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Abstract

In this paper, conservative simultaneous conådence intervals for pairwise

comparisons among mean vectors in multivariate normal distributions

are considered. The aérmative proof of the multivariate generalized

Tukey conjecture in the case of four mean vectors can be completed.

Further, the upper bound for the conservativeness of the multivariate

Tukey-Kramer procedure is also given. Finally, numerical results by

Monte Carlo simulations are given.
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1. Introduction
Consider the simultaneous conådence intervals for pairwise multiple compar-

isons among mean vectors from the multivariate normal populations. Let M =
[ñ1; : : : ;ñk] be the unknown p Ç k matrix of k mean vectors corresponding to
the k treatments where ñi is the mean vector from ith population. Also, let
cM = [bñ1; : : : ; bñk] be the estimator of M such that vec(X) is distributed as

Nkp(0;V ä Ü), where X = cM ÄM , V = [vij] is a known k Ç k positive deå-
nite matrix and Ü is an unknown pÇ p positive deånite matrix, and vec(Å) denotes
the column vector formed by stacking the columns of the matrix under each other.
Further, we assume that S is an unbiased estimator of Ü such that óS is indepen-
dent of cM and is distributed as a Wishart distribution Wp(Ü; ó). Then, we have
the simultaneous conådence intervals for pairwise comparisons among mean vectors
given by

a0Mb 2
h

a0cMbÜ t(b0V b)1=2(a0Sa)1=2
i

; 8a 2 p; 8b 2 ; (1)

where p is the set of any nonzero real p-dimensional vectors and is a subset in
the k-dimensional space such that

= fb 2 k : b = ei Ä ej; 1 î i < j î kg;

ei is a unit vector of the k-dimensional space having 1 at i-th component and 0 at
others. We note that (1) can be expressed as

a0(ñi Äñj) 2
Ç

a0(bñi Ä bñj)Ü t (dija0Sa)1=2
É

; 8a 2 p; 1 î i < j î k;

where dij = vii Ä 2vij + vjj.
In order to give the simultaneous conådence intervals, however, we have to decide

the unknown value of t(> 0) which is the upper 100ãpercentile of the T 2max statistic,

T 2maxÅp = max
b2

ö

(Xb)0SÄ1Xb

b0V b

õ

(2)

= max
1îi<jîk

f(xi Ä xj)0(dijS)Ä1(xi Ä xj)g: (3)

Unfortunately, it is diécult to ånd the exact value of t. Then, some asymptotic
approximations for the upper percentiles of T 2maxÅp statistic have been discussed by
Siotani (1959a, 1959b, 1960), Krishnaiah (1979), Siotani, Hayakawa and Fujikoshi
(1985), Seo and Siotani (1992), Seo (1995), and so on.
In the case that V = I , T 2maxÅp statistic is reduced as the same as half of the

multivariate Studentized range statistic R2max (see, e.g., Seo and Siotani (1992)). So,
as an approximation procedure, Seo, Mano and Fujikoshi (1994) proposed the mul-
tivariate Tukey-Kramer procedure which is a simple procedure by replacing with the
upper percentile of the R2max statistic as an approximation to the one of T

2
maxÅp statis-

tic for any positive deånite matrix V . This procedure is the multivariate version
of Tukey-Kramer procedure (Tukey 1953; Kramer 1956, 1957). The Tukey-Kramer

2



procedure is an attractive and simple procedure for pairwise multiple comparisons.
(see, e.g., Hochberg and Tamhane(1987)).
As for the univariate Tukey-Kramer procedure, the generalized Tukey conjecture

is known as the statement that the TK procedure yields the conservative simultane-
ous conådence intervals for all pairwise comparisons among means (see, e.g., Ben-
jamini and Braun (2002)). Even for the univariate case, there has been no analytical
proof of the generalized Tukey conjecture except the special cases. Theoretical dis-
cussions related to this conjecture are referred to Hayter(1984, 1989), Brown(1984),
Uusipaikka (1985) and Spurrier and Isham (1985). Further, Lin, Sepp°anen and
Uusipaikka(1990) have discussed the generalized Tukey conjecture for pairwise com-
parisons among the components of the mean vector.
As for the multivariate Tukey-Kramer procedure, the multivariate version of

the generalized Tukey conjecture has been aérmatively proved in the case of three
correlated mean vectors by Seo, Mano and Fujikoshi (1994). Further, relating to
multivariate Tukey-Kramer conjecture, Seo (1996) gave the upper bound for con-
servativeness of the procedure for the pairwise comparisons among mean vectors.
The related discussion for the univariate case is referred to Somerville (1993). The
purpose of this paper is to give the aérmative proof of the multivariate generalized
Tukey conjecture in the case of four mean vectors.
Although we do not discuss for comparisons with a control, Seo(1995) proposed

the conservative procedure for the case of comparisons with a control, which is
similar to the multivariate Tukey-Kramer procedure. Also, Seo and Nishiyama(2006)
discuss the bound for these conservative procedures for pairwise comparisons and
comparisons with a control in the case of three correlated mean vectors.
The organization of the paper is as follows. In Section 2, the conservativeness

of the multivariate Tukey-Kramer procedure for four mean vectors and its upper
bound for the conservativeness are discussed. Finally, we also give some numerical
results by Monte Carlo simulations.

