Computable Error Bounds for Approximations of Transformed Chi-Squared Variables and Its Statistical Applications

VLADIMIR V. ULYANOV*, GERD CHRISTOPH**
and Yasunori Fujikoshi***

*Faculty of Computational Mathematics and Cybernetics,
Moscow State University, Moscow, Russia,

**Department of Mathematics, University of Magdeburg,
Magdeburg, Germany

and

*** Department of Mathematics,

Graduate School of Science and Engineering,

Chuo University, Bunkyo-ku, Tokyo, Japan

Abstract

We get computable error bound of order $O(n^{-1})$ for chi-squared with 1 degree of freedom approximation of transformed chi-squared random variable with n degrees of freedom. The result is applied for likelihood ratio statistics in multivariate case.

AMS 1991 subject classification: primary 62H10; secondary 62E20 Key Words and Phrases: Computable error bound, chi-squared approximation, likelihood ratio statistics, transformation of random variables

Abbreviated title: Computable error bound of chi-squared approximation

1 Introduction

Let \mathcal{X}_n^2 be a random variable having chi-squared distribution with n degrees of freedom and density

$$p_{\mathcal{X}_n^2}(x) = \frac{1}{2^{n/2} \Gamma(n/2)} x^{-1+n/2} e^{-x/2} I_{(0,\infty)}(x),$$

where $I_A(x)$ denotes indicator function of set A. We consider a transformed chi-squared statistic defined by

$$T_1 = \mathcal{X}_n^2 - n \log \frac{\mathcal{X}_n^2}{n} - n.$$

The distribution of T_1 appears as the null distribution of LR (likelihood ratio) statistic for testing a hypothesis that the variance σ^2 is equal to a given value, based on a sample of n+1 observations from a normal population $N(\mu, \sigma^2)$. Note that for large n

$$P(T_1 \le x) = G_1(x) + O(n^{-1}),$$

where $G_m(x)$ is the distribution function of chi-squared random variable \mathcal{X}_m^2 with m degrees of freedom. One of our main purposes is to show that

$$\sup_{x} |P(T_1 \le x) - G_1(x)| \le B(n),$$

where B(n) is a computable constant and $B(n) = O(n^{-1})$ as $n \to \infty$. In this paper we also obtain Berry-Esseen type bound for asymptotic approximation of the distribution of

$$T_p = \operatorname{tr} W - n \log \left| \frac{1}{n} W \right| - n p,$$

which is an extension of T_1 , where the random matrix W has a Wishart distribution $W_p(n, I_p)$. The distribution of T_p appears as the null distribution of LR statistic for testing a hypothesis that the covariance matrix Σ is equal to a given covariance matrix. In fact, we prove that

$$\sup_{x} |P(T_p \le x) - G_q(x)| \le B(p, n),$$

where $q = \frac{1}{2}p(p+1)$ and B(p,n) is a computable constant, depending only on p and n and $B(p,n) = O(n^{-1})$ as $n \to \infty$.

In Section 2 we formulate the main results. In Section 3 we give an outline for the method of deriving Theorem 1. It is shown that the result will be obtained by estimating the three integrals J_1 , J_2 and J_3 . In Section 5 we estimate the summands J_1 , J_2 and J_3 , based on auxiliary results given in Section 4. A proof of Theorem 1 is given in Section 6. In Section 7 we show that Theorem 2 can be obtained from Theorem 1 with help of some basic properties. The possible generalizations of Theorem 1 are discussed in Section 8.

2 Main Results

Let $p \ge 1$ and $n \ge 1$ be integers and $p \le n$. Put

$$D(n) = \frac{1.9}{n} \left(\frac{n}{n-1}\right)^2 + \frac{15.59}{n} \cdot 0.9906^n + C_1(n) \cdot 0.9894^n$$

with $C_1(n) = 15.21 / (n-4)$ for n > 32 or $C_1(n) = 0.5271$ for $4 \le n \le 32$.

Theorem 1 We have

$$\sup_{x} |P(T_1 \le x) - G_1(x)| \le B(n), \tag{1}$$

where

$$B(n) = 2D(n) + \frac{1.877}{n} + \frac{1.1284}{\sqrt{n}} \ 0.7788^n.$$

Remark 1. It is easy to see that $B(n) = O(n^{-1})$ as $n \to \infty$.

