λopt, hopt) and (0, h0). The values of
the optimal bandwidth hopt for each (K,N1) are given in parentheses, and λopt = −1.355.
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and Model 2, which is more complicated than Model 1, is defined as f1(x) = 1,

f2(x) = (0.5 sin(4x) + 1) exp(2.5 − 6x + 2x2), f3(x) = (0.25 sin(8x) + 1) exp(−2.5 + 6x − 2x2).

In this simulation, Ni(i = 1, ...,K) were set to be equal and δ1 = δ2 = 0.1. We utilized
m = 2 as a parameter in the multinomial logit polynomial model used for the ROT method.
The setting of m = 2 is evidently advantageous for the ROT method in Model 1 because the
assumed parametric model in this method is nothing but the true target. For the kernels of
p̃j,λ(·;h) and p̄j(·; g), the Epanechnikov kernel (3/4)(1 − x2)I(−1,1)(x) and the triweight kernel
(35/32)(1−x2)3I(−1,1)(x) were employed, respectively. We calculated the MISE estimates using
500 Monte Carlo runs with K = 100,120 and N1 = 100,200,300,400.

Table 1 shows the result of the simulation for Model 1. The estimator with (λ̃PI, h̃PI)
performs well unless N1 = 100. The outer points in [δ1, 1 − δ2] might affect the performance
of the estimator with (λ̃PI, h̃PI) for the case when N1 = 100. The fact that the estimator with
(λ̃PI, h̃PI) is superior to that with (λopt, hopt) for N1 = 200,300 reveals the usefulness of the data-
based choice of smoothing parameters. Such superiorities are also recognized for estimators with
λ = 0 fixed, which shows in particular the importance of the choice of λ. Further, it is worth
noting that the estimator with (λ̃PI, h̃PI) performs better than that with (λ̂ROT, ĥROT) despite
the previously mentioned advantage of Model 1 for the ROT method.

Table 2 shows the result for Model 2. In this table, the tendency is the same as that in Table
1. The estimator with (λ̂ROT, ĥROT) does not perform well since this is a misspecified case. On
the other hand, the estimator with (λ̃PI, h̃PI) exhibits a stable performance.

Figure 1 displays the density estimates for the relative error of λ̃PI to λopt defined as
λ̃PI/λopt−1 for Model 2 with K = 100 and N1 = 100,200,300,400. Figure 2 shows the density es-
timates for the relative error of h̃PI to hopt for Model 2 with K = 100 and N1 = 100,200,300,400.
Both the figures show the convergence property of the PI method as N1 increases. Similar results
were obtained for Model 1.

The density estimates of the relative errors of h̃PI and ĥROT to hopt are comparatively
provided in Figure 3. For a large sample, it would be more appropriate to select the PI method
instead of the ROT method.

6 Applications

We applied our approach to a real data set obtained from the UCI Repository of machine learning
databases (Blake and Merz [6]).

In the abalone database, we focus on the relationship between the abalone’s age and the type
of sex: male (j = 1), female (j = 2) and infant (j = 3). To extract this relationship, the problem
was formulated as a multinomial regression with r = 3 and the shell ring as the covariate. It is
known that the shell ring plus 1.5 gives the age of the abalone. The interval of the ring, [3, 23],
was first transformed linearly to the interval [0, 1], after which it was transformed inversely to
the original scale. We see that K = 21 and Ni are not equal to each other. Taking this fact into

12
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Figure 1: Density estimates of the relative error of λ̃PI to λopt: λ̃PI/λopt − 1 for Model 2 with
K = 100 and N1 = 100,200,300,400.
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Figure 2: Density estimates of the relative error of h̃PI to hopt: h̃PI/hopt − 1 for Model 2 with
K = 100 and N1 = 100,200,300,400.
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Figure 3: Density estimates of the relative errors of h̃PI and ĥROT to hopt: h̃PI/hopt − 1 (solid
line) and ĥROT/hopt − 1 (dashed line ) for Model 2 with K = 100 and N1 = 200.

consideration, the following estimator, discussed in Okumura and Naito [14], was used instead
of p̃λ,j(x;h):

ṗj,λ(x;h) = p̂j,λ(x;h) − λ

2N̄ (x;h)
(1 − rp̂j,λ(x;h)),

where N̄(x;h) = (
∑K

i=1 Niφh(xi − x))/(
∑K

i=1 φh(xi − x)). ṗj,λ(x;h) is known to have the same
asymptotic property as p̃j,λ(x;h). Hence, for any x, an approximate 100(1 − α)% confidence
interval for pj(x) can be constructed as follows:

CI100(1−α),j(x;λ, h)

= [ṗλ,j(x;h) − zα/2σ̇j(x;λ, h), ṗλ,j(x;h) + zα/2σ̇j(x;λ, h)],

where σ̇j(x;λ, h) =
√

ṗλ,j(x;h)(1 − ṗλ,j(x;h))R(φ)/(N̄ (x)Kh) and zα/2 is the upper 100(α/2)%
point of the standard normal distribution. We adopted N1 = 218 (the integer part of the average
of Ni), δ1 = δ2 = 0.05 and m = 3 in the ROT method. The kernels used in the simulation in
Section 5 were employed for this analysis too, which gives R(φ) = 0.6. From this data set, we
obtained (λ̃PI, h̃PI) = (−0.602,0.069) and (λ̂ROT, ĥROT) = (−0.529,0.100).

Figure 4 shows the result for ṗj,λ(x;h) with (λ, h) = (λ̃PI, h̃PI), (λ̂ROT, ĥROT) and the para-
metric estimates pj(x; θ̂) based on the MLE. Figure 4 (a), (b) and (c) exhibit the relationship
between the ring and the type of sex along with the approximate 95% confidence intervals
CI95,j(x; λ̃PI, h̃PI).
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Figure 4: (a), (b) and (c): The estimators ṗj,λ(x;h) for (λ, h) = (λ̃PI, h̃PI) (solid line) and
(λ̂ROT, ĥROT) (dotted line), the MLE pj(x; θ̂) (dashed line) and an approximate 95% confidence
interval CI95,j(x; λ̃PI, h̃PI) (short dashed line) for j = 1, 2 and 3, respectively. (d): The frequency
Ni at each covariate and N̄(x;h) for h = h̃PI (solid line) and ĥROT (dotted line) for the abalone
data.
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From these figures, we infer that the parametric estimates based on MLEs show oversmooth-
ing and deterioration in the accuracy at boundaries. On the other hand, the proposed PI
estimates could capture a rapid change in data, and the ROT estimates produced curves that
were almost similar to those of the PI estimates. It is noteworthy that the ROT estimates show
a slight oversmoothing as compared to the PI estimates at a value of the ring between 7 and 9.
This reveals that the PI estimates have less bias than the ROT estimates. This behavior appears
to be common in nonparametric smoothing; see Simonoff [18] and Wand and Jones [23]. Figure
4 (d) exhibits Ni and N̄(x), which provide us with an insight into the length of the approximate
confidence CI95,j(x; λ̃PI, h̃PI) at each covariate x.

7 Discussion

We have proposed a new approach to construct the kernel estimators by means of the localized
power-divergence, as shown in (2). The proposed class of estimators includes the Nadaraya-
Watson estimator as a special case, and we have shown the existence of estimators that are
better than the Nadaraya-Watson estimator in terms of the AMISE. Further, we again note
that our proposed estimators always exist; however, local likelihood estimators do not.

A method of data-based selection for the parameters (λ, h) has also been developed. Hence,
our estimators are completely data-based. The efficiency of the proposed PI method for selecting
(λ, h) has been demonstrated through a simulation study for a large sample. In particular, the
results reveal the effectiveness of choosing not only the bandwidth h but also λ based on the
data set. In practical situations, ĝ1 and ĝ2 would take values larger than δ1 and δ2, which are
included in the integral interval. For such a case, the ROT method is recommended on the basis
of our experiments.

We selected the bandwidths g1 and g2 by minimizing the squared asymptotic bias. However,
in a finite case, we believe that the effect of the variance term should be considered. Okumura
and Naito [16] discussed this in the setting of a binomial regression, and in fact, a substantial
improvement was reported in their paper as a result of considering the effect of variance. We
expect that the same improvement would be obtained in the setting of a multinomial regression.
Furthermore, the boundary effect is often very important. It is known that the estimators are
immune to the boundary effect if a certain type of boundary kernel is used. Since our proposed
estimators require a nonnegative kernel, the boundary kernel given in Karunamuni and Alberts
[10] could be utilized.

In application, the random design for covariates with Ni = 1, i = 1, ...,K will be occurred.
We will attempt to devise approaches for these in our future resarch.
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Appendix

Proofs of theorems in this paper are presented. The lemmas required in the proofs are only
enumerated in the end of Appendix.