2. The multivariate Tukey-Kramer procedure
The simultaneous conådence intervals for all pairwise comparisons by the mul-

tivariate Tukey-Kramer procedure are given by

a0(ñi Äñj) 2
h

a0(bñi Ä bñj)Ü tpÅI
p

dija0Sa
i

; 8a 2 p; 1 î i < j î k; (4)

where t2pÅI is the upper ãpercentile of T
2
maxÅp statistic with V = I, that is, t2pÅI = q

2=2
and q2 ë q2p;k;ó(ã) is the upper ãpercentile of the p-variate Studentized range statis-
tic with parameters k and ó. By a reduction of relating to the coverage probability
of (4), Seo, Mano and Fujikoshi (1994) proved that the coverage probability in the
case k = 3 is equal or greater than 1Äã for any positive deånite matrix V . Using
the similar reduction, Seo (1996) discussed the bound of conservative simultaneous
conådence levels.
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Consider the probability

Q(t;V ; ) = Prf (Xb)0(óS)Ä1(Xb) î t(b0V b); 8b 2 g; (5)

where t is any åxed constant. Without loss of generality, we may assume Ü = Ip
when we consider the probability (5).
When t = tÉp(ë t2pÅI=ó) and = , the coverage probability (5) is the same as the

coverage probability of (4). The conservativeness of the simultaneous conådence
intervals (4) means that Q(tÉp;V ; ) ï Q(tÉp; I ; ) = 1 Ä ã. The inequality is
known as the multivariate generalized Tukey conjecture. Then we have the following
theorem for the case k = 3 by using same line of the proof of Theorem 3.2 in Seo,
Mano and Fujikoshi (1994).

Theorem 1. Let Q(t;V ; ) be the coverage probability (5) with a known matrix
V for the case k = 3. Then, for any positive deånite matrix V , it holds that

1Äã= Q(tÉp; I ; ) î Q(tÉp;V ; ) < Q(tÉp;V 0; );

where tÉp = t2pÅI=ó, = fc 2 k : c = ei Ä ej; 1 î i < j î kg and V 0 has
the condition such that

p
d12 =

p
d13 +

p
d23 or

p
d13 =

p
d12 +

p
d23 or

p
d23 =p

d12 +
p
d13.

In connection with Theorem 1, we have the following conjecture in the case of
k ï 4.

Conjecture 2. Let Q(t;V ; ) be the coverage probability for (5) with a known
matrix V . Then, for any positive deånite matrix V , it holds that

1Äã= Q(tÉp; I ; ) î Q(tÉp;V ; ) < Q(tÉp;V 1; );

where tÉp = t2pÅI=ó, = fc 2 Rk : c = ei Ä ej; 1 î i < j î kg, V 1 satis-

åes with one of the conditions \
p

dij =
p

dil1 +
p

djl1 and
p

dij =
p

dil2 +
p

djl2
and : : : and

p

dij =
p

dilkÄ2 +
p

djlkÄ2", i; j; l1; l2; : : : ; lkÄ3 and lkÄ2 take an-
other value each other.

In this paper, we consider the proof of the case of k = 4 in Conjecture 2. That
is, V 1 is a matrix with one of the following six conditions;

(i)
p
d12 =

p
d13 +

p
d23 and

p
d12 =

p
d14 +

p
d24

(ii)
p
d13 =

p
d12 +

p
d23 and

p
d13 =

p
d14 +

p
d34

(iii)
p
d14 =

p
d12 +

p
d24 and

p
d14 =

p
d13 +

p
d34
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(iv)
p
d23 =

p
d12 +

p
d13 and

p
d23 =

p
d24 +

p
d34

(v)
p
d24 =

p
d12 +

p
d14 and

p
d24 =

p
d23 +

p
d34

(vi)
p
d34 =

p
d13 +

p
d14 and

p
d34 =

p
d23 +

p
d24

The proof is as follows. Let A be kÇk nonsingular matrix such that V = A0A.
Then, by the transformation Y = XAÄ1, vec(Y ) ò Nkp(0; Ik ä Ip). Further, let
that

Ä= fç ; ç= (c0V c)Ä1=2Ac; 8c 2 g:
Then, we can write the coverage probability Q(tÉp;V ; ) as