Theorem 2 We have

$$\sup_{x} |P(T_p \le x) - G_q(x)| \le B(p, n), \qquad (2)$$

where

$$B(p,n) = \sum_{i=1}^{p} B(n_i),.$$

Remark 2. It is easy to see that $B(p, n) = O(n^{-1})$.

n	B(n)	B(2,n)	B(3,n)
100	0.28796	0.58123	0.87994
200	0.07057	0.14192	0.21407
300	0.02932	0.05884	0.08857
400	0.01710	0.03428	0.05153

3 Outline of the Proof of Theorem 1

Put $h(y) = \sqrt{2n} y - n \log(1 + \sqrt{\frac{2}{n}} y)$. It is easy to see that

$$T_1 = h(V_n)$$
 with $V_n = (\mathcal{X}_n^2 - n)/\sqrt{2n}$. (3)

Note that V_n is a random variable \mathcal{X}_n^2 standardized with $E(\mathcal{X}_n^2) = n$ and $Var(\mathcal{X}_n^2) = 2n$. Hence, by the central limit theorem the distribution function

$$F_n(x) = P(V_n \le x) = P(\mathcal{X}_n^2 - n \le \sqrt{2n} x)$$

tends to the normal law $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-u^2/2} du$ as $n \to \infty$.

With $E(V_n^3) = 2\sqrt{2/n}$ and the first-order Chebyshev-Edgeworth expansion

$$\Phi_n(x) = \Phi(x) + \frac{\sqrt{2}(1-x^2)}{3\sqrt{n}} \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$$

one finds $F_n(x) = \Phi_n(x) + O(1/n)$ as $n \to \infty$.

Dobrić and Ghosh (1996) gave a bound of the remainder term (see Example 3 in the mentioned paper with a=b=1/2), proving

$$\sup_{x} |F_n(x) - \Phi_n(x)| \le \frac{1.9}{n} \left(\frac{n}{n-1}\right)^2 + \frac{15.59}{n} 0.9906^n + C_1(n) 0.9894^n$$
 (4)

with $C_1(n) = 15.21 / (n-4)$ for n > 32 or $C_1(n) = 0.5271$ for $4 \le n \le 32$.

Define

$$p_{V_n}(x) = \frac{d}{dx} P(V_n \le x) , \quad \varphi(x) = \frac{d}{dx} \Phi(x) , \quad \varphi_n(x) = \frac{d}{dx} \Phi_n(x) , \quad (5)$$

$$B_x = \{ y \in \mathbb{R} : h(y) \le x \} \quad \text{and} \quad A_x = \{ y \in \mathbb{R} : |y| \le \sqrt{x} \} .$$

Then

$$P(T_{1} \leq x) - G_{1}(x) = P(h(V_{n}) \leq x) - [\Phi(\sqrt{x}) - \Phi(-\sqrt{x})]$$

$$= \int_{B_{x}} p_{V_{n}}(y) dy - \int_{A_{x}} \varphi(y) dy$$

$$= J_{1} + J_{2} + J_{3}, \qquad (6)$$

where

$$J_1 = \int_{B_x} (p_{V_n}(y) - \varphi_n(y)) dy,$$

$$J_2 = \int_{B_x} \varphi(y) dy - \int_{A_x} \varphi(y) dy,$$

$$J_3 = \int_{B_x} (\varphi_n(y) - \varphi(y)) dy - \int_{A_x} (\varphi_n(y) - \varphi(y)) dy.$$

Here we used

$$\int_{A_x} (\varphi_n(y) - \varphi(y)) \, dy = 0$$

because A_x is a symmetric set and the function $\varphi_n(y) - \varphi(y)$ is odd.

In Section 5 we get bounds for J_1 , J_2 and J_3 of order $O(n^{-1})$ using (4) and the following facts:

- Lebesgue measure of the set $\{A_x \triangle B_x\}$ is of order $O(n^{-1/2})$;
- the function $\varphi(y)$ is even;
- the function $\varphi_n(y) \varphi(y)$ is odd and is of order $O(n^{-1/2})$.

See the detailed proof of Theorem 1 in Section 6. The possible generalizations of Theorem 1 are discussed in Section 8.

4 Auxiliary Results

Let
$$f(y) = y - \log(1 + y)$$
 for $y > -1$.

