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Abstract

In this article, we consider the problem of testing a linear hypothesis in a mul-

tivariate linear regression model which includes the case of testing the equality of

mean vectors of several multivariate normal population with common covariance

matrix Σ, the so called multivariate analysis of variance or MANOVA problem.

However, we have fewer observations than the dimension of the random vectors.

Two tests are proposed and their asymptotic distributions under the hypothesis as

well as under the alternatives are given under some mild conditions. A theoretical

comparsion of these powers is made.
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1 Introduction

Consider the multivariate linear regression model in which the N × p observation

matrix Y is related by

Y = XΞ + E , (1.1 )

where X is the N × k design matrix of rank k < N , assumed known, and Ξ is

the k × p matrix of unknown parameters. We shall assume that the N row vec-

tors of E are independent and identically distributed (hereafter denoted as iid) as

multivariate normal with mean vector zero and covariance matrix Σ, denoted as

ei ∼ Np(0, Σ), where E′ = (e1, . . . , eN ). Similarly, we write Y ′ = (y1, . . . , yN )
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where y1, . . . , yN are p-vectors independently distributed as multivariate normal

with common covariance matrix Σ. We shall assume that

N ≤ p , (1.2 )

that is there are fewer observations than the dimension p. Such a situation arises

when there are thousands of gene expressions on microarray data but with observa-

tions on only few subjects. The maximum likelihood or the least squares estimates

of Ξ is given by

Ξ̂ = (X ′X)−1X ′Y : k × p . (1.3 )

The p × p covariance matrix Σ can be unbiasedly estimated by

Σ̂ = n−1W ,

where n = N − k,

W = (Y − XΞ̂)′(Y − XΞ̂) , (1.4 )

and often called as the marix of the sum of squares and products due to error or

simply ‘within’ matrix. The p×p matrix W is, however, a singular matrix of rank n

which is less than p; see Srivastava (2003) for its distributional results. We consider

the problem of testing the linear hypothesis.

H : CΞ = 0 vs A : CΞ 6= 0 , (1.5 )

where C is a q× k matrix of rank q ≤ k of known constants. The matrix of the sum

of squares and products due to the hypothesis, or , simply ‘between’ matrix is given

by

B = N
(
CΞ̂

)′ [
CGC ′]−1

CΞ̂ , (1.6 )

where

G =
[
N−1X ′X

]−1
. (1.7 )

When normality is not assumed, it is often required that G converges to a k × k

positive definite (p.d.) matrix for asymptotic normality to hold, and although a

weaker condition than (1.7) has been given in Srivastava (1971) for asymptotic

normality to hold, we will assume that G is positive definite. Under the assumption

of normality,

W ∼ Wp(Σ, n) (1.8 )

and

B ∼ Wp(Σ, q,Nηη′) (1.9 )
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are independently distributed as Wishart and non-central Wishart matrices respec-

tively, where

η = (η1, . . . , ηq) = (CΞ)′(CGC ′)−
1
2 . (1.10 )

Thus, we may write

B = ZZ ′ , (1.11 )

where Z = (z1, . . . , zq) and zi are independently distribtued as Np(N
1
2 ηi, Σ). Since

n < p, the likelihood ratio test is not available. Also, the sample space χ consists

of p × N matrices of rank N ≤ p, since Σ is positive definite. Thus, any point in χ

can be transformed to another point of χ by an element of the group Glp of p × p

nonsingular matrices. Hence, the group Glp acts transitively on the sample space

and the only α-level test that is affine invariant is Ψ ≡ α, see Lehmann (1959, p.318)

and Eaton (1983). Thus, we look for tests that are invariant under a smaller group.

In particular, we will be considering tests that are invariant under the transformation

yi → cΓyi, where Y ′ = (y1, . . . , yN ), c 6= 0, c ∈ R(0) and Γ ∈ Op: R(0) is the real

line without zero and Op is the group of p × p orthogonal matrices. Clearly cΓ is a

subgroup of Glp. Define

â1 = (tr W )/np ,

â2 =
1

(n − 1)(n + 2)p

[
tr W 2 − 1

n
(tr W )2

]
, (1.12 )

and

b̂ = (â2
1/â2) .

