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In this paper, we consider the multivariate normality test based on measure of

multivariate kurtosis defined by Srivastava (1984). Under normality, asymp-

totic expansions of the expectation and the variance for Srivastava’s sample

measure of multivariate kurtosis are given by perturbation method. An asymp-

totic expansion for the distribution of the sample measure of multivariate kurto-

sis are also given. From the result, the normalizing transformations are derived.

Finally, the numerical results by Monte Carlo simulations are presented.
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1. Introduction

In multivariate statistical analysis, the test for multivariate normality is an important

problem and has been studied by many authors. To assess multivariate normality, for

example, the multivariate sample measure of skewness and kurtosis and the exact null

distributions are given in Mardia (1970, 1974). Srivastava (1984) gave a different defini-

tion for the multivariate sample measure of skewness and kurtosis and their asymptotic

distributions. Multivariate extensions of the Shapiro-Wilk (1965) test have been pro-

posed by Malkovich and Afifi (1973), Royston (1983), Srivastava and Hui (1987), and so

on. Also, Small (1980) gave multivariate extensions of univariate skewness and kurtosis.

For a comparison of these methods, see, Looney (1995).

Mardia and Kanazawa (1983) discussed the normal approximation for Mardia’s sam-

ple measure of multivariate kurtosis by the asymptotic expansions of the third moments.

For the asymptotic distributions of Mardia’s and Srivastava’s measures of multivari-
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ate kurtosis under elliptical populations, see, e.g., Berkane and Bentler (1990), Seo and

Toyama (1996), Maruyama (2005). The limit distribution of Mardia’s multivariate kurto-

sis under Watson rotational symmetric distributions were discussed by Zhao and Konishi

(1997). Henze (1994) discussed with the asymptotic distribution for Mardia’s measure of

multivariate kurtosis under non-normal populations. For a survey on measure of multi-

variate kurtosis, see, Schwager (1985).

In this paper, we consider Srivastava’s sample measure of multivariate kurtosis under

normal population for two cases when the covariance matrix Σ is known and unknown. By

using an asymptotic expansion for the distribution of the sample measure of multivariate

kurtosis, a normalizing transformation with a considerably good normal approximation

for the distribution can be derived. The organization of the paper is as follows. In Section

2, we provide asymptotic expansions up to the order N−2 for the first, second and third

moments of Srivastava’s sample measure of multivariate kurtosis by perturbation method.

In Section 3, an asymptotic expansion of the distribution for the sample multivariate

kurtosis is given. From this result, a normalizing transformation for the measure of

multivariate kurtosis is derived. Finally, in Section 4, we investigate the accuracy of the

asymptotic expansion approximation and the normal approximation for the normalizing

transformation by Monte Carlo simulation for some selected parameters.

2. Asymptotic expansions for the first, second and third moments

Let x be a random p-vector with the mean vector µ and the covariance matrix Σ =

Γ′DλΓ, where Γ = (γ1,γ2, . . . , γp) is an orthogonal matrix and Dλ = diag(λ1, λ2, . . . , λp).

Note that λ1, λ2, . . . , λp are the characteristic roots of Σ. Then Srivastava (1984) defined

the population measure of multivariate kurtosis as

β2,p =
1

p

p∑

i=1

E[(yi − θi)
4]

λ2
i

(≡ βS),

where yi = γ ′ix and θi = γ ′iµ, i = 1, 2, . . . , p. We note that βS = 3 under multivariate

normality. As a remark, the population measure of multivariate kurtosis by Mardia

(1970) is defined as

β2,p = E[{(x− µ)′Σ−1(x− µ)}2](≡ βM).

We note that βM = p(p + 2) under multivariate normality. For the moments and the

approximation for Mardia’s sample measure of multivariate kurtosis, see, Mardia and

Kanazawa (1983), Siotani, Hayakawa and Fujikoshi(1985).

Let x1, x2, . . . , xN be a sample of size N from a multivariate population. Let x

and S = H ′DωH be the sample mean vector and the sample covariance matrix based

on a sample of size N , where H = (h1,h2, . . . , hp) is an orthogonal matrix and Dω =
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diag(ω1, ω2, . . . , ωp). We note that ω1, ω2, . . . , ωp are the characteristic roots of S. Then,

by Srivastava (1984), the sample measure of multivariate kurtosis is defined as

bS =
1

Np

p∑

i=1

1

ω2
i

N∑

j=1

(yij − yi)
4,(2.1)

where yij = h′ixj , i = 1, 2, . . . , p, j = 1, 2, . . . , N , yi = N−1 ∑N
j=1 yij, i = 1, 2, . . . , p.