Lemma 1 Let t be a real number such that

$$0 < t < t_0 = -5 + \sqrt{40} = 1.3245. \tag{7}$$

Assume that y_t and \overline{y}_t satisfy the conditions:

$$f(y_t) = f(\overline{y}_t) = t^2/2$$
 with $y_t > 0$ and $\overline{y}_t < 0$. (8)

Then we have

$$t + \frac{t^2}{3} + \frac{t^3}{45} < y_t < t + \frac{t^2}{3} + \frac{t^3}{36} \tag{9}$$

and

$$-t + \frac{t^2}{3} - \frac{t^3}{27} < \overline{y}_t < -t + \frac{t^2}{3} - \frac{t^3}{36}. \tag{10}$$

Remark 1. Note f(y) is decreasing when $y \in (-1, 0)$ and it is increasing when y > 0. Since f(y) is continuous function, $\lim_{y \downarrow -1} f(y) = \lim_{y \uparrow +\infty} f(y) = +\infty$ and f(0) = 0, the solutions y_t and \overline{y}_t are defined uniquely by the conditions (8).

Remark 2. One can write the solution $\overline{y}_t < 0$ of $f(\overline{y}_t) = t^2/2$ in terms of the real Lambert's W-function. We recall that the real Lambert's W-function is defined to be the function satisfying $W(u) e^{W(u)} = u$, i.e. it is the inverse function of $z e^z$ for $z \ge -1$, i.e. if $z e^z = u$, then z = W(u). Some properties and applications of the real Lambert's W-function are given in Corless, Gonnet, Hare, Jeffrey and Knuth(1996), e.g. series representation holds

$$W(z) = \sum_{n=1}^{\infty} \frac{(-n)^{n-1}}{n!} z^n = z - z^2 + \frac{3}{2} z^3 - \frac{8}{3} z^4 + \frac{125}{24} z^5 + O(z^6), \quad z \to 0,$$

which absolutely converges for |z| < 1/e. In order to find a solution of the equation

$$f(y) := y - \log(1+y) = t^2/2 \tag{11}$$

provided -1 < y < 0, we put z = 1 + y. Then (11) can be written in equivalent form as

$$(-z) e^{-z} = -\exp\{-1 - t^2/2\}.$$

Therefore, using Taylor expansion with $W^{(k)}(0) = (-k)^{k-1}$ for k = 0, 1, ... we get

$$\overline{y}_t = -W(-\exp\{-1 - t^2/2\}) - 1$$

= $-t + (1/3)t^2 - (1/36)t^3 - (1/270)t^4 - (1/4320)t^5 + O(t^6), t \to 0.$

Proof. All four inequalities in (9) and (10) can be proved in the same way. At first we prove the left hand-side inequality of (9). Since f(y) is increasing when y > 0, the left-hand side inequality of (9) will be proved if we show that

$$f(t + t^2/3 + t^3/45) < f(y_t) = t^2/2,$$
 (12)

provided t satisfies (7). Put

$$\lambda_1(t) = f(t + t^2/3 + t^3/45) - t^2/2$$
$$= t - t^2/6 + t^3/45 - \ln(1 + t + t^2/3 + t^3/45).$$

We have $\lambda_1(0) = 0$. Therefore, in order to prove (12) it is sufficient to show that the derivative $\lambda'_1(t)$ is negative when t satisfies (7). It is easy to see that

$$\lambda_1'(t) = \frac{t^3 (t^2 + 10 t - 15)}{675 (1 + t + t^2/3 + t^3/45)}.$$

The quadratic equation $t^2 + 10 t - 15 = 0$ has the solutions $-5 \pm \sqrt{40}$. Hence $\lambda_1'(t) < 0$ and also $\lambda_1(t) < 0$ for t satisfying (7).

Note that $\lambda_1(t) < 0$ for $0 < t < t_0^*$, where t_0^* is the solution of

$$t - t^2/6 + t^3/45 - \ln(1 + t + t^2/3 + t^3/45) = 0,$$

where $1.7 < t_0^* < 1.75$. Hence we may enlarge the interval in (7) until t_0^* .

The other inequality in (9) we find in a similar way. Put

$$\lambda_2(t) = f(t + t^2/3 + t^3/36) - t^2/2.$$

We have $\lambda_2(0) = 0$ and

$$\lambda_2'(t) = \frac{t^4 (t+8)}{432 (1+t+t^2/3+t^3/36)}.$$

Hence the derivative $\lambda_2'(t)$ is positive and $\lambda_2(t)>0$.