Proof of Theorem 1 For any K-dimensional vector tKj = (t1j , . . . , tKj)T , we put

fK(tKj) =

(
1
K

K∑
i=1

wit
λ+1
ij

) 1
λ+1

,

where wi = φh(xi − x). Then we obtain

∂

∂tkj
fK(tKj) =

1
K

tλkjwkfK(tKj)−λ,

∂2

∂t2kj

fK(tKj) = − 1
K2

λt2λ
kj w

2
kfK(tKj)−1−2λ +

1
K

λt−1+λ
kj wkfK(tKj)−λ,

and
∂2

∂tkj∂t�j
fK(tKj) = − 1

K2
λtλkjt

λ
�jwkw�fK(tKj)−1−2λ.

It is easy to see that the proposed estimator p̂j,λ(x;h) can be rewritten as

p̂j,λ(x;h) =
fK(ȲKj)∑r
�=1 fK(ȲK�)

,

where ȲKj = (Ȳ1j , . . . , ȲKj)T . We put pKj ≡ E[ȲKj] = (p1j , · · · , pKj)T . Taylor expansion of
fK(ȲKj) around pKj is given as

fK(ȲKj) = fK(pKj) + fK(pKj)−λ 1
K

K∑
i=1

wip
λ
ij(Ȳij − pij)

+
λ

2

{
fK(pKj)−λ 1

K

K∑
i=1

p−1+λ
ij wi(Ȳij − pij)2

− fK(pKj)−1−2λ 1
K2

K∑
k=1

K∑
�=1

wkw�p
λ
kj

pλ
�j

(Ȳkj − pkj)(Ȳ�j − p�j)

}
+ · · · . (A.1)

Hence we obtain

E[fK(ȲKj)] = fK(pKj) +
λ

2

{
fK(pKj)−λ 1

K

K∑
i=1

p−1+λ
ij wi

pij(1 − pij)
Ni

−fK(pKj)−1−2λ 1
K2

K∑
k=1

w2
k

pkj(1 − pkj)
Nk

}
+ · · · .

Direct calculations also give

fK(pKj) = pj(x) + h2 µ2(φ)
2

{
λ

p
(1)
j (x)2

pj(x)
+ p

(2)
j (x)

}
+ O

(
1

Kh
+ h4

)
,
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and therefore

E[fK(ȲKj)] = pj(x) +
λ

2N1
(1 − pj(x))

+h2 µ2(φ)
2

{
λ

p
(1)
j (x)2

pj(x)
+ p

(2)
j (x)

}
+ O

(
1

Kh
+

h2

N1

)
, (A.2)

and

E


 r∑

j=1

fK(ȲKj)


 = 1 +

λh2µ2(φ)
2

r∑
j=1

p
(1)
j (x)2

pj(x)
+ O

(
1

Kh
+

h2

N1

)
.

Moreover,

p̂j,λ(x;h) =
fK(ȲKj)∑r
�=1 fK(ȲK�)

=
fK(ȲKj)∑r

�=1 E[fK(ȲKj)] +
∑r

�=1{fK(ȲK�) − E[fK(YK�)]}

=
fK(ȲKj)∑r

�=1 E[fK(YK�)]

− fK(ȲKj)

{∑r
�=1 E[fK(YK�)]}2

[
r∑

�=1

{fK(ȲK�) − E[fK(YK�)]}
]

+ · · · , (A.3)

it follows from direct calculations for (A.1) and (A.3) using Lemma 1 that

E[p̂j,λ(x;h)] =
E[fK(ȲKj)]∑r
�=1 E[fK(YK�)]

+ O

(
h

N1K

)

= pj(x) +
λ

2N1
(1 − rpj(x))

+
h2µ2(φ)

2

{
λ

(
p
(1)
j (x)2

pj(x)
− pj(x)

r∑
�=1

p
(1)
� (x)2

p�(x)

)
+ p

(2)
j (x)

}
+ O

(
1

N1K
+

h2

N1

)
,

which gives the expression of the bias in Theorem 1. On the other hand, by directly calculating
the variance for (A.1) and (A.3) through Lemma 1, we have

V [p̂j,λ(x;h)] =
V [fK(ȲKj)]

(
∑r

�=1 E[fK(YK�)])2
+ O

(
1

N2
1 Kh

+
h

N1K

)

=
pj(x)(1 − pj(x))R(φ)

N1Kh
+ O

(
1

N2
1 Kh

+
h

N1K

)
,

which gives the variance expression.