Q(tÉp;V ; ) = Prf(Y Ac)0(óS)Ä1(Y Ac) î tÉp(c0V c); 8c 2 g
= Prf(Y ç)0(óS)Ä1(Y ç) î tÉp; ç2 Äg:

Further, we can write óS = H1LH
0
1 such that L = diag(l1; : : : ; lp); l1 ï : : : ï

lp. Then H1 is a pÇ p orthogonal matrix and L and H1 are independent. Then

Q(tÉp;V ; ) = EL[Prf(Y ç)
0LÄ1(Y ç) î tÉp; ç2 Äg]:

Since the dimension of the space spanned by equals three when k = 4 , there
exists a k Ç k orthogonal matrix H2 such that

ç0mH2 = [é
0
m; 0]; m = 1; : : : ; 6;

where ém(= (ém1; ém2; ém3)0) is a 3-demensinal vector. Here ém's satisfy é
0
mém = 1.

Then we can write

ém =

0

@

sinåm1 sinåm2
sinåm1 cosåm2
cosåm1

1

A ; m = 1; : : : ; 6;

where 0 î åm1 < ôand 0 î åm2 < 2ô.
Further, we can write Y H2 = [U ; eU ], whereU is pÇ3. LettingU = [u1; : : : ;up]0

where

us = jjusjj

0

@

sinís1 sinís2
sinís1 cosís2
cosís1

1

A = rs

0

@

sinís1 sinís2
sinís1 cosís2
cosís1

1

A ; s = 1; : : : ; p;

and r2s , ís1 and ís2 are independently distributed as ü
2 distribution with three de-

grees of freedom, uniform distribution on U[0, ô) and uniform distribution on U[0,
2ô), respectively. Then the coverage probability can be written as

Q(tÉp;V ; ) = EL;R

h

Pr
n

p
X

s=1

r2s
ls
(sinís1 sinís2 sinåm1 sinåm2

+sinís1 cosís2 sinåm1 cosåm2 + cosís1 cosåm1)
2 î tÉp

for m = 1; : : : ; 6
oi

;
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where R = diag(r1; : : : ; rp) is independent of L = diag(l1; : : : ; lp).
Relating the coverage probability Q(tÉp;V ; ), we consider the probability

G(å) = Pr
h

p
X

s=1

r2s
ls
(sinís1 sinís2 sinåm1 sinåm2 + sinís1 cosís2 sinåm1 cosåm2

+ cosís1 cosåm1)
2 î tÉp for m = 1; : : : ; 6

i

; (6)

where å= (å11; å21; å31; å41; å51; å61; å12; å22; å32; å42; å52; å62)0.
Also, we deåne the volumes ä and Dm, m = 1; : : : ; 6, as follows.

ä= f(ís1; ís2)p : 0 < ís1 < ô; 0 < ís2 < 2ô; 1 î s î pg;

Dm =
n

(ís1; ís2)
p 2 ä :

p
X

s=1

r2s
ls
(sinís1 sinís2 sinåm1 sinåm2

+ sinís1 cosís2 sinåm1 cosåm2 + cosís1 cosåm1)
2 > tÉp

o

:

Then, we note that the probability (6) is equal to 1Ä volume[[6m=1Dm]=(2ô2)p.
Therefore, to minimize G(å) is equivalent to maximizing the value for volume

of the union of Dm's. Similarly, to maximize G(å) is equivalent to minimizing the
value for volume of the union of Dm's.
Next, in the case of k = 4 for pairwise comparisons, we can assume that subset

c's of the set are as follows.

c1 =

0

B

B

@

1
0
0
Ä1

1

C

C

A

; c2 =

0

B

B

@

1
0
Ä1
0

1

C

C

A

; c3 =

0

B

B

@

1
Ä1
0
0

1

C

C

A

;

c4 =

0

B

B

@

0
1
0
Ä1

1

C

C

A

; c5 =

0

B

B

@

0
1
Ä1
0

1

C

C

A

; c6 =

0

B

B

@

0
0
1
Ä1

1

C

C

A

:

Letting ç corresponding with ca as ça (a = 1; : : : ;k C2), then we have

ç0açb =
c0aV cb

p

c0aV ca
p

c0bV cb
; (7)

and ç0açb = é
0
aéb.