Since f(y) is decreasing when $y \in (-1, 0)$, the inequalities of (10) will be proved if we show that

$$f(-t + t^2/3 - t^3/27) < f(\overline{y}_t) = t^2/2 < f(-t + t^2/3 - t^3/36)$$
 (13)

provided t satisfies (7). Put

$$\lambda_3(t) = f(-t + t^2/3 - t^3/27) - t^2/2, \quad \lambda_4(t) = f(-t + t^2/3 - t^3/36) - t^2/2.$$

Then $\lambda_3(0) = 0 = \lambda_4(0)$ and we obtain (13) by

$$\lambda_3'(t) = \frac{t^3 (t^2 - 6t + 9)}{243 (1 - t + t^2/3 - t^3/27)} > 0$$
 and

$$\lambda_4'(t) = \frac{t^4(t-8)}{432(1-t+t^2/3-t^3/36)} < 0.$$

Lemma 1 is proved. Now we consider a function

$$h(y) = \sqrt{2n} y - n \log \left(1 + \sqrt{2/n} y\right).$$

Obviously,

$$h(y) = n f\left(\sqrt{2/n} y\right). \tag{14}$$

Lemma 2 Let t_0 be the same as in Lemma 1 and x satisfy

$$0 < \sqrt{2x/n} < t_0 = -5 + \sqrt{40} = 1.3245. \tag{15}$$

Let $y_1(x)$, $y_2(x)$ be such that

$$h(y_1(x)) = h(y_2(x)) = x$$
 with $y_1(x) > 0$ and $y_2(x) < 0$. (16)

Then we have

$$\sqrt{x} + \sqrt{\frac{2}{n}} \frac{x}{3} + \frac{2}{n} \frac{x^{3/2}}{45} < y_1(x) < \sqrt{x} + \sqrt{\frac{2}{n}} \frac{x}{3} + \frac{2}{n} \frac{x^{3/2}}{36}$$
 (17)

$$-\sqrt{x} + \sqrt{\frac{2}{n}} \frac{x}{3} - \frac{2}{n} \frac{x^{3/2}}{27} < y_2(x) < -\sqrt{x} + \sqrt{\frac{2}{n}} \frac{x}{3} - \frac{2}{n} \frac{x^{3/2}}{36}.$$
 (18)

Proof: Inequalities (17) and (18) follow from (14) and (9), (10) when we take $t = \sqrt{2x/n}$ in Lemma 1 considering

$$y_t = \sqrt{\frac{2}{n}} y_1(x)$$
 and $\overline{y}_t = \sqrt{\frac{2}{n}} y_2(x)$.

Lemma 2 is proved.

5 Bounds for J_1 , J_2 and J_3 from (6) under (15)

Recall that $A_x = (-\sqrt{x}, \sqrt{x})$ and $B_x = \{y : h(y) \le x\}$. The function h(y) is decreasing for $y \in (-\sqrt{n/2}, 0)$, h(0) = 0 and h(y) is increasing for y > 0 (cp. Remark 2 after formulation of Lemma 1). Therefore, the set B_x is in fact an interval $(y_2(x), y_1(x))$ according to definitions of $y_1(x)$ and $y_2(x)$ in (16). Now we show how to get bounds for

$$J_{1} = \int_{B_{x}} (p_{V_{n}}(y) - \varphi_{n}(y)) dy,$$

$$J_{2} = \int_{B_{x}} \varphi(y) dx - \int_{A_{x}} \varphi(y) dy,$$

$$J_{3} = \int_{B_{x}} (\varphi_{n}(y) - \varphi(y)) dy - \int_{A_{x}} (\varphi_{n}(y) - \varphi(y)) dy.$$
(20)

At first we consider J_1 . We get (see (5))

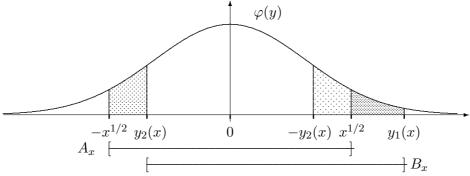
$$J_1 = \left(F_n(y_1(x)) - \Phi_n(y_1(x)) \right) - \left(F_n(y_2(x)) - \Phi_n(y_2(x)) \right),$$

which leads to

$$|J_1| \le 2 \sup_{x} |F_n(x) - \Phi_n(x)|.$$
 (21)

With (4) we obtain the bound for J_1 .

Now we estimate J_2 . It follows from (17) and (18) that $\sqrt{x} - (-y_2(x)) \le y_1(x) - \sqrt{x}$, therefore J_2 might be either positive or negative.