Proof of Theorem 2 From (A.1), (A.2) and Theorem 1, we obtain

p̂j,λ(x;h) − E[p̂j,λ(x;h)] =
fK(pKj)−λ

K

K∑
i=1

pj(xi)λφh(xi − x)(Ȳij − pj(xi)) + oP

(
1√

N1Kh

)

=
1
K

K∑
i=1

φh(xi − x)(Ȳij − pj(xi)) + oP

(
1√

N1Kh

)
.
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From Lemma 4, it follows for any r-vector that α,
√

N1KhαT {p̂λ(x;h)−E[p̂λ(x;h)]} converges
in distribution to N(0,R(φ)αT Σ(x)α). Since

√
N1KhαT {E[p̂λ(x;h)] − p(x) − λ(2N1)−1b1(x)}

converges to a constant ραTb2(x), the proof has been completed by Slutsky’s theorem.

Proof of Theorem 3 The Taylor expansion of λ̄opt(g1) around E[B̄1(g1)] is given as

λ̄opt(g1) = −B̄2(g1)
B̄1(g1)

= − B̄2(g1)
E[B̄1(g1)]

+
B̄2(g1)(B̄1(g1) − E[B̄1(g1)])

E[B̄1(g1)]2
− · · · .

Since

E[B̄1j(g1)] = E

[∫ 1−δ2

δ1

η̄j(x; g1)2dx

]

= E

[∫ 1−δ2

δ1

p̄
(1)
j (x; g1)4

p̄j(x; g1)
dx

]
− 2E

[∫ 1−δ2

δ1

p̄
(1)
j (x; g1)2

r∑
�=1

p̄
(1)
� (x; g1)2

p̄�(x; g1)
dx

]

+E


∫ 1−δ2

δ1

p̄j(x; g1)2
(

r∑
�=1

p̄
(1)
� (x; g1)2

p̄�(x; g1)

)2

dx


 ,

through direct calculations using Lemma 1, it follows that

E[B̄1(g1)] = B1j + g2
1H11j +

H12j

N1Kg3
1

+ O

(
g4
1 +

1
N1Kg1

)
,

where

H11j = 2
∫ 1−δ2

δ1

ηj(x)dj(x)dx,

H12j =
R(φ(1))
N1Kg3

1

∫ 1−δ2

δ1

[
6
(1 − 2pj(x))p(1)

j (x)2

pj(x)
− 2{pj(x) − rpj(x)2}

r∑
�=1

p
(1)
� (x)2

p�(x)
+ 2rp

(1)
� (x)2

]
dx

Qj(x) = dj(x) − pj(x)
r∑

�=1

d�(x),

in which

dj(x) = −µ3(φ(1))
3

p
(1)
j (x)p(3)

j (x)
pj(x)

− µ2(φ)
2

p
(1)
j (x)2p(2)

j (x)
pj(x)2

.

Hence

E[B̄1(g1)] =
r∑

j=1

B̄1j(g1) = B1 + g2
1H11 +

H12

N1Kg3
1

+ O

(
g4
1 +

1
N1Kg1

)
,

where

H11 =
r∑

j=1

H11j = 2
r∑

j=1

∫ 1−δ2

δ1

ηj(x)Qj(x)dx,

H12 =
r∑

j=1

H12j = R(φ(1))
∫ 1−δ2

δ1


(4 + r

r∑
j=1

pj(x)2)
r∑

j=1

p
(1)
j (x)2

pj(x)
+ 2(r − 6)

r∑
j=1

p
(1)
j (x)2


 dx.
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On the other hand, since

E[B̄2j(g1)] = E

[∫ 1−δ2

δ1

η̄j(x; g1)p̄
(2)
j (x; g1)dx

]

= E

[∫ 1−δ2

δ1

p̄
(1)
j (x; g1)2p̄

(2)
j (x; g1)

p̄j(x; g1)
dx

]
− E

[∫ 1−δ2

δ1

p̄j(x; g1)p̄
(2)
j (x; g1)

r∑
�=1

p̄
(1)
� (x; g1)2

p̄�(x; g1)
dx

]
,

through direct calculations using Lemma 1, it follows that

E[B̄2j(g1)] = B2j + g2
1H21j +

H22j

N1Kg3
1

+ O

(
g4
1 +

1
N1Kg1

)
,

where

H21j =
∫ 1−δ2

δ1

{dj(x)p(2)
j (x) +

µ4(φ(2))
24

ηj(x)p(4)
j (x)}dx,

H22j =
∫ 1−δ2

δ1

[
R(φ(1)){p(2)

j (x) − rpj(x)p(2)
j (x)} − µ(φ(2))pj(x)(1 − pj(x))

r∑
�=1

p
(1)
� (x)2

p�(x)