We note that Srivastava’s measure of multivariate kurtosis bS is defined based on the

MLE(maximum likelihood estimator), that is,

S =
1

N

N∑

i=1

(xi − x)(xi − x)′.

Without loss of generality, we may assume that Σ = I and µ = 0 when we consider the

sample measure of multivariate kurtosis (2.1). Since the following derivation method can

also be used for the latter case of unknown Σ, we first consider asymptotic expansions of

the moments for the case when Σ is known under normality.

Assuming that Σ is known, we can write

bS =
1

p

p∑

i=1

m4i,

where m4i = N−1 ∑N
j=1(yij − yi)

4. In order to avoid the dependence of yij and yi, let y
(α)
i

be a mean defined on the subset of yi1, yi2, . . . , yiN by deleting some yiα at random, that

is,

y
(α)
i =

1

N − 1

N∑

j=1,j 6=α

yij.

Then, we can write

m4i =
1

N

(
1− 1

N

)4 N∑

α=1

(yiα − y
(α)
i )4.

Note that yiα is independent of y
(α)
i .

To obtain the expectation of bS by the perturbation method, we put

y
(α)
i =

1√
N − 1

Z.

Since and Z is distributed as a standard normal distribution, the odd order moments

equal zero and

E[Z2k] = (2k − 1) · · · 5 · 3 · 1, k = 1, 2, . . . , 6.

We shall also use above result when we calculate second and third moments.

Therefore, we can obtain

E[bS] = E[m4i] = 3− 6

N
+

3

N2
+ O(N−3).(2.2)
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Similarly, we may obtain E[b2
S] and E[b3

S] as

E[b2
S] = 9 +

60

N
− 258

N2
+ O(N−3),(2.3)

E[b3
S] = 27 +

702

N
+

5373

N2
+ O(N−3),(2.4)

respectively. Therefore, we obtain the variance for kurtosis bS as

Var[bS] =
96

p
· 1

N
− 312

p
· 1

N2
+ O(N−3).(2.5)

Next, we consider asymptotic expansions of first, second and third moments for bS

when Σ is unknown.

First note that

ωi = h′iShi =
1

N

N∑

j=1

(yij − yi)
2, i = 1, 2, . . . , p.

Then, since S is defined as the maximum likelihood estimator, we can write

bS =
1

p

p∑

i=1

m4i

m2
2i

.

Under normality, yi1, yi2, . . . , yiN are independently normally distributed. Hence, by Sri-

vastava(1984), for large N , we note that E[mk
νim

−νk/2
2i ]E[m

νk/2
2i ] = E[mk

νi]. Therefore,

since E[m4i] is given by (2.2), we shall calculate

E[m2
2i] =

1

N2
{NE[C4

iα] + N(N − 1)E[C2
iαC2

iβ]},

where Ciα = yiα − yi.

Let y(α,β) be a mean defined on the subset of yi1, yi2, . . . , yiN by deleting variable yiα

and yiβ at random, that is,

y(α,β) =
1

N − 2

N∑

j=1,j 6=α,β

yij,

and let

y(α,β) =
1√

N − 2
Z.

Calculating the expectation with respect to yiα, yiβ and Z, we have

E[C2
iαC2

iβ] = 1− 2

N
+

3

N2
+ O(N−3).

Therefore, the expectation for the kurtosis bS is given by

E[bS] = 3− 6

N
+

6

N2
− 6

N3
+ O(N−4).(2.6)
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Further, we have

E[m2
4i] =

1

N2

{
NE[C8

α] + N(N − 1)E[C4
αC4

β]
}

,

E[m4
2i] =

1

N4
{NE[C8

α] + 4N(N − 1)E[C6
αC2

β] + 3N(N − 1)E[C4
αC4

β]

+6N(N − 1)(N − 2)E[C4
αC2

βC2
γ ] + N(N − 1)(N − 2)(N − 3)E[C2

αC2
βC2

γC
2
δ ]}.