Let

ai = (tr Σi)/p, i = 1, . . . , 4, and b = (a2
1/a2). (1.13 )

We shall assume that

0 < lim
p→∞

ai = ai0 < ∞ , i = 1, . . . , 4 . (1.14 )

It has been shown in Srivastava (2005) that under the condition (1.14), âi are con-

sistent estimators of ai as n and p → ∞. Thus, b̂ is a consistent estimator of b. To

propose tests for the testing problem defined in (1.5), when N < p, we note that the

likelihood ratio tests or other invariant tests (under a group of nonsingular trans-

formations) such as Lawley-Hotelling test or Bartlett-Nanda-Pillai test described in

most text books are not available. However, we may consider a generalization of

Dempster (1958) test which is given by

T̃1 =
(pq)−1 tr B

â1
=

n tr B

q tr W
. (1.15 )
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However, its exact distribution even under the hypothesis is difficult to obtain. An

approximate distribution of T1 under the hypothesis is F[qr̂],[nr̂], where Fm,n denotes

the F-distribution with m and n degrees of freedom, and [a] denotes the largest

integer ≤ a. The above approximate distribution of the T̃1 statistic under the

hypothesis is obtained by assuming that tr B ∼ mχ2
qr and tr W ∼ mχ2

pr, both

independently distributed. By equating the first two moments of tr B under the

hypothesis with that of mχ2
qr, it is found that r = pb. Srivastava (2004) proposed

to estimate r by

r̂ = p b̂ . (1.16 )

It may be noted that since F is invariant under scale transformation, no estimate

of m is required to obtain the approximate distribution. To study the power of the

T̃1 test, we consider a normalized version of T̃1 given by

T1 =

[
pb̂

2q(1 + n−1q)

] 1
2 [

tr B − pqâ1

pâ1

]

=
[

p

2qâ2(1 + n−1q)

] 1
2 [

p−1 tr B − qâ1

]
(1.17 )

=
[
2qâ2(1 + n−1q)

]− 1
2

[
tr B
√

p
− q√

n

tr W
√

np

]
.

It may be noted that pb̂ is ratio consistent estimator of r. Dempster (1958,1960) has

proposed two other ratio consistent estimators of r = pb. However, these estimators

are iterative solutions of two equations. Irrespective of which consistent estimator of

r = pb is used, the asymptotic theory remains the same due to Slutzky’s theorem and

Rao (1973). The expression in (1.17) is a generalization of Bai and Sarandasa (1996)

test for the two-sample problem. Next, we describe another test statistic proposed

by Srivastava (2004) for the testing problem described in (1.5). This statistic uses

the Moore-Penrose inverse of W . The Moore-Penrose inverse of a matrix A is defined

by A+ which satisfies the following four conditions:

(i) AA+A = A ,

(ii) A+AA+ = A+ ,

(iii) (AA+)′ = AA+ ,

(iv) (A+A)′ = A+A .

The Moore-Penrose inverse is unique. The statistic proposed by Srivastava (2004)

is given by

T2 = −pb̂ log Πq
i=1 (1 + ci)−1 , (1.18 )
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where ci are the non-zero eigenvalues of BW+. In a sense, it is an adapted version of

the likelihood ratio test. Other tests which may be considered as adapted versions

of Laweley-Hotelling’s, and Bartlett-Nanda-Pillai tests are given by

T3 = pb̂
q∑

i=1

ci , (1.19 )

and

T4 = pb̂
q∑

i=1

ci

1 + ci
, (1.20 )

respectively. It will be shown in Section 2 that as p → ∞, the tests T2, T3 and T4

are asymptotically equivalent. Thus, in the final analysis, we only consider the two

test statistics T1 and T2. The distributions of these two statistics under the null

hypothesis are given in Section 3, and under local alternatives in Section 4. The

power comparison is carried out in Section 5. We may note that all the five tests T̃1,

T1, T2, T3, T4 are invariant under the group of linear transformations yi → cΓyi,

for c 6= 0, c ∈ R(0) and Γ ∈ Op, where R(0) is the real line except zero and Op is the

group of p × p orthogonal matrices. Thus, without any loss of generality, we may

assume that the population covariance matrix Σ is a diagonal matrix. Thus

Σ = ∧ = diag(λ1, . . . , λp) . (1.21 )