]
dx,

in which µ(f) =
∫ 1
−1 f(t)φ(t)dt. Hence we obtain

E[B̄2(g1)] =
r∑

j=1

B̄2j(g1) = B2 + g2
1H21 +

H22

N1Kg3
1

+ O

(
g4
1 +

1
N1Kg1

)
,

where

H21 =
r∑

j=1

∫ 1−δ2

δ1

(
dj(x)p(2)

j (x) +
µ4(φ(2))

24
ηj(x)p(4)

j (x)

)
dx,

H22 = −
∫ 1−δ2

δ1


R(φ(1))

r∑
j=1

pj(x)p(2)
j (x) + µ(φ(2))(1 −

r∑
j=1

pj(x)2)
r∑

j=1

p
(1)
j (x)2

pj(x)


 dx.

Moreover, through straightforward calculations, the E[λ̄opt(g1)] is written as

E

[
−B̄2(g1)

B̄1(g1)

]
= −E[B̄2(g1)]

E[B̄1(g1)]
+

E[B̄2(g1)(B̄1(g1) − E[B̄1(g1)])]
E[B̄1(g1)]2

− · · ·

= −E[B̄2(g1)]
E[B̄1(g1)]

+ O

(
1

N1K2g5
1

)
.

Hence we have

E[λ̄opt(g1)] = −B2

B1
+ g2

1∆11 +
∆12

N1Kg3
1

+ O

(
g4
1 +

1
N1Kg1

)
,

where
∆1t = − 1

B1

(
Ht2 − B2

B1
Ht1

)
, t = 1, 2.
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On the other hand, we can also obtain from calculations using Lemma 1, 6 and 7 that

V [λ̄opt(g1)] =
1

E[B̄1(g1)]2
V [B̄2(g1)] + O

(
1

N1K2g5
1

)

=
1

B2
1

V


 r∑

j=1

∫ 1−δ2

δ1
pj(x)−1p̄

(1)
j (x; g1)2p̄

(2)
j (x; g1)dx


+ O

(
1

N1K2g5
1

)

=
∆13

N1K3g10
1

+ O

(
1

N2
1 K3g10

1

)
,

where

∆13 =
1

B2
1

{
6R(φ(1) ∗ φ(1))µ0(φ(2) ∗ φ(2)) + 12R(φ(1) ∗ φ(2))µ0(φ(1) ∗ φ(1))

}∫ 1−δ2

δ1

p(x)T Σ(x)p(x)dx,

which completes the proof.

Proof of Theorem 4 The Taylor expansion of Θ̄(g2) around E[B̄1(g2)] is given as

Θ̄(g2) = B̄3(g2) − B̄2(g2)2

B̄1(g2)

= B̄3(g2) − B̄2(g2)2

E[B̄1(g2)]
+

B̄2(g2)2

E[B̄1(g2)]2
(B̄1(g2) − E[B̄1(g2)]) − · · · .

the expectation of Θ̄(g2) can be expressed as

E[Θ̄(g2)] = E[B̄3(g2)] − E[B̄2(g2)]2E[B̄1(g2)]−1 + O

(
1

N1Kg3
2

)
.

Through direct calculatons using Lemma 1, we obtain

E[B̄3j(g2)] = B3j + g2
2H31j +

H32j

N1Kg5
2

+ O

(
g4
2 +

1
N1Kg3

2

)
,

where

H31j =
µ4(φ(2))

12

∫ 1−δ2

δ1

p
(2)
j (x)p(4)

j (x)dx , H32j = R(φ(2))
∫ 1−δ2

δ1

pj(x)(1 − pj(x))dx.

Hence
E[B̄3(g2)] = B3j + g2

2H31 +
H32

N1Kg5
2

+ O

(
g4
2 +

1
N1Kg3

2

)
,

where

H31 =
r∑

j=1

H31j =
µ4(φ(2))

12

r∑
j=1

∫ 1−δ2

δ1

p
(2)
j (x)p(4)

j (x)dx, H32 =
r∑

j=1

H32j =
∫ 1−δ2

δ1

{1−
r∑

j=1

pj(x)2}dx.