If $J_2 < 0$ then it follows from Lemma 2 and (19) that

$$|J_2| = -J_2 = [\Phi(\sqrt{x}) - \Phi(-\sqrt{x})] - [\Phi(y_1(x)) - \Phi(y_2(x))]$$

$$= 2\Phi(\sqrt{x}) - [\Phi(y_1(x)) + \Phi(-y_2(x))]$$

$$\leq 2\Phi(\sqrt{x} + \frac{b_1 + b_2}{2})$$

$$- [\Phi(\sqrt{x} + a + b_1) + \Phi(\sqrt{x} - a + b_2)],$$

where

$$a = \frac{x}{3}\sqrt{\frac{2}{n}}, \quad b_1 = \frac{x^{3/2}}{45} \frac{2}{n} \quad \text{and} \quad b_2 = \frac{x^{3/2}}{36} \frac{2}{n}.$$

Using the second order Taylor expansion of both functions $\Phi(\sqrt{x} + a + b_1)$ and $\Phi(\sqrt{x} - a + b_2)$ at the point $\sqrt{x} + (b_1 + b_2)/2$ we find

$$|J_2| \le -\frac{1}{2} \left(\varphi'(y^*) + \varphi'(y^{**}) \right) \left(a + \frac{b_1 - b_2}{2} \right)^2 \tag{22}$$

with $\sqrt{x} - a + b_2 \le y * * \le \sqrt{x} + (b_1 + b_2)/2 \le y * \le \sqrt{x} + a + b_1$ and $\varphi'(y) = -\frac{1}{\sqrt{2\pi}} \cdot y \cdot \exp(-y^2/2) < 0$ if y > 0.

Note that under condition (15) we have

$$\left(a + \frac{b_1 - b_2}{2}\right)^2 = \frac{2x^2}{9n} \left(1 - \frac{1}{60}\sqrt{\frac{2x}{n}}\right)^2 \le \frac{2x^2}{9n}.$$

Since $\sqrt{x} \le y^*$ then we find

$$x^{2}(-\varphi'(y^{*})) \le \frac{1}{\sqrt{2\pi}} \max_{y \ge 0} \left\{ y^{5} \exp\{-y^{2}/2\} \right\} = \frac{1}{\sqrt{2\pi}} \left(\frac{5}{e}\right)^{5/2}.$$

Let us replace condition (15) by stronger one

$$0 < \sqrt{2x/n} \le 1. \tag{23}$$

We have

$$\sqrt{x} - a + b_2 = \sqrt{x} (1 - u/3 + u^2/36) = \sqrt{x} (1 - u/6)^2$$
 with $u = \sqrt{2x/n} \le 1$.

Since $\sqrt{x} - a + b_2 \le y^{**}$ and

$$\max_{0 < u \le 1} \frac{(1 - u/60)^2}{(1 - u/6)^8} = \left(\frac{59}{60}\right)^2 \ \left(\frac{6}{5}\right)^8,$$

we get

$$- \frac{9n}{2} \varphi'(y^{**}) \left(a + \frac{b_1 - b_2}{2} \right)^2 = -\varphi'(y^{**}) \frac{x^2 (1 - u/6)^8 (1 - u/60)^2}{(1 - u/6)^8}$$

$$\leq \frac{1}{\sqrt{2\pi}} \left(\frac{59}{60} \right)^2 \left(\frac{6}{5} \right)^8 \max_{y \geq 0} \left\{ y^5 \exp\{-y^2/2\} \right\}$$

$$= \frac{1}{\sqrt{2\pi}} \left(\frac{59}{60} \right)^2 \left(\frac{6}{5} \right)^8 \left(\frac{5}{e} \right)^{5/2}.$$

By (22) we find

$$|J_2| \le \frac{1}{9 \cdot \sqrt{2\pi} \cdot n} \left(\frac{5}{e}\right)^{5/2} \left(1 + \left(\frac{59}{60}\right)^2 \left(\frac{6}{5}\right)^8\right) \le \frac{1.049}{n}.$$
 (24)

Now assume that $J_2 > 0$. In this case Lemma 2 implies that

$$0 < J_{2} = \int_{\sqrt{x}}^{y_{1}(x)} \varphi(y) dy - \int_{-\sqrt{x}}^{y_{2}(x)} \varphi(y) dy = \int_{\sqrt{x}}^{y_{1}(x)} \varphi(y) dy - \int_{-y_{2}(x)}^{\sqrt{x}} \varphi(y) dy$$
$$\leq \int_{\sqrt{x}}^{\sqrt{x} + a + b_{3}} \varphi(y) dy - \int_{\sqrt{x}}^{\sqrt{x} + a - b_{4}} \varphi(y) dy = \int_{\sqrt{x} + a - b_{4}}^{\sqrt{x} + a - b_{4}} \varphi(y) dy,$$

where

$$b_3 = \frac{2}{n} \frac{x^{3/2}}{36}$$
 and $b_4 = \frac{2}{n} \frac{x^{3/2}}{27}$ with $b_3 + b_4 = \frac{2}{n} \cdot \frac{7x^{3/2}}{108}$.

