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1 Introduction

Let X 2
n be a random variable having chi-squared distribution with n degrees

of freedom and density

pX 2
n

(x) =
1

2n/2 Γ(n/2)
x−1+n/2 e−x/2 I(0 ,∞)(x) ,

where IA(x) denotes indicator function of set A. We consider a transformed

chi-squared statistic defined by

T1 = X 2
n − n log

X 2
n

n
− n.

The distribution of T1 appears as the null distribution of LR (likelihood

ratio) statistic for testing a hypothesis that the variance σ2 is equal to a given

value, based on a sample of n + 1 observations from a normal population

N(µ, σ2). Note that for large n

P (T1 ≤ x) = G1(x) + O(n− 1) ,

where Gm(x) is the distribution function of chi-squared random variable X 2
m

with m degrees of freedom. One of our main purposes is to show that

sup
x

|P (T1 ≤ x) − G1(x)| ≤ B(n),

where B(n) is a computable constant and B(n) = O(n−1) as n → ∞.

In this paper we also obtain Berry-Esseen type bound for asymptotic ap-

proximation of the distribution of

Tp = trW − n log | 1
n

W | − np,

which is an extension of T1, where the random matrix W has a Wishart dis-

tribution Wp(n, Ip). The distribution of Tp appears as the null distribution

of LR statistic for testing a hypothesis that the covariance matrix Σ is equal

to a given covariance matrix. In fact, we prove that

sup
x

|P (Tp ≤ x) − Gq(x) | ≤ B(p, n),
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where q = 1
2p(p + 1) and B(p, n) is a computable constant, depending only

on p and n and B(p, n) = O(n−1) as n → ∞.

In Section 2 we formulate the main results. In Section 3 we give an outline

for the method of deriving Theorem 1. It is shown that the result will be

obtained by estimating the three integrals J1, J2 and J3. In Section 5 we

estimate the summands J1, J2 and J3, based on auxiliary results given in

Section 4. A proof of Theorem 1 is given in Section 6. In Section 7 we

show that Theorem 2 can be obtained from Theorem 1 with help of some

basic properties. The possible generalizations of Theorem 1 are discussed in

Section 8.

2 Main Results

Let p ≥ 1 and n ≥ 1 be integers and p ≤ n. Put

D(n) =
1.9
n

(
n

n − 1

)2

+
15.59

n
0.9906n + C1(n) 0.9894n

with C1(n) = 15.21 / (n − 4) for n > 32 or C1(n) = 0.5271 for 4 ≤ n ≤ 32.

Theorem 1 We have

sup
x

|P (T1 ≤ x) − G1(x)| ≤ B(n) , (1)

where

B(n) = 2 D(n) +
1.877

n
+

1.1284√
n

0.7788n .

Remark 1. It is easy to see that B(n) = O(n−1) as n → ∞.

Theorem 2 We have

sup
x

|P (Tp ≤ x) − Gq(x)| ≤ B(p, n) , (2)

where

B(p, n) =
p∑

i=1

B(ni), .

Remark 2. It is easy to see that B(p, n) = O(n−1).
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n B(n) B(2, n) B(3, n)

100 0.28796 0.58123 0.87994

200 0.07057 0.14192 0.21407

300 0.02932 0.05884 0.08857

400 0.01710 0.03428 0.05153

3 Outline of the Proof of Theorem 1

Put h(y) =
√

2n y − n log(1 +
√

2
n y). It is easy to see that

T1 = h(Vn) with Vn = (X 2
n − n )/

√
2n . (3)

Note that Vn is a random variable X 2
n standardized with E(X 2

n) = n and

V ar(X 2
n) = 2 n. Hence, by the central limit theorem the distribution func-

tion

Fn(x) = P (Vn ≤ x) = P (X 2
n − n ≤

√
2n x)

tends to the normal law Φ(x) = 1√
2π

∫ x
−∞ e−u2/2 du as n → ∞ .

With E(V 3
n ) = 2

√
2/n and the first-order Chebyshev-Edgeworth expansion

Φn(x) = Φ(x) +
√

2 (1 − x2)
3
√

n

1√
2π

e−x2/2

one finds Fn(x) = Φn(x) + O(1/n) as n → ∞.