Since
E[B̄2(g2)]2 = B2

2 + 2g2
2B2H21 + O

(
g4
2 +

1
N1Kg3

2

)
,
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these are combined to give

E[Θ̄(g2)] = g2
2∆21 +

∆22

N1Kg5
2

+ O

(
g4
2 +

1
N1Kg3

2

)
,

where ∆21 = {B2/B1}2H11 − 2{B2/B1}H21 + H31 and ∆22 = H32. From calculations using
Lemma 1, 6 and 8, evaluations of the variance is progressed as

V [Θ̄(g2)] = V


 r∑

j=1

B̄3j(g2)dx


+ O

(
1

N1K2g8
2

)

= V


 r∑

j=1

∫ 1−δ2

δ1

p̄
(2)
j (x; g2)2dx


+ O

(
1

N1K2g8
2

)

=
∆23

N1K2g9
2

+ O

(
1

N2
1 K2g9

2

)
,

where

∆33 = 4R(φ(2) ∗ φ(2))
∫ 1−δ2

δ1

p(x)T Σ(x)p(x)dx.

The proof has been completed.

Lemma 1 If the random vector Y = (Y1, ..., Yr) follows the multinomial distribution MN(p1, ..., pr;N),
then

E

[
d∏

k=1

Ȳ mk
jk

]
=

d∏
k=1

pmk
jk

{
1 +

1
2N

(
d∑

k=1

mjk
(mjk

− 1)
1 − pjk

pjk

− 2
∑
i<k

mjimjk

)}
+ O

(
1

N2

)
,

where Ȳj = Yj/N, j = 1, ..., r.

Proof of Lemma 1 The quantity Ȳ mk
jk

is written as

Ȳ mk
jk

= pmk
jk

+
(

mk

mk − 1

)
pmk−1

jk
(Ȳjk

− pjk
) +

(
mk

mk − 2

)
pmk−2

jk
(Ȳjk

− pjk
)2 + · · · + (Ȳjk

− pjk
)mk .

Since E[Ȳjk
− pjk

] = 0, E[(Ȳjk
− pjk

)2] = pjk
(1 − pjk

)/N , E[(Ȳji − pji)(Ȳjk
− pjk

)] = −pjipjk
/N ,

E[(Ȳjk
− pjk

)3] =
pjk

(1 − pjk
)(1 − 2pjk

)
N2

,

E[(Ȳjk
− pjk

)(Ȳj�
− pj�

)2] = −pjk
pj�

(1 − 2pj�
)

N2
,

E[(Ȳjk
− pjk

)(Ȳj�
− pjm)(Ȳj�

− pjm)] =
2pjk

pj�
pjm

N2
,

E[(Ȳjk
− pjk

)4] =
pjk

(1 − pjk
){3(n − 2)pjk

(1 − pjk
) + 1}

N3
,

and furthermore, for j1, ..., jk ∈ {1, .., r}(k ≥ 4)

E

[
k∏

i=1

(Ȳji − pji)

]
≤ E

[
|

4∏
i=1

(Ȳji − pji)|
]

≤
4∏

i=1

E
[
(Ȳji − pji)

4
]1/4 = O

(
1

N2

)
,
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the lemma follows.

Lemma 2 Let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be a double array of independent r-dimensional random
vectors with E[

∑kn
i=1 αT Xni] = 0 and V [

∑kn
i=1 αTXni] → αT Σα for any r-vector α. If for any

n and i, there is a finite constant Mni such that |αT Xni| ≤ Mni a.e., and max1≤i≤kn Mkn → 0,
then

kn∑
i=1

αT Xni →d N(0, αT Σα).

Put p̆(x;h) = (p̆1(x;h), ..., p̆j(x;h))T , where p̆j(x;h) = K−1
∑K

i=1 φg(xi−x)Ȳij , j = 1, .., r. Then
p̆j(x;h) − p̄j(x;h) = oP ((

√
N1Kh)−1), j = 1, .., r.

Lemma 3 Under assumptions 1-3, we have for any r-vector α = (α1, ..., αr)T

V [αT p̆(x;h)] =
R(φ)αT Σ(x)α

N1Kh
+ O

(
h

N1K
+

1
N1K2h2

)
.

Proof of Lemma 3 It follows from direct calculations that

V [p̆j(x;h)] =
pj(x)(1 − pj(x))R(φ)

N1Kh
+ O

(
h

N1K
+

1
N1K2h2

)
,

Cov[p̆i(x;h), p̆i(x;h)] = −pi(x)pj(x)R(φ)
N1Kh

+ O

(
h

N1K
+

1
N1K2h2

)
for any i, j(i �= j).