2 Asymptotic Equivalence of the test Statistics T2, T3

and T4

In this section, we show that as p → ∞, the three test statistics T2, T3 and T4 are

asymptotically equivalent. Since , the p× p matrix W is of rank n < p, there exists

a semi-orthogonal n × p matrix H such that

W = H ′LH ,HH ′ = In , (2.1 )

where L = diag(l1, . . . , ln) is a diagonal matrix whose diagonal elements are the

non-zero eigenvalues of the matrix W . The Moore-Penrose of the p × p matrix W

is given by

W+ = H ′L−1H . (2.2 )

Since,

B = ZZ ′ ,

the non-zero eigenvalues of BW+ are the same as the non-zero eigenvalues of the

matrix

Z ′W+Z = Z ′H ′L−1HZ
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= Z ′H ′A(ALA)−1AHZ (2.3 )

= U ′(ALA)−1U ,

where

A = (H ∧ H ′)−
1
2 , (2.4 )

and

U = (u1, . . . , uq) , (2.5 )

Given H,ui are independently distributed as Nn(N
1
2 AHηi, I), and in the notation

of Srivastava and Khatri (1979, p. 54),

U ∼ Nn,q(N
1
2 AHη, In, Iq) , (2.6 )

From Lemma A.1 given in the Appendix, we get in probability

lim
p→∞

ALA

p
=

a2
10

a20
= lim

p→∞
b , (2.7 )

where

0 < ai0 = lim
p→∞

(tr Σi/p) < ∞, i = 1, . . . , 4 . (2.8 )

A consistent estimator of b, as n and p → ∞, is given by b̂, defined in (1.14) see

Srivastava (2005). Thus, for the statistic T2, we get in probability

lim
p→∞

b̂p log
q∏

i=1

(1 + ci) = lim
p→∞

b̂p log |Iq + Z ′W+Z|

= lim
p→∞

b̂p

[
trZ ′W+Z − 1

2
tr(Z ′WZ)2 + . . .

]
= lim

p→∞
(b̂/b) tr U ′U . (2.9 )

Similarly, in probability

lim
p→∞

pb̂
q∑

i=1

ci = lim
p→∞

pb̂tr(Z ′W+Z) ,

= lim
p→∞

(b̂/b)trU ′U .

Thus, as p → ∞, the tests T2 and T3 are equivalent. For the test T4, we note that

in probability

lim
p→∞

pb̂

[
q −

q∑
i=1

(1 + ci)−1

]
= lim

p→∞
pb̂

[
q − tr(Iq + Z ′W+Z)−1

]
= lim

p→∞
pb̂

[
trZ ′W+Z − tr(Z ′W+Z)2 + . . . ,

]
= lim

p→∞
(b̂/b) tr(U ′U) .

Thus, all the three tests T2, T3 and T4 are asymptotically equivalent as p → ∞. Thus,

we need to consider only the test T2 (among the three) which will be compared with

the test T1.
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3 Distribution of the test statistics T1 and T2 under the

hypothesis

Under the hypothesis, we have

B = ZZ ′ ∼ Wp(∧, q) ,

where

Z = (z1, . . . , zq)

and zi are iid Np(0,∧). The within matrix

W ∼ Wp(∧, n) ,

and B and W are independently distributed. Since b̂ → b, and â2 → a2 in probabil-

ity, it follows from Slutzky’s theorem, see Rao (1973), that we need only consider

the distribution of

T0 =

[
tr B
√

p
− q√

n

tr W
√

np

]

=
1
√

p

[
tr B − q

n
tr W

]
(3.1 )

=
1
√

p

[
tr ∧ U1 −

q

n
tr ∧ U2

]
,

where U1 ∼ Wp(I, q), and U2 ∼ Wp(I, n) are independently distributed. Let U1 =

(u1ij), and U2 = (u2ij). Then u1ii are independently distributed as a chi-squared

random variable with q degrees of freedom, denoted by χ2
q . Similarly, u2ii are iid

χ2
n. Hence, from (3.1)

T0 =
1
√

p

p∑
i=1

λi(u1ii − n−1qu2ii)

≡ 1
√

p

p∑
i=1

λivii , (3.2 )

where vii are iid with mean 0 and variance 2q + 2n−1q2. Hence,

Var(T0) =
1
p

p∑
i=1

λ2
i

[
2q + 2n−1q2

]
= 2q(1 + n−1q)a2

= σ2
1 < ∞ . (3.3 )

Let

T ∗
1 =

{
2q(1 + n−1q)a2

}−1/2
T0 . (3.4 )
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Then, if
max

1 ≤ i ≤ p λi/
√

p
√

a2

→ 0 as p → ∞ ,

it follows from Srivastava (1971) that T ∗
1 is asymptotically normally distributed as

p → ∞. Since, it is assumed that a2 < ∞, we assume that

λi = O (pγ) , 0 ≤ γ <
1
2

. (3.5 )

Hence, from Slutzky’s theorem, we get the following theorem.