Dobrić and Ghosh (1996) gave a bound of the remainder term (see Example 3

in the mentioned paper with a = b = 1/2 ), proving

sup
x

|Fn(x)−Φn(x)| ≤ 1.9
n

(
n

n − 1

)2

+
15.59

n
0.9906n + C1(n) 0.9894n (4)

with C1(n) = 15.21 / (n − 4) for n > 32 or C1(n) = 0.5271 for 4 ≤ n ≤ 32.

Define

pVn(x) =
d

dx
P (Vn ≤ x) , φ(x) =

d

dx
Φ(x) , φn(x) =

d

dx
Φn(x) , (5)

Bx = { y ∈ R : h(y) ≤ x } and Ax = { y ∈ R : |y| ≤
√

x } .
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Then

P (T1 ≤ x) − G1(x) = P (h(Vn) ≤ x) − [Φ(
√

x) − Φ(−
√

x)]

=
∫

Bx

pVn(y) dy −
∫

Ax

φ(y) dy

= J1 + J2 + J3 , (6)

where

J1 =
∫

Bx

(pVn(y) − φn(y)) dy ,

J2 =
∫

Bx

φ(y) dy −
∫

Ax

φ(y) dy ,

J3 =
∫

Bx

(φn(y) − φ(y)) dy −
∫

Ax

(φn(y) − φ(y)) dy .

Here we used ∫
Ax

(φn(y) − φ(y)) dy = 0

because Ax is a symmetric set and the function φn(y) − φ(y) is odd.

In Section 5 we get bounds for J1, J2 and J3 of order O(n−1) using (4)

and the following facts:

– Lebesgue measure of the set {Ax△Bx} is of order O(n−1/2) ;

– the function φ(y) is even;

– the function φn(y) − φ(y) is odd and is of order O(n−1/2) .

See the detailed proof of Theorem 1 in Section 6. The possible general-

izations of Theorem 1 are discussed in Section 8.

4 Auxiliary Results

Let f(y) = y − log(1 + y) for y > − 1 .

Lemma 1 Let t be a real number such that

0 < t < t0 = −5 +
√

40 = 1.3245 . (7)

Assume that yt and yt satisfy the conditions:

f(yt) = f(yt) = t2/2 with yt > 0 and yt < 0 . (8)
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Then we have

t +
t2

3
+

t3

45
< yt < t +

t2

3
+

t3

36
(9)

and

−t +
t2

3
− t3

27
< yt < −t +

t2

3
− t3

36
. (10)

Remark 1. Note f(y) is decreasing when y ∈ (−1 , 0) and it is increasing

when y > 0 . Since f(y) is continuous function, lim
y↓−1

f(y) = lim
y↑+∞

f(y) =

+∞ and f(0) = 0, the solutions yt and yt are defined uniquely by the

conditions (8).

Remark 2. One can write the solution yt < 0 of f(yt) = t2/2 in terms

of the real Lambert’s W-function. We recall that the real Lambert’s W-

function is defined to be the function satisfying W (u) eW (u) = u, i.e. it is

the inverse function of z ez for z ≥ −1, i.e. if z ez = u, then z = W (u). Some

properties and applications of the real Lambert’s W-function are given in

Corless, Gonnet, Hare, Jeffrey and Knuth(1996), e.g. series representation

holds

W (z) =
∞∑

n=1

(−n)n−1

n !
zn = z − z2+

3
2

z3 − 8
3

z4 +
125
24

z5 +O(z6) , z → 0 ,

which absolutely converges for |z| < 1/e. In order to find a solution of the

equation

f(y) := y − log(1 + y) = t2/2 (11)

provided −1 < y < 0, we put z = 1 + y. Then (11) can be written in

equivalent form as

(−z) e−z = − exp{− 1 − t2/2)}.

Therefore, using Taylor expansion with W (k)(0) = (−k)k−1 for k = 0, 1, ...

we get

yt = −W (− exp{−1 − t2/2}) − 1

= −t + (1/3) t2 − (1/36) t3 − (1/270) t4 − (1/4320) t5 + O(t6) , t → 0 .

6



Proof. All four inequalities in (9) and (10) can be proved in the same way.

At first we prove the left hand-side inequality of (9). Since f(y) is increasing

when y > 0 , the left-hand side inequality of (9) will be proved if we show

that

f(t + t2/3 + t3/45) < f(yt) = t2/2 , (12)

provided t satisfies (7). Put

λ1(t) = f(t + t2/3 + t3/45) − t2/2

= t − t2/6 + t3/45 − ln(1 + t + t2/3 + t3/45).