Lemma 4 Under assumptions 1-3, we have for any r-vector α = (α1, ..., αr)T√
N1Kh5αT {p̆(x;h) − E[p̆(x;h)]} →d N(0,R(φ)αT Σ(x)α).

Proof of Lemma 4 Put SK =
√

N1Kh5αT {p̆(x;h) − E[p̆(x;h)]} =
∑K

i=1

∑r
j=1 ajXKij, where

XKij =
√

N1Kh5

K
φh(xi − x)(Ȳij − E[Ȳij ]).

From |Ȳij − E[Ȳij]| ≤ 1 a.s. and Lemma 3, we immediately obtain the result.

For any k random variables X1, ...,Xk , let I denote the identity operator, that is, If = f ,
and define operators Qj, j = 1, ..., k by

Qjf = E[f(Xt1 , ...,Xtk )|Xtα , α ∈ N−j]

where N−j = {1, ..., k} − {j}, f is any Borel function on Rn with E[|f(X1, ...,Xk)|] < ∞ and
(t1, ..., tk) is any permutaion of {1, ..., k}.
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Lemma 5 It holds that for any k random variables X1, ...,Xk, let I denote the identity operator,
that is, If = f , and define operators Qj, j = 1, ..., k by

f(Xt1 , ...,Xtk ) = E[f ] +
k∑

j=1

f1(Xtj )

+
∑

1≤j1<j2≤k

f2(Xtj1
,Xtj2

) + · · ·

+
∑

1≤j1<···<jk−1≤k

fk−1(Xtj1
, ...,Xtjk−1

)

+fk(Xt1 , ...,Xtk ),

where fi(Xtj1
, ...,Xtji

) =
[∏

j∈{j1,..ji}(I − Qtj )
∏

j∈N−{j1,...,ji} Qtj

]
f .

Proof of Lemma 5 Noting that

[
k∏

i=1

Qi]f = E[f |Xα, α �= 1, ..., k] = E[f ],

it follows from

f(Xt1 , ...,Xtk ) =
k∏

j=1

[(I − Qj) + Qj]f

=
k∑

i=1

∑
1≤j1<···<ji≤k


 ∏

j∈{j1,..ji}
(I − Qtj )

∏
j∈N−{j1,...,ji}

Qtj


 f.

Lemma 6 Let X1, ...,XK denote K independent random variables with µi = E[Xi], i = 1, ..,K,
and L(t1, ..., tk) denote a function on Ak = {(t1, ..., tk) ∈ Nk : ti �= tj, 1 ≤ i, j ≤ k}, 1 ≤ k ≤ K,
where N = {1, ...,K}. Then∑

(t1,...,tk)∈Ak

L(t1, ..., tk)Xt1 · · ·Xtk

=
∑

(t1,...,tk)∈Ak

L(t1, ..., tk)µt1 · · ·µtk

+
∑

(t1,...,tk)∈Ak

L(t1, ..., tk)
k∑

j=1

(Xtj − µtj )
∏
i�=j

µti

+
∑

(t1,...,tk)∈Ak

L(t1, ..., tk)
∑

1≤j1<j2≤k

∏
j∈{j1,j2}

(Xtj − µtj)
∏

j∈N−{j1,j2}
µj

+ · · ·
+

∑
(t1,...,tk)∈Ak

L(t1, ..., tk)
∑

1≤j1<···<jk−1≤k

∏
j∈{j1,...,jk−1}

(Xtj − µtj )µtjk

+
∑

(t1,...,tk)∈Ak

L(t1, ..., tk)(Xt1 − µt1) · · · (Xt1 − µtk),
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Moreover for any (j1, ..., jk) ∈ Ak, it holds that E[
∏

j∈{j1,...,ji}(Xtj −µtj )
∏

j∈N−{j1,...,ji} µtj ] = 0.

Proof of Lemma 6 By puting f(Xt1 , ...,Xtk ) = Xt1 · · ·Xtk in Lemma 5, the decomposition can
be obtained. The latter equations are clear.

Put
D̆γ(g) = (D̆1γ(g), ..., D̆rγ (g))T , γ = 1, 2,

where D̆1j(g) =
∫ 1−δ2
δ2

pj(x)−1p̆
(2)
j (x; g)p̆(1)

j (x; g)2dx and D̆2j(g) =
∫ 1−δ2
δ2

p̆
(2)
j (x; g)2dx.