Therefore,

$$J_2 \le \frac{14}{108 \, n} \, x^{3/2} \, \varphi(\sqrt{x}) \le \frac{14}{108 \, n \, \sqrt{2\pi}} \, \left(\frac{3}{e}\right)^{3/2} \le \frac{0.06}{n}.$$

Comparing this bound with (24) we get that for J_2 the inequality (24) holds when x satisfies (23).

Now we construct the following bound for J_3 :

$$|J_3| \le \frac{0.828}{n} \,. \tag{25}$$

Define $m(y) = (y^3 - 3y) e^{-y^2/2}$. Then

$$\varphi_n(y) - \varphi(y) = \frac{1}{\sqrt{2\pi}} \frac{y^3 - 3y}{3\sqrt{n/2}} e^{-y^2/2} = \frac{m(y)}{3\sqrt{n\pi}}.$$

Recall that $y_1(x) > 0$ and $y_2(x) < 0$. Since m(-y) = -m(y), we have

$$J_3 = \int_{\sqrt{x}}^{y_1(x)} \frac{m(y)}{3\sqrt{n\pi}} \, dy - \int_{-\sqrt{x}}^{y_2(x)} \frac{m(y)}{3\sqrt{n\pi}} \, dy = \int_{-y_2(x)}^{y_1(x)} \frac{m(y)}{3\sqrt{n\pi}} \, dy.$$

It follows from (17) and (18) under (23) that

$$y_1(x) \le \frac{49}{36} \sqrt{x}, -y_2(x) \ge \frac{25}{36} \sqrt{x} \text{ and } y_1(x) + y_2(x) \le \sqrt{\frac{2}{n}} \frac{2x}{3}.$$
 (26)

Constructing bound for J_3 we consider different cases depending on the value of x. Write

$$J_3 = \sum_{i=1}^5 J_{3i} \,,$$

where $J_{3i} = J_3 \cdot I_{A_i}(x)$ and $I_A(x)$ denotes indicator function of set A. We take

$$A_1 = (11.3001, n/2], \quad A_2 = (6.2203, 11.3001], \quad A_3 = (5.9877, 6.2203],$$

 $A_4 = (3.3834, 5.9877], \quad A_5 = (0, 3.3834].$

It is clear that (25) will be proved when we show for i = 1, ..., 5

$$|J_{3i}| \le \frac{0.828}{n} \,. \tag{27}$$

The function m(y) has its extreme points at $y = \pm \sqrt{3 \pm \sqrt{6}}$ and we have to consider only the case y > 0. Then m(y) < 0 if $0 < y < \sqrt{3}$ and m(y) > 0 if $y > \sqrt{3}$.

At first we consider J_{31} . If $x \in A_1$ then $\sqrt{3 + \sqrt{6}} \le (25/36)\sqrt{x}$. Since the function m(y) is decreasing for $y \ge \sqrt{3 + \sqrt{6}}$, we obtain

$$0 < m(y) \le m(-y_2(x)) \le m(25\sqrt{x}/36)$$
 for $y \in (-y_2(x), y_1(x))$

and

$$\int_{-y_2(x)}^{y_1(x)} m(y) \, dy \leq m(25\sqrt{x}/36) \left(y_1(x) + y_2(x)\right)$$

$$\leq \left(\left(\frac{25}{36}\right)^3 x^{3/2} - 3\left(\frac{25}{36}\right) x^{1/2}\right) e^{-(25/36)^2 x/2} \sqrt{\frac{2}{n}} \frac{2x}{3}.$$

The function $v(x) := (a^3 x^{5/2} - 3 a x^{3/2}) e^{-a^2 x/2}$ takes its maximum value at $x^* = (4 + \sqrt{7}) a^{-2}$ and with a = 25/36 we find $v(x) \le v(x^*) = 4.670$. Hence, in the this case we have

$$|J_{31}| \le \frac{1}{\sqrt{2\pi}} \frac{4 v(x^*)}{9 n},$$

which leads to (27) for i = 1.