We have λ1(0) = 0. Therefore, in order to prove (12) it is sufficient to show

that the derivative λ′
1(t) is negative when t satisfies (7). It is easy to see

that

λ′
1(t) =

t3 (t2 + 10 t − 15)
675 (1 + t + t2/3 + t3/45)

.

The quadratic equation t2 + 10 t − 15 = 0 has the solutions − 5 ±
√

40.

Hence λ′
1(t) < 0 and also λ1(t) < 0 for t satisfying (7).

Note that λ1(t) < 0 for 0 < t < t∗0, where t∗0 is the solution of

t − t2/6 + t3/45 − ln(1 + t + t2/3 + t3/45) = 0,

where 1.7 < t∗0 < 1.75. Hence we may enlarge the interval in (7) until t∗0.

The other inequality in (9) we find in a similar way. Put

λ2(t) = f(t + t2/3 + t3/36) − t2/2 .

We have λ2(0) = 0 and

λ′
2(t) =

t4 (t + 8)
432 (1 + t + t2/3 + t3/36)

.

Hence the derivative λ′
2(t) is positive and λ2(t) > 0 .

Since f(y) is decreasing when y ∈ (−1 , 0), the inequalities of (10) will be

proved if we show that

f(−t + t2/3 − t3/27) < f(yt) = t2/2 < f(−t + t2/3 − t3/36) (13)
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provided t satisfies (7). Put

λ3(t) = f(−t + t2/3− t3/27)− t2/2 , λ4(t) = f(−t + t2/3− t3/36)− t2/2 .

Then λ3(0) = 0 = λ4(0) and we obtain (13) by

λ′
3(t) =

t3 (t2 − 6 t + 9)
243 (1 − t + t2/3 − t3/27)

> 0 and

λ′
4(t) =

t4 (t − 8)
432 (1 − t + t2/3 − t3/36)

< 0.

Lemma 1 is proved. Now we consider a function

h(y) =
√

2n y − n log
(
1 +

√
2/n y

)
.

Obviously,

h(y) = n f
(√

2/n y
)

. (14)

Lemma 2 Let t0 be the same as in Lemma 1 and x satisfy

0 <
√

2x/n < t0 = −5 +
√

40 = 1.3245. (15)

Let y1(x) , y2(x) be such that

h(y1(x)) = h(y2(x)) = x with y1(x) > 0 and y2(x) < 0 . (16)

Then we have

√
x +

√
2
n

x

3
+

2
n

x3/2

45
< y1(x) <

√
x +

√
2
n

x

3
+

2
n

x3/2

36
(17)

−
√

x +

√
2
n

x

3
− 2

n

x3/2

27
< y2(x) < −

√
x +

√
2
n

x

3
− 2

n

x3/2

36
. (18)

Proof: Inequalities (17) and (18) follow from (14) and (9), (10) when we

take t =
√

2x/n in Lemma 1 considering

yt =

√
2
n

y1(x) and yt =

√
2
n

y2(x) .

Lemma 2 is proved.

8



5 Bounds for J1 , J2 and J3 from (6) under (15)

Recall that Ax = (−
√

x,
√

x) and Bx = { y : h(y) ≤ x }. The function h(y)

is decreasing for y ∈ (−
√

n/2 , 0) , h(0) = 0 and h(y) is increasing for y > 0

(cp. Remark 2 after formulation of Lemma 1 ). Therefore, the set Bx is in

fact an interval ( y2(x) , y1(x) ) according to definitions of y1(x) and y2(x)

in (16). Now we show how to get bounds for

J1 =
∫

Bx

(pVn(y) − φn(y)) dy ,

J2 =
∫

Bx

φ(y) dx −
∫

Ax

φ(y) dy , (19)

J3 =
∫

Bx

(
φn(y) − φ(y)

)
dy −

∫
Ax

(
φn(y) − φ(y)

)
dy . (20)

At first we consider J1. We get (see (5))

J1 =
(

Fn(y1(x)) − Φn(y1(x))
)
−

(
Fn(y2(x)) − Φn(y2(x))

)
,

which leads to

|J1| ≤ 2 sup
x

|Fn(x) − Φn(x)| . (21)

With (4) we obtain the bound for J1.