Theorem 3.1 Under the null hypothesis and condition (3.5)

lim
n→∞

lim
p→∞

[P0(T1 < z) − Φ(z)] = 0 ,

where P0 denotes that the probability has been computed under the hypothesis that

η = 0.

Next, we consider the asymptotic distribution of the statistic T2 given by

T2 = pb̂ log |I + BW+|

= pb̂ log |Iq + Z ′W+Z| (3.6 )

under the hypothesis H, where Z and W are independently distributed and Z ∼
Np,q(0, Σ, Iq). From (2.9)

lim
p→∞

T2 = lim
p→∞

(b̂/b) tr U ′U , (3.7 )

where under the hypothesis, U ′ = (u1, . . . , un) : q × n, and ui are iid Nq(0, Iq).

Thus, we get the following theorem.

Theorem 3.2 Under the null hypothesis

lim
n→∞

lim
p→∞

[
P0

(
T2 − nq√

2nq
< z

)
− Φ(z)

]
= 0 ,

where P0 denotes that the probability is being calculated under the hypothesis.

4 Distribution of the statistic T1 and T2 under the al-

ternative

Before we derive the non-null distribution of the statistics T1 and T2, we shall first

consider the statistic T̃1 defined in (1.15). As mentioned earlier, the statistic T̃1

is also invariant under the transformation yi → cΓyi, c 6= 0, ΓΓ′ = I. Thus, the
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covariance matrix Σ can be assumed to be diagonal as given in (1.21). Futhermore,

since all the statistics are invariant under scalar transformations, the assumption

that Σ = σ2I is equivalent to assuming that Σ = I for the distributional purposes.

Thus, when Σ = I, the T̃1 statistic has a non-central F distribution with pq and np

degrees of freedom with non-centrality parameter

γ2 = N tr ηη′ . (4.1 )

Next, we easily obtain the following theorem from Simaika (1941).

Theorem 4.1 Assume that ∧ = λI. Then, for testing the hypothesis that tr ηη′ =

0 against the alternative that tr ηη′ 6= 0, the T̃1 test is uniformly most powerful

among all tests whose powers depend on γ2.

From the above theorem, it implies that any other test whose power depends on γ2,

will have power no more than the T̃1-test. It will be shown in the next two theorems

that the power of the two tests T1 and T2 depends only on γ2 when Σ = I.

Thus, before using either of the two tests T1 and T2, the spherecity hypothesis

should be tested by a test proposed by Srivastava (2005), when n = O(pδ), 0 < δ ≤
1.

4.1 Non-null distribution of the test statistic T1

Let

Ω = N ∧− 1
2 ηη′ ∧− 1

2 . (4.2 )

We shall assume that

0 ≤ tr ∧i Ω
p

< ∞, i = 1, 2 . (4.3 )

Under the alternative hypothesis, B and W are independently distributed where

W ∼ Wp(∧, n) ,

and

B ∼ Wp(∧, q,Nηη′) ,

a non-central Wishart distribution with non-centrality matrix

Nηη′ = ∧
1
2 Ω ∧

1
2 . (4.4 )

Define

u =
1
√

p
[trB − qtr ∧ −tr ∧ Ω]
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and

v =
1

√
np

[trW − ntr∧] .

Then the following lemma is required to derive the asymptotic non-null distribution

of T1.

Lemma 4.1 As p → ∞, and under the conditions (4.4) and (1.14),

u
d−→ N

[
0, 2qa2 + 4tr(tr ∧2 Ω/p)

]
,

v
d−→ N(0, 2a2) ,

where d−→ denotes ‘in distribution’.