Suppose now that $6.2203 < x \le 11.3001$, i.e. $(25/36)\sqrt{x} > \sqrt{3}$, then with $0 < m(y) \le m(\sqrt{3+\sqrt{6}}) = 0.3749$ for $y \in \left(-y_2(x), y_1(x)\right)$ and $x \le 11.3001$ we obtain

$$|J_{32}| \le \frac{1}{\sqrt{2\pi}} \frac{4 x}{9 n} m(\sqrt{3+\sqrt{6}}) \le \frac{0.7512}{n}$$
.

Note that $\max_{y>0} |m(y)| = -m(\sqrt{3-\sqrt{6}}) \le 1.3802$. Therefore, we get (27) for i=5.

Next we consider J_{34} . Put $x_1=3.3834$ and $x_2=5.9877$. By (26) we have

$$-y_2(x_1) \ge 1.2736$$
, $y_1(x_2) \le 3.3307$, $m(3.3307) \le -m(1.2736) \le 0.7799$

and therefore we get (27) for i = 4.

Finally, we construct bound for J_{33} . Put $x_3 = 6.2203$. By (26) we have

$$-y_2(x_2) \ge 1.699$$
, $y_1(x_3) \le 3.3947$

and

$$-m(1.699) \le m(3.3947) \le 0.0911$$

which leads to (27) for i = 3, since $|J_{33}| \le 0.101/n$.

Thus, for all x satisfying (23) we proved (25).

6 Proof of Theorem 1

Note that J_2 and J_3 are estimated in (24) and (25) provided that x satisfies (15), whereas the bound for J_1 is uniform.

Note now the following fact: let F(x) and G(x) be distribution functions and suppose that for some $x_0 > 0$ we have

$$\sup_{|x| \le x_0} |F(x) - G(x)| \le \delta \tag{28}$$

and

$$\max\{G(-x_0), 1 - G(x_0)\} \le \varepsilon.$$
 (29)

Then

$$\sup_{x \in \mathbb{R}^1} |F(x) - G(x)| \le \delta + \varepsilon. \tag{30}$$

In fact, (30) follows immediately from (28) and (29) because (29) implies that

$$\max\{F(-x_0), 1 - F(x_0)\} \le \delta + \varepsilon$$

and

$$\sup_{|x| \ge x_0} |F(x) - G(x)| \le \max\{G(-x_0), F(-x_0), 1 - F(x_0), 1 - G(x_0)\}.$$

Since $G_1(x) = P(|Y|^2 \le x)$, and

$$P(|Y|^{2} > x) = \frac{2}{\sqrt{2\pi}} \int_{\sqrt{x}}^{\infty} \exp\{-y^{2}/2\} dy \le \sqrt{\frac{2}{\pi x}} \int_{\sqrt{x}}^{\infty} y \exp\{-y^{2}/2\} dy$$
$$= \sqrt{\frac{2}{\pi x}} \int_{x/2}^{\infty} \exp(-z) dz = \sqrt{\frac{2}{\pi x}} \exp\{-x/2\}$$

we get for $x \ge n/2$

$$P(|Y|^2 > x) \le \sqrt{\frac{4}{\pi n}} \exp\left(-\frac{n}{4}\right)$$
.

Therefore, by (4), (6), (21), (24), (25), and (30) we obtain the desired bound (1).

7 Proof of Theorem 2

We show how (2) can be obtained from (1). For i = 1, ..., p, put

$$n_i = n - i + 1$$
 and $X_i = \mathcal{X}_{n_i}^2 - n_i \log \frac{\mathcal{X}_{n_i}^2}{n_i} - n_i$.

Here all the $\mathcal{X}_{n_i}^2$ -variates are independent. Using a well known Bartlett decomposition theorem, see M. Siotani, T. Hayakawa and Y. Fujikoshi (1985) we can write T_p as

$$T_p = \sum_{i=1}^{p} (X_i + Z_i), \tag{31}$$

where $Z_i \sim \mathcal{X}_{i-1}^2$, $\mathcal{X}_0^2 = 0$ and all Z_i 's and X_i 's are independent. Now we show that if D_i is such that

$$\sup_{x} |P(X_i \le x) - P(U_i \le x)| \le D_i \tag{32}$$

with U_i distributed as \mathcal{X}_1^2 then

$$\sup_{T} |P(T_p \le x) - G_q(x)| \le D_1 + \dots + D_p$$
 (33)

with q = p(p+1)/2.

In fact, (33) follows from (31), Lemma 3 (see below) and the fact that the sum of two independent random variables distributed as \mathcal{X}_m^2 and \mathcal{X}_n^2 resp. has chi-square distribution with m+n degrees of freedom.