Now we estimate J2. It follows from (17) and (18) that
√

x− (−y2(x)) ≤

y1(x) −
√

x, therefore J2 might be either positive or negative.

y1(x)y2(x) −y2(x)0 x1/2−x1/2

φ(y)

-

6
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If J2 < 0 then it follows from Lemma 2 and (19) that

|J2| = −J2 = [Φ(
√

x) − Φ(−
√

x)] − [Φ(y1(x)) − Φ(y2(x))]

= 2Φ(
√

x) − [Φ(y1(x)) + Φ(−y2(x))]

≤ 2Φ
(√

x +
b1 + b2

2

)
−

[
Φ(

√
x + a + b1) + Φ(

√
x − a + b2)

]
,

where

a =
x

3

√
2
n

, b1 =
x3/2

45
2
n

and b2 =
x3/2

36
2
n

.

Using the second order Taylor expansion of both functions Φ(
√

x + a + b1)

and Φ(
√

x − a + b2) at the point
√

x + (b1 + b2)/2 we find

|J2| ≤ − 1
2

(
φ′(y∗) + φ′(y∗∗)

)(
a +

b1 − b2

2

)2
(22)

with
√

x − a + b2 ≤ y∗∗ ≤
√

x + (b1 + b2)/2 ≤ y∗ ≤
√

x + a + b1 and

φ′(y) = − 1√
2π

· y · exp(−y2/2) < 0 if y > 0.

Note that under condition (15) we have

(
a +

b1 − b2

2

)2
=

2 x2

9 n

(
1 − 1

60

√
2x

n

)2

≤ 2x2

9n
.

Since
√

x ≤ y∗ then we find

x2 (−φ′(y∗)) ≤ 1√
2π

max
y≥0

{
y5 exp{−y2/2}

}
=

1√
2π

(
5
e

)5/2

.

Let us replace condition (15) by stronger one

0 <
√

2x/n ≤ 1 . (23)

We have

√
x−a+b2 =

√
x (1−u/3+u2/36) =

√
x (1−u/6)2 with u =

√
2x/n ≤ 1.

Since
√

x − a + b2 ≤ y∗∗ and

max
0<u≤1

(1 − u/60)2

(1 − u/6)8
=

(
59
60

)2 (
6
5

)8

,

10



we get

− 9n

2
φ′(y∗∗)

(
a +

b1 − b2

2

)2
= −φ′(y∗∗)

x2 (1 − u/6)8 (1 − u/60)2

(1 − u/6)8

≤ 1√
2π

(
59
60

)2 (
6
5

)8

max
y≥0

{
y5 exp{−y2/2}

}
=

1√
2π

(
59
60

)2 (
6
5

)8 (
5
e

)5/2

.

By (22) we find

|J2| ≤
1

9 ·
√

2π · n

(
5
e

)5/2
(

1 +
(

59
60

)2 (
6
5

)8
)

≤ 1.049
n

. (24)

Now assume that J2 > 0. In this case Lemma 2 implies that

0 < J2 =
∫ y1(x)

√
x

φ(y)dy −
∫ y2(x)

−
√

x
φ(y)dy =

∫ y1(x)

√
x

φ(y)dy −
∫ √

x

−y2(x)
φ(y)dy

≤
∫ √

x+a+b3

√
x

φ(y)dy −
∫ √

x+a−b4

√
x

φ(y)dy =
∫ √

x+a+b3

√
x+a−b4

φ(y)dy,

where

b3 =
2
n

x3/2

36
and b4 =

2
n

x3/2

27
with b3 + b4 =

2
n

· 7x3/2

108
.

Therefore,

J2 ≤ 14
108 n

x3/2 φ(
√

x) ≤ 14
108 n

√
2π

(
3
e

)3/2

≤ 0.06
n

.

Comparing this bound with (24) we get that for J2 the inequality (24) holds

when x satisfies (23).

Now we construct the following bound for J3:

|J3| ≤
0.828

n
. (25)

Define m(y) = (y3 − 3 y) e− y2/2. Then

φn(y) − φ(y) =
1√
2 π

y3 − 3 y

3
√

n/2
e− y2/2 =

m(y)
3
√

nπ
.

Recall that y1(x) > 0 and y2(x) < 0. Since m(−y) = −m(y), we have

J3 =
∫ y1(x)

√
x

m(y)
3
√

nπ
dy −

∫ y2(x)

−
√

x

m(y)
3
√

nπ
dy =

∫ y1(x)

− y2(x)

m(y)
3
√

nπ
dy .