After a great deal of calculation for the above expectations, we can obtain E[b2
S] as

E[b2
S] = 9− 12

N
− 288

N2
+ O(N−3).(2.7)

Hence, when Σ is unknown, we have the variance for kurtosis bS as

Var[bS] =
24

p
· 1

N
− 360

p
· 1

N2
+ O(N−3).(2.8)

Similarly, we may obtain

E[b3
S] = 27 +

54

N
− 1458

N2
+ O(N−3).(2.9)

The expectation (2.6) and variance (2.8) for bS are the same as the asymptotic expansions

that we expand the results in Srivastava(1984).

3. Asymptotic expansions for the distribution of bS

In this section, an asymptotic expansion of the distribution function for bS is given.

Also, as improved approximation to the distribution of Srivastava’s sample measure of

kurtosis, we consider the normalizing transformation for the two cases when Σ is known

and unknown.

Let Y =
√

N(bS− βS) for the case when Σ is known. Then, by using (2.2), (2.3) and

(2.4), the first three cumulants of Y have the following forms:

κ1(Y ) =
1√
N

a1 + O(N−3/2),

κ2(Y ) = σ2 + O(N−1),

κ3(Y ) =
6√
N

a3 + O(N−3/2),

where a1 = −6, σ2 = 96/p, a3 = 1584/p2. By a general theory of asymptotic expansions,

the distribution function for bS can be expanded as

Pr

{√
N(bS − βS)

σ
≤ y

}
= Φ(y)− 1√

N

{
a1

σ
Φ(1)(y) +

a3

σ3
Φ(3)(y)

}
+ O(N−1),

where Φ(y) is the cumulative distribution function of N(0, 1) and Φ(j)(y) in the jth

derivative of Φ(y).
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The variance stabilizing transformation and the normalizing transformation of some

statistics in multivariate analysis are discussed by Konishi(1984) and Konishi(1987), and

so on. By using the method in Konishi(1984), if we put

f(βS) = −32

11
exp

[
−11

32
βS

]
,

we can obtain

Pr

[√
N{f(bS)− f(βS)− c/N}

σf ′(βS)
≤ y

]
= Φ(y) + O(N−1).

where

c = −
(

6 +
33

2p

)
exp

[
−11

32
βS

]
.

Similarly, let Y ∗ =
√

N(bS − βS) for the case when Σ is unknown. Then, by using

(2.6), (2.7) and (2.9), the first three cumulants of Y ∗ have the following forms:

κ1(Y
∗) =

1√
N

a∗1 + O(N−3/2),

κ2(Y
∗) = σ∗2 + O(N−1),

κ3(Y
∗) =

6√
N

a∗3 + O(N−3/2),

respectively, where a∗1 = −6, σ∗2 = 24/p, a∗3 = 288/p2. Therefore, in this case, the

distribution function for bS can be expanded as

Pr

{√
N(bS − βS)

σ∗
≤ y

}
= Φ(y)− 1√

N

{
a∗1
σ∗

Φ(1)(y) +
a∗3
σ∗3

Φ(3)(y)
}

+ O(N−1).

Further, if we put

f ∗(βS) = − exp[−βS],

we can obtain

Pr

[√
N{f ∗(bS)− f ∗(βS)− c∗/N}

σf ′(βS)
≤ y

]
= Φ(y) + O(N−1).

where c∗ = −6 exp[−βS](1 + 2/p).

4. Accuracy of normal approximation for measure of multivariate kurtosis

We investigate the accuracy of asymptotic approximation for measure of multivariate

sample kurtosis by Monte Carlo simulation for some selected parameters. The program

for Monte Carlo simulation is written in C, which adopts Mersenne Twister method which

makes pseudo-random numbers and the Box-Muller transformation method.

Computations are made for p = 3, 5, 7, 10; N = 20, 50, 100, 200, 400 for each of cases

where Σ is known and unknown for multivariate normal populations. Without any loss of
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generality, we may assume that Σ = I. Simulation results based on 1, 000, 000 simulations

for the cases where Σ is known and unknown are presented in Tables 1 and 2. Further,

Tables 1 and 2 give the values of the limiting term (LT), the asymptotic expansion up to

the order N−1 (AE(N−1)), and the one up the order N−2 (AE(N−2)) for the expectations

(2.2), (2.6) and the variances (2.5), (2.8). Note that, in Tables, the notations E and V

mean the expectation and the variance, respectively. The results from the numerical

examination in Tables 1 and 2 show that the values of the asymptotic expansions are

good approximation as N is large. It may be noted from Tables that the values of higher

order asymptotic expansions for the expectation and the variance are considerably good

approximation even if p is large.