Lemma 7 Under assumptions 2-4, we have for any r-vector α = (α1, ..., αr)T

V [αT D̆1(g1)] =
αT Σ1α

N1K3g10
1

+ O

(
1

N2
1 K3g10

1

)
,

where Σ1 = 6R(φ(1) ∗ φ(1))2R(φ(2) ∗ φ(2))
∫ 1−δ2
δ1

(P(x)2)T Σ(x)P(x)2dx.

Proof of Lemma 7 . We can write D̆1j(g1) =
∑

(t1,t2,t3)∈N3 LK(t1, t2, t3)Ȳit1j Ȳit2j Ȳit3j, where

LK(t1, t2, t3) = (K3g7
1)

−1
∫ 1−δ2
δ1

φ
(2)
g1 (xt1 − x)φ(1)

g1 (xt2 − x)φ(1)
g1 (xt3 − x)pj(x)−1dx. By using the

decomposition of Lemma 6, we obtain the following expression

D̆1j(g1) = D̆∗
1j(g1) + T,

where

D̆∗
1j(g1) =

∑
(t1,t2,t3)∈A3

LK(t1, t2, t3)pt1jpt2jpt3j

= F1j + F2j + F3j ,

in which

F1j =
∑

(t1,t2,t3)∈A3

LK(t1, t2, t3)
3∑

α=1

(Ȳtαj − ptαj)
∏
d�=α

ptdj

F2j =
∑

(t1,t2,t3)∈A3

LK(t1, t2, t3)
∑

1≤α1<α2≤3

∏
α∈{α1,α2}

(Ȳtαj − ptαj)
∏

α∈N−{α1,α2}
ptαj

F3j =
∑

(t1,t2,t3)∈A3

LK(t1, t2, t3)(Ȳt1j − pt1j)(Ȳt2j − pt2j)(Ȳt3j − pt3j),

and

T = D̆1j(g1) − D̆∗
1j(g1)

=
∑

(t1,t2,t3)∈N3−A3

LK(t1, t2, t3)E[Ȳt1 Ȳt2 Ȳt3 ]

= T1 + T2 + T3 − 2T4,
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in which

T1 =
∑
i1,i2

LK(i1, i1, i2)(Ȳ 2
i1j Ȳi2j − E[Ȳ 2

i1jȲi2j ]), T2 =
∑
i1,i2

LK(i1, i2, i1)(Ȳ 2
i1j Ȳi2j − E[Ȳ 2

i1jȲi2j])

T3 =
∑
i1,i2

LK(i2, i1, t1)(Ȳ 2
i1j Ȳi2j − E[Ȳ 2

i1jȲi2j ]), T4 =
K∑

i=1

LK(i, i, i)(Ȳ 3
ij − E[Ȳ 3

ij]).

Through a similar manner given in Ruppert, Sheather and Wand [17], we obtain

V [F1] =
c

N1K3g10
1

∫ 1−δ2

δ1

pj(x)3(1 − pj(x))dx + O

(
1

N1K

)
,

V [F2] = O

(
1

N2
1 K3g10

1

)
,

V [F3] = O

(
1

N3
1 K3g10

1

)

and V [T ] = O((N1K
4g11

1 )−1), where

c = 6R(φ(1) ∗ φ(1))µ0(φ(2) ∗ φ(2)) + 12R(φ(1) ∗ φ(2))µ0(φ(1) ∗ φ(1)).

Noting that Cov[Fi, Fj ] = 0(i �= j), we obtain

V [D̆1j(g1)] =
c

N1K3g10
1

∫ 1−δ2

δ1

pj(x)3(1 − pj(x))dx + O

(
1

N2
1 K3g10

1

)
.

In the same manner, we obtain

Cov[D̆1i(g1), D̆1j(g1)] = − c

N1K3g10
1

∫ 1−δ2

δ1

pi(x)2pj(x)2dx + O

(
1

N2
1 K3g10

1

)
.

Lemma 8 Under assumptions 2, 3 and 5, we have for any r-vector α = (α1, ..., αr)T

V [αT D̆2(g2)] =
αT Σ2α

N1K2g9
2

+ O

(
1

N2
1 K2g9

2

)
,

where Σ2 = 4R(φ(2) ∗ φ(2))
∫ 1−δ2
δ1

P(x)T Σ(x)P(x)dx.

Proof of Lemma 8 We can obtain the result by calculating through the simular manner in the
proof of Lemma 7
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