Lemma 3 Let X_1, X_2, U_1, U_2 and Z be independent random variables. Let D_1 and D_2 be such that (32) holds for i = 1, 2. Then

$$\sup_{x} |P(X_1 + X_2 + Z \le x) - P(U_1 + U_2 + Z \le x)| \le D_1 + D_2.$$
 (34)

Remark 1. We do not make in Lemma 3 any assumptions about a form of distributions of X_1, X_2, U_1, U_2 and Z. Its independence is important only. **Proof**(cp. the beginning of the proof of Theorem 3.1 in V. V. Ulyanov, H. Wakaki, Y. Fujihoshi (2005)). Write

$$\sup_{x} |P(X_{1} + X_{2} + Z \leq x) - P(U_{1} + U_{2} + Z \leq x)|$$

$$\leq \sup_{x} |P(X_{1} + X_{2} + Z \leq x) - P(U_{1} + X_{2} + Z \leq x)|$$

$$+ \sup_{x} |P(U_{1} + X_{2} + Z \leq x) - P(U_{1} + U_{2} + Z \leq x)|.$$
(35)

Since for any independent random variables X, U and Z we have

$$\sup_{x} |P(X + Z \le x) - P(U + Z \le x)|$$

$$\le \sup_{x} E|P(X \le x - Z||Z) - P(U \le x - Z||Z)|$$

$$\le \sup_{x} |P(X \le x) - P(U \le x)|,$$

we get (34) from (35) and Lemma's assumptions.

8 Generalization of Theorem 1

In Theorem 1 we constructed error bound for distribution of T_1 which allowed (see (3)) representation $T_1 = h(V_n)$. Therefore, the possible generalizations can be made in the directions when we replace either function h or random variable V_n or h and V_n simultaneously by similar objects. Here we give generalization connected with replacing of V_n . Concerning V_n we used in the proof of Theorem 1 only the fact that the distribution of V_n can be approximated by the first-order Chebyshev-Edgeworth expansion and error bound of the approximation is known (see (4)). Therefore, the following generalization holds.

Theorem 3 Let a random variable W_n allow an approximation

$$\sup_{x} |P(W_n \le x) - \Phi_{1n}(x)| \le B_1(n), \tag{36}$$

where

$$\Phi_{1n}(x) = \Phi(x) + p(EW_n^3, x) \varphi(x) / \sqrt{n},$$

 $p(EW_n^3, x)$ is a polynomial depending on the third moment of W_n and moreover $p(EW_n^3, x)$ is an even function and $B_1(n) = O(n^{-1})$ as $n \to +\infty$. Let $h(y) = \sqrt{2n} y - n \log(1 + \sqrt{\frac{2}{n}} y)$ and $T = h(W_n)$. Then

$$\sup_{x} |P(T \le x) - G_1(x)| \le 2B_1(n) + \frac{c}{n} + \frac{1.1284}{\sqrt{n}} \ 0.7788^n,$$

where c is a bounded and computable constant depending on the coefficients of the polynomial p.

Remark. Different examples of W_n when W_n is a normalized sum of independent identically distributed random variables and W_n satisfies (36) could be found e.g. in Dobrić and Ghosh (1996). We have noted that Theorem 1 can be applied to LR statistic for testing a hypothesis that the variance σ^2 is equal to a given value in a normal population $N(\mu, \sigma^2)$ in both cases when μ is known and μ is unknown parameter. By using Theorem 3

it is possible to obtain an error bound for the same statistic in a nonnormal population with known μ .

Acknowledgment. The research was supported in part by Russian Foundation of Basic Research, project no. 05-01-02941, and by Grant-in-Aid for Scientific Research (B) in 2005, no. 1530092.

References

R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey and D.E. Knuth (1996), On the Lambert W function, *Advances in Computational Mathematics*, **5**, 329-359.

V. Dobrić and B.K. Ghosh (1996), Some analogs of the Berry-Esséen bound for first-order Chebyshev-Edgeworth expansions, *Statistics & Decisions*, **14**, 383 - 404.

M. Siotani, T. Hayakawa, and Y. Fujikoshi, *Modern Multivariate Statistical Analysis: A Graduate Course and Handbook.* The American Sciences Press Series in Mathematical and Management Sciences, Vol. 9. Columbus, Ohio: American Sciences Press, Inc. XIV, 1985.

V. V. Ulyanov, H. Wakaki and Y. Fujihoshi (2005), Berry-Esseen bound for high dimensional asymptotic approximation of Wilks' Lambda distribution, accepted to *Statistics and Probability Letters*.