Proof. The result has been essentially used in Fujikoshi et al. (2004). Here, we

give a detail derivation. The characteristic function of u is given by

Φu(t) = E(eitu)

= e
− it√

p
(qtr∧+tr∧Ω) × E

(
e

it√
p
trB

)
= e

− it√
p
(qtr∧+tr∧Ω) × |Ip −

2it
√

p
∧ |−

1
2
q
(

e
it√
p
tr∧(I− 2it√

p
∧)−1Ω

)
,

see Srivastava and Khatri (1979, Theorem 3.3.10, p 85). Now expanding, see Sri-

vastava and Khatri (1979, p33, p37),

log

∣∣∣∣∣I − 2it
√

p
∧

∣∣∣∣∣
− 1

2
q

= −1
2
q log

∣∣∣∣∣I − 2it
√

p
∧

∣∣∣∣∣
=

1
2
q

 2it
√

p
tr ∧ +

1
2

(
2it
√

p

)2

tr∧2

 + o(1)

=
itq
√

p
tr ∧ +

q(it)2

p
tr ∧2 +o(1) ,

and

it
√

p
tr ∧

(
I − 2it∧

√
p

)−1

Ω =
it
√

p
tr ∧

I +
2it
√

p
∧ +

1
2

(
2it
√

p

)2

∧2

 Ω + o(1)

=
it tr ∧ Ω

√
p

+
2(it)2

p
tr ∧2 Ω + o(1) .

Hence,

E
(
eitu

)
= e

1
2
(it)2[2qa2+4(tr∧2Ω/p)] × (1 + o(1)) . (4.5 )

Thus, u ∼ N(0, 2qa2 + 4tr(∧2Ω/p) as p → ∞. The charactertistic function of v is

given by

Φv(t) = E
(
eitv

)
=

[
e
− it√

np
ntr∧

] ∣∣∣∣∣I − 2it
√

np
∧

∣∣∣∣∣
−n

2

 .
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As before, we have

−n

2
log

∣∣∣∣∣I − 2it
√

np
∧

∣∣∣∣∣ =
n

2

[
2it
√

np
tr ∧ +

(2it)2

2np
tr∧2

]
+ o(1) .

Hence,

Φv(t) = e(it)2(tr∧2)/p (1 + o(1)) .

Thus, as p → ∞, v → N(0, 2a2). This proves both parts of the lemma.

Thus, we have(
u − q√

n
v

)
=

1
√

p

[
trB − qtr ∧ −tr ∧ Ω − q

n
trW + qtr∧

]
=

1
√

p

[
trB − q

n
trW − tr ∧ Ω

]
.

Note that u and v are independently distributed. Hence, from Lemma 4.1 ,

u − q
√

p
v ∼ N

(
0, σ∗

1
2
)

,

as p → ∞, where

σ∗
1
2 = 2qa2 + 4tr(tr ∧2 Ω/p) +

2q2

n
a2

= 2qa2(1 + n−1q) + 4tr(∧2Ω/p)

= σ2
1 + 4tr ∧2 Ω/p . (4.6 )

Hence, as p → ∞,

trB − n−1qtrW − tr ∧ Ω
σ∗

1
√

p
d−→ N(0, 1) .

Thus,

P

{
trB − n−1qtrW

σ1
√

p
> zα|A

}
= P

{
trB − n−1qtrW − tr ∧ Ω

σ∗
1
√

p
>

σ1

σ∗
1

zα − tr ∧ Ω
σ∗

1
√

p

}
.

Theorem 4.2 Assume that conditions (1.14) and (4.4) holds. Then, when η 6= 0,

lim
n→∞

lim
p→∞

P1 [T1 > zα] = lim
n→∞

lim
p→∞

Φ

[
−σ1

σ∗
1

zα +
tr ∧ Ω
σ∗

1
√

p

]

For local alternatives, we assume that

tr ∧ Ω = O(
√

p) . (4.7 )

Writing

η = (nN)−1/2δ , (4.8 )
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we have that the assumption (4.7) is equivalent to

1
n
√

p
trδδ′ = O(1) (4.9 )

which is satisfied when δ = O(1) and n =
√

p. Then, from (3.8) we have

tr ∧2 Ω
p

=
O(pγtr ∧ Ω)

p
=

O(pγ√p)
p

→ 0 as p → ∞ ,

and

σ∗
1 → σ1 .

Hence, we get the following Corollary.