11



It follows from (17) and (18) under (23) that

y1(x) ≤ 49
36

√
x, − y2(x) ≥ 25

36
√

x and y1(x) + y2(x) ≤
√

2
n

2 x

3
. (26)

Constructing bound for J3 we consider different cases depending on the value

of x. Write

J3 =
5∑

i=1

J3i ,

where J3i = J3 · IAi(x) and IA(x) denotes indicator function of set A. We

take

A1 = (11.3001, n/2], A2 = (6.2203, 11.3001], A3 = (5.9877, 6.2203],

A4 = (3.3834, 5.9877], A5 = (0, 3.3834].

It is clear that (25) will be proved when we show for i = 1, . . . , 5

|J3i| ≤
0.828

n
. (27)

The function m(y) has its extreme points at y = ±
√

3 ±
√

6 and we have

to consider only the case y > 0. Then m(y) < 0 if 0 < y <
√

3 and

m(y) > 0 if y >
√

3.

At first we consider J31. If x ∈ A1 then
√

3 +
√

6 ≤ (25/36)
√

x. Since the

function m(y) is decreasing for y ≥
√

3 +
√

6, we obtain

0 < m(y) ≤ m(−y2(x)) ≤ m(25
√

x / 36) for y ∈
(
− y2(x) , y1(x)

)
and∫ y1(x)

− y2(x)
m(y) dy ≤ m(25

√
x/36)

(
y1(x) + y2(x)

)
≤

((
25
36

)3

x3/2 − 3
(

25
36

)
x1/2

)
e− (25/36)2 x/2

√
2
n

2x

3
.

The function v(x) := (a3 x5/2 − 3 a x3/2) e− a2 x/2 takes its maximum value

at x∗ = (4 +
√

7) a−2 and with a = 25/36 we find v(x) ≤ v(x∗) = 4.670.

Hence, in the this case we have

|J31| ≤
1√
2 π

4 v(x∗)
9 n

,

12



which leads to (27) for i = 1.

Suppose now that 6.2203 < x ≤ 11.3001, i.e. (25/36)
√

x >
√

3 , then

with 0 < m(y) ≤ m(
√

3 +
√

6) = 0.3749 for y ∈
(
− y2(x) , y1(x)

)
and

x ≤ 11.3001 we obtain

|J32| ≤
1√
2π

4 x

9n
m(

√
3 +

√
6) ≤ 0.7512

n
.

Note that maxy>0 |m(y)| = −m(
√

3 −
√

6) ≤ 1.3802. Therefore, we get

(27) for i = 5.

Next we consider J34. Put x1 = 3.3834 and x2 = 5.9877. By (26) we

have

−y2(x1) ≥ 1.2736 , y1(x2) ≤ 3.3307 , m(3.3307) ≤ −m(1.2736) ≤ 0.7799

and therefore we get (27) for i = 4.

Finally, we construct bound for J33. Put x3 = 6.2203. By (26) we have

−y2(x2) ≥ 1.699 , y1(x3) ≤ 3.3947

and

−m(1.699) ≤ m(3.3947) ≤ 0.0911 ,

which leads to (27) for i = 3, since |J33| ≤ 0.101/n.

Thus, for all x satisfying (23) we proved (25).

6 Proof of Theorem 1

Note that J2 and J3 are estimated in (24) and (25) provided that x satisfies

(15), whereas the bound for J1 is uniform.

Note now the following fact: let F (x) and G(x) be distribution functions

and suppose that for some x0 > 0 we have

sup
|x|≤x0

|F (x) − G(x)| ≤ δ (28)

13



and

max{G(−x0) , 1 − G(x0)} ≤ ε . (29)

Then

sup
x∈R1

|F (x) − G(x)| ≤ δ + ε . (30)

In fact, (30) follows immediately from (28) and (29) because (29) implies

that

max{F (−x0) , 1 − F (x0)} ≤ δ + ε

and

sup
|x|≥x0

|F (x) − G(x)| ≤ max{G(−x0) , F (−x0) , 1 − F (x0) , 1 − G(x0)} .

Since G1(x) = P (|Y |2 ≤ x) , and

P (|Y | 2 > x) =
2√
2π

∫ ∞

√
x

exp{−y2/2} dy ≤
√

2
πx

∫ ∞

√
x

y exp{−y2/2} dy

=

√
2

πx

∫ ∞

x/2
exp(−z) dz =

√
2

πx
exp{−x/2}

we get for x ≥ n / 2

P (|Y |2 > x) ≤
√

4
π n

exp
(
−n

4

)
.

Therefore, by (4), (6), (21), (24), (25), and (30) we obtain the desired

bound (1).