Next, in order to assess the performance of the proposed test statistics in this paper,

we investigate the accuracy of normal approximation for four test statistics as follows.

These test statistics are asymptotically distributed as N(0, 1):

(i)

z =

√
Np

24
(bS − 3),

(ii)

z∗ =
(N + 1)

√
p(N + 3)(N + 5){bS − 3(1− 2/(N + 1))}

√
24N(N − 2)(N − 3)

,

(iii)

z∗∗ =

√
Np{bS − 3(1− 2/N + 2/N2)}√

24(1− 15/N)
,

(iv)

zNT =

√
Np(−e−bS + e−3 + 6e−3(1 + 2

p
)/N)√

24e−3
.

The test statistic z is given by Srivastava(1984), z∗ can be obtained by making

reference to moments in Srivastava(1984). Also, we propose z∗∗ by the asymptotic results

in Section 2 and zNT by the normalizing transformation in the previous section.

Table 3 gives the values of expectation (E), variance (V) and skewness (S) for z, z∗,

z∗∗ and zNT when Σ is unknown. Also, simulated values based on 1, 000, 000 simulations

are presented in Table 3.

Since the values of expectation and skewness are zero and the value of variance is one

under standard normal distribution, it may be seen from Table 3 that values of E, V and S

converge to zero, one and zero, respectively, as the sample size N is large. Thus, it may be

noted from Table 3 that the values for each of statistics give good normal approximations

as N is large. Particularly, it may be noted from Table 3 that the value of skewness S for

zNT rapidly converges to zero when the sample size N is large. Further, it is seen that
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the normalizing transformation statistic zNT is considerably good normal approximation

even for small sample size. In conclusion, it may be also noted from simulation results

that the test statistic zNT proposed in this paper is useful for multivariate normality test.
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Table 1. Expectation(E) and variance(V) for multivariate sample kurtosis (Σ is known)

p=3 E V

N LT AE(N−1) AE(N−2) simulation LT AE(N−1) AE(N−2) simulation

20 3.000 2.700 2.708 2.711 0.000 1.600 1.340 1.356

50 3.000 2.880 2.881 2.883 0.000 0.640 0.598 0.618

100 3.000 2.940 2.940 2.940 0.000 0.320 0.310 0.312

200 3.000 2.970 2.970 2.970 0.000 0.160 0.157 0.159

400 3.000 2.985 2.985 2.987 0.000 0.080 0.079 0.080

p=5

20 3.000 2.700 2.708 2.706 0.000 0.960 0.804 0.826

50 3.000 2.880 2.881 2.879 0.000 0.384 0.359 0.365

100 3.000 2.940 2.940 2.940 0.000 0.192 0.186 0.188

200 3.000 2.970 2.970 2.972 0.000 0.096 0.094 0.096

400 3.000 2.985 2.985 2.987 0.000 0.048 0.048 0.048

p=7

20 3.000 2.700 2.708 2.709 0.000 0.686 0.574 0.596

50 3.000 2.880 2.881 2.881 0.000 0.274 0.256 0.260

100 3.000 2.940 2.940 2.941 0.000 0.137 0.133 0.134

200 3.000 2.970 2.970 2.971 0.000 0.069 0.067 0.068

400 3.000 2.985 2.985 2.987 0.000 0.034 0.034 0.034

p=10

20 3.000 2.700 2.708 2.706 0.000 0.480 0.402 0.412

50 3.000 2.880 2.881 2.881 0.000 0.192 0.180 0.181

100 3.000 2.940 2.940 2.942 0.000 0.096 0.093 0.094

200 3.000 2.970 2.970 2.972 0.000 0.048 0.047 0.047

400 3.000 2.985 2.985 2.987 0.000 0.024 0.024 0.024
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Table 2. Expectation(E) and variance(V) for multivariate sample kurtosis (Σ is unknown)