Corollary 4.1 For local alternatives satisfying (4.7) or (4.9), the asymptotic power

of the T1-test is given by

β(T1) ' Φ

(
−zα +

tr ∧ Ω
σ1

√
p

)

' Φ
(
−zα +

trδδ′

n
√

2pqa2

)
.

Thus, when Σ = I, a2 = 1, and

β(T1) ' Φ
(
−zα +

trδδ′

n
√

2pq

)
.

4.2 Non-null distribution of the test statistic T2.

For the statistic T2, we derive the power of the T2 test under the local alternatives

where η is given in (4.8) with δ = O(1). From (2.8), it follows that

lim
p→∞

T2 = lim
p→∞

(
b̂

b

)
trU ′U ,

where given H

U ′U ∼ Wq(I, n,Nη′H ′A2Hη), A = (H ∧ H ′)−
1
2 .

Further, under the local alternative (4.8) we get from Lemma A.1,

lim
p→∞

Nη′H ′A2Hη = lim
p→∞

δ′H ′A2Hδ/n

→ (a10/a20) lim
p→∞

δ′H ′Hδ

n
.

Writing

δ = (δ1, . . . , δq) : p × q ,
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we find that

n−1trδ′H ′Hδ = n−1
q∑

i=1

δ′
iH

′Hδi .

Hence, from Lemma A.1 ,

lim
n→∞

lim
p→∞

n−1δ′
iH

′Hδi = lim
p→∞

(
δ′

i ∧ δi

pa1

)
.

Thus,

lim
n→∞

lim
p→∞

trNη′H ′A2Hη = lim
n→∞

lim
p→∞

tr ∧ δδ′

pa20
.

Hence, the power of the T2-test under local alternatives is given in the following

theorem.

Theorem 4.3 Under the local alternatives η = (nN)−1/2δ with δ = O(1) , the

power of the T2-test is given by

lim
n→∞

lim
p→∞

P1

[
T2 − nq√

2nq
> zα

]
= lim

n→∞
lim

p→∞
Φ

(
−zα +

tr ∧ δδ′

pa2
√

2nq

)
.

Thus, when Σ = I, the asymptotic power of he T2 test is given by

β(T2) ' Φ
(
−zα +

trδδ′

p
√

2nq

)
.

5 Power Comparison

We have shown that the power of the T1 and T2 tests depends on trδδ′ = nNtrηη′

when Σ = I. Thus, in this case the T̃1 test will always have a higher power than

T1 and T2. However, the T1-test is an asymptotic version of T̃1 test, which implies

that in this case T2-test will be inferior than T1. It also follows from the asymptotic

powers, since
√

n
√

2npq <
√

p
√

2nqp

for all n ≤ p. Clearly, T2-test should be only considered when Σ 6= σ2I. For general

case T2-test should be preferred over T1 if[
pa2

√
2nq

]−1
tr ∧ δδ′ > trδδ′/n

√
2npqa2 ,

that is, if
tr ∧ δδ′

trδδ′
> (pa2/n)

1
2 .

For example, if δδ′ = ∧, then (
a2

a2
1

) 1
2

> (p/n)
1
2 ,
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or

n < p(a2
1/a2) = pb ,

where 0 < b ≤ 1. Thus, for large p, and small n, the T2-test appears to perform

better. Fujikoshi et al. (2004) have considered power comparison when p/n → c, 0 ≤
c < 1.

A Appendix

Lemma A.1 Let V = Y Y ′ ∼ Wp(∧, n), where the columns of Y are iid Np(0,∧).

Let l1, . . . , ln be the n non-zero eigenvalues of V = H ′LH, HH ′ = In, L =

diag(l1, . . . , ln) and the eigenvalues of W ∼ Wn(In, p), and the diagonal elements of

the diagonal matrix D = diag(d1, . . . , dn). Then in probability

(a) lim
p→∞

(
Y ′Y

p

)
= lim

p→∞

(
trΣ
p

)
In = a10In ,

(b) lim
p→∞

(
1
p
L

)
= a10In ,

(c) lim
p→∞

(
1
p
D

)
= In ,

(d) lim
p→∞

(
H ∧ H ′) = (a20/a10)In ,

(e) lim
n→∞

lim
p→∞

(
1
n

a′H ′Ha

)
= lim

p→∞

(
a′ ∧ a

pa1

)
for a non-null vector a = (a1, . . . , ap)′ of constants.

For proof, see Srivastava (2004).
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