7 Proof of Theorem 2

We show how (2) can be obtained from (1). For i = 1, . . . , p, put

ni = n − i + 1 and Xi = X 2
ni

− ni log
X 2

ni

ni
− ni.

Here all the X 2
ni

-variates are independent. Using a well known Bartlett de-

composition theorem, see M. Siotani, T. Hayakawa and Y. Fujikoshi (1985)

we can write Tp as

Tp =
p∑

i=1

(Xi + Zi), (31)

14



where Zi ∼ X 2
i−1, X 2

0 = 0 and all Zi’s and Xi’s are independent.

Now we show that if Di is such that

sup
x

|P (Xi ≤ x) − P (Ui ≤ x) | ≤ Di (32)

with Ui distributed as X 2
1 then

sup
x

|P (Tp ≤ x) − Gq(x)| ≤ D1 + · · · + Dp (33)

with q = p(p + 1)/2.

In fact, (33) follows from (31), Lemma 3 (see below) and the fact that

the sum of two independent random variables distributed as X 2
m and X 2

n

resp. has chi-square distribution with m + n degrees of freedom.

Lemma 3 Let X1, X2, U1, U2 and Z be independent random variables. Let

D1 and D2 be such that (32) holds for i = 1, 2. Then

sup
x

∣∣P (X1 + X2 + Z ≤ x) − P (U1 + U2 + Z ≤ x)
∣∣ ≤ D1 + D2. (34)

Remark 1. We do not make in Lemma 3 any assumptions about a form of

distributions of X1, X2, U1, U2 and Z. Its independence is important only.

Proof(cp. the beginning of the proof of Theorem 3.1 in V. V. Ulyanov,

H. Wakaki, Y. Fujihoshi (2005)). Write

sup
x

∣∣P (X1 + X2 + Z ≤ x) − P (U1 + U2 + Z ≤ x)
∣∣

≤ sup
x

∣∣P (X1 + X2 + Z ≤ x) − P (U1 + X2 + Z ≤ x)
∣∣ (35)

+ sup
x

∣∣P (U1 + X2 + Z ≤ x) − P (U1 + U2 + Z ≤ x)
∣∣.

Since for any independent random variables X,U and Z we have

sup
x

∣∣P (X + Z ≤ x) − P (U + Z ≤ x)
∣∣

≤ sup
x

E
∣∣P (X ≤ x − Z| Z) − P (U ≤ x − Z| Z)

∣∣
≤ sup

x

∣∣P (X ≤ x) − P (U ≤ x)
∣∣,

we get (34) from (35) and Lemma’s assumptions.
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8 Generalization of Theorem 1

In Theorem 1 we constructed error bound for distribution of T1 which al-

lowed (see (3)) representation T1 = h(Vn). Therefore, the possible general-

izations can be made in the directions when we replace either function h or

random variable Vn or h and Vn simultaneously by similar objects. Here we

give generalization connected with replacing of Vn. Concerning Vn we used

in the proof of Theorem 1 only the fact that the distribution of Vn can be

approximated by the first-order Chebyshev-Edgeworth expansion and error

bound of the approximation is known (see (4)). Therefore, the following

generalization holds.

Theorem 3 Let a random variable Wn allow an approximation

sup
x

|P (Wn ≤ x) − Φ1n(x)| ≤ B1(n), (36)

where

Φ1n(x) = Φ(x) + p(EW 3
n , x) φ(x)/

√
n,

p(EW 3
n , x) is a polynomial depending on the third moment of Wn and more-

over p(EW 3
n , x) is an even function and B1(n) = O(n−1) as n → +∞. Let

h(y) =
√

2n y − n log(1 +
√

2
n y) and T = h(Wn). Then

sup
x

|P (T ≤ x) − G1(x)| ≤ 2B1(n) +
c

n
+

1.1284√
n

0.7788n ,

where c is a bounded and computable constant depending on the coefficients

of the polynomial p.

Remark. Different examples of Wn when Wn is a normalized sum of

independent identically distributed random variables and Wn satisfies (36)

could be found e.g. in Dobrić and Ghosh (1996). We have noted that

Theorem 1 can be applied to LR statistic for testing a hypothesis that the

variance σ2 is equal to a given value in a normal population N(µ, σ2) in both

cases when µ is known and µ is unknown parameter. By using Theorem 3

16



it is possible to obtain an error bound for the same statistic in a nonnormal

population with known µ.
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