p=3 E V

N LT AE(N−1) AE(N−2) simulation LT AE(N−1) AE(N−2) simulation

20 3.000 2.700 2.715 2.716 0.000 0.400 0.100 0.195

50 3.000 2.880 2.882 2.882 0.000 0.160 0.112 0.119

100 3.000 2.940 2.940 2.940 0.000 0.080 0.068 0.069

200 3.000 2.970 2.970 2.971 0.000 0.040 0.037 0.037

400 3.000 2.985 2.985 2.986 0.000 0.020 0.019 0.019

p=5

20 3.000 2.700 2.715 2.716 0.000 0.240 0.060 0.117

50 3.000 2.880 2.882 2.880 0.000 0.096 0.067 0.071

100 3.000 2.940 2.940 2.941 0.000 0.048 0.041 0.041

200 3.000 2.970 2.970 2.971 0.000 0.024 0.022 0.023

400 3.000 2.985 2.985 2.986 0.000 0.012 0.012 0.012

p=7

20 3.000 2.700 2.715 2.715 0.000 0.171 0.043 0.083

50 3.000 2.880 2.882 2.882 0.000 0.069 0.048 0.052

100 3.000 2.940 2.940 2.942 0.000 0.034 0.029 0.030

200 3.000 2.970 2.970 2.970 0.000 0.017 0.016 0.016

400 3.000 2.985 2.985 2.985 0.000 0.009 0.008 0.008

p=10

20 3.000 2.700 2.715 2.713 0.000 0.120 0.030 0.058

50 3.000 2.880 2.882 2.883 0.000 0.048 0.034 0.036

100 3.000 2.940 2.940 2.942 0.000 0.024 0.020 0.021

200 3.000 2.970 2.970 2.971 0.000 0.012 0.011 0.011

400 3.000 2.985 2.985 2.986 0.000 0.006 0.006 0.006
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Table 3. Expectation(E), variance(V) and skewness(S) for some test statistics

p=3 E V S

N z z∗ z∗∗ zNT z z∗ z∗∗ zNT z z∗ z∗∗ zNT

20 −0.448 0.005 0.005 −0.231 0.488 1.011 1.952 0.758 0.352 1.049 2.815 −0.193

50 −0.294 0.000 −0.000 −0.169 0.745 1.002 1.065 0.846 0.601 0.936 1.026 −0.154

100 −0.214 −0.004 −0.004 −0.132 0.860 0.998 1.012 0.901 0.589 0.736 0.751 −0.097

200 −0.144 0.005 0.005 −0.090 0.936 1.008 1.012 0.944 0.523 0.585 0.588 −0.048

400 −0.102 0.004 0.004 −0.065 0.974 1.012 1.011 0.977 0.396 0.419 0.419 −0.030

p=5

20 −0.580 0.004 0.003 −0.208 0.487 1.009 1.948 0.790 0.274 0.817 2.191 −0.158

50 −0.386 −0.007 −0.008 −0.147 0.745 1.001 1.064 0.881 0.463 0.722 0.791 −0.107

100 −0.268 0.004 0.004 −0.099 0.863 1.002 1.015 0.926 0.454 0.568 0.579 −0.077

200 −0.186 0.007 0.007 −0.069 0.940 1.013 1.016 0.963 0.426 0.476 0.479 −0.013

400 −0.130 0.006 0.006 −0.048 0.967 1.005 1.004 0.979 0.303 0.320 0.321 −0.018

p=7

20 −0.688 0.003 0.001 −0.200 0.486 1.006 1.943 0.812 0.219 0.653 1.752 −0.150

50 −0.449 0.000 0.000 −0.080 0.755 1.015 1.079 0.901 0.424 0.660 0.724 −0.080

100 −0.315 0.006 0.006 −0.083 0.860 0.998 1.011 0.931 0.392 0.490 0.500 −0.050

200 −0.225 0.003 0.003 −0.062 0.929 1.001 1.005 0.966 0.321 0.359 0.361 −0.032

400 −0.158 0.003 0.003 −0.042 0.963 1.000 0.999 0.979 0.263 0.278 0.279 −0.002

p=10

20 −0.827 −0.003 −0.009 −0.201 0.485 1.005 1.941 0.823 0.187 0.557 1.495 −0.114

50 −0.532 0.006 0.006 −0.107 0.752 1.010 1.074 0.911 0.340 0.529 0.580 −0.069

100 −0.376 0.008 0.008 −0.070 0.866 1.005 1.019 0.947 0.336 0.421 0.429 −0.028

200 −0.268 0.005 0.005 −0.050 0.931 1.003 1.007 0.972 0.286 0.319 0.321 −0.011

400 −0.186 0.007 0.007 −0.031 0.956 0.993 0.993 0.976 0.211 0.223 0.223 −0.001
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