Here we note that G(å) and Dm, m = 1; : : : ; 6, can be written as

G(é1;é2;é3;é4;é5;é6)

= Pr
h

p
X

s=1

r2s
ls
(ém1 sinís1 sinís2 +ém2 sinís1 cosís2 +ém3 cosís1)

2 î tÉp

for m = 1; : : : ; 6
i

;
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and

Dm =
n

(ís1; ís2)
p 2 ä :

p
X

s=1

r2s
ls
(ém1 sinís1 sinís2 +ém2 sinís1 cosís2

+ém3 cosís1)
2 > tÉp

o

:

Assuming that dij = d, we can put ém's as

é1 =

0

@

1
2
p
3

Ä1
2

Ä 2p
6

1

A ;é2 =

0

@

1
2
p
3
1
2
Ä 2p

6

1

A ;é3 =

0

@

Ä 1p
3

0
Ä 2p

6

1

A ;

é4 =

0

@

p
3
2
Ä1
2
0

1

A ; é5 =

0

@

p
3
2
1
2
0

1

A ; é6 =

0

@

0
Ä1
0

1

A ;

where ém's satisfy é
0
1é2 =

1
2 , é

0
1é3 =

1
2 , é

0
1é4 =

1
2 , é

0
1é5 = 0, é

0
1é6 =

1
2 , é

0
2é3 =

1
2 ,

é02é4 = 0, é02é5 =
1
2 , é

0
2é6 = Ä1

2 , é
0
3é4 = Ä1

2 , é
0
3é5 = Ä1

2 , é
0
3é6 = 0, é04é5 =

1
2 ,

é04é6 =
1
2 and é

0
5é6 = Ä1

2 .
For example, putting r21=l1 = 1 and t

É
p = 0:5 in the case of p = 1, we have

G(é1;é2;é3;é4;é5;é6)

= Pr
h

(siní11 siní12ém1 + siní11 cosí12ém2 + cosí11ém3)
2 î 0:5

for m = 1; : : : ; 6
i

;

and

Dm =
n

(í11; í12) 2 ä : (siní11 siní12ém1 + siní11 cosí12ém2 + cosí11ém3)2 > 0:5
o

:

It is noted from Figures 1 ò 6 that the area of [6m=1Dm is equal to ä when
dij = d. Hence, the area of [6m=1Dm is maximum when dij = d. It is may be
noted that the volume[[6m=1Dm] for p ï 2 is maximum when dij = d. Therefore,
we follow that Q(tÉp;V ; ) is minimum when dij = d. Further, by using Theorem
2.1 and Corollary 2.2 in Seo, Mano and Fujikoshi (1994), we have that Q(tÉp;V ; )
is minimum when V = I.
Secondly, we consider the case which volume[[6m=1Dm] is minimum. By the same

way, we note that é1, é2, é3, é4, é5 and é6 are all same when volume[[6m=1Dm] is
minimum. Therefore, é0aéb = é

0
aéa = 1(a 6= b), that is, ç0açb = 1. Hence we can get

the condition of V 1 as \
p
d14 =

p
d13 +

p
d34 and

p
d14 =

p
d12 +

p
d24". We note

that there exists the positive semi-deånite matrix V 1 such that \
p
d14 =

p
d13+

p
d34

and
p
d14 =

p
d12 +

p
d24".

We have the following theorem.
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Theorem 3. Let Q(t;V ; ) be the coverage probability for (5) with a known matrix
V . Then, for any positive deånite matrix V in the case of k = 4, it holds that

1Äã= Q(tÉp; I ; ) î Q(tÉp;V ; ) < Q(tÉp;V 1; );

where tÉp = t
2
p=ó, V 1 satisåes with one of the conditions \

p

dij =
p
dil +

p

djl and
p

dij =
p
dim +

p

djm" and i; j; l; m take another value each other.

We note that there dose not exist a positive deånite matrix such that \
p
d12 =p

d13+
p
d23 and

p
d12 =

p
d14+

p
d24" or \

p
d13 =

p
d12+

p
d23 and

p
d13 =

p
d14+p

d34" or \
p
d14 =

p
d12 +

p
d24 and

p
d14 =

p
d13 +

p
d34" or \

p
d23 =

p
d12 +

p
d13

and
p
d23 =

p
d24 +

p
d34" or \

p
d24 =

p
d12 +

p
d14 and

p
d24 =

p
d23 +

p
d34" or

\
p
d34 =

p
d13 +

p
d14 and

p
d34 =

p
d23 +

p
d24". However, there exists V 1 as a

positive semi-deånite matrix. For example, in the case k = 4, the one of such matrix
V 1 is given by

V 1 =

2

6

6

4

3 0 1 2
0 6 4 2
1 4 3 2
2 2 2 2

3

7

7

5

:

3. Numerical examinations
This section gives some numerical results of the coverage probability for T 2maxÅp

statistic and the upper percentiles of the statistic by Monte Carlo simulation. The
Monte Carlo simulations are made from 10 replications of 1,000,000 simulations
for each of parameters based on normal random vectors based on Nkp(0; V ä Ip).
The sample covariance matrix S is computed on the basis of random vectors from
Np(0; Ip). Also, we note that S is formed independently in each time with ódegrees
of freedom. The average of 10 replications based on 1,000,000 simulations is used
as the simulated value of the statistic.
Table 1 gives the upper percentiles tpÅV of TmaxÅp (=

p

T 2maxÅp) and the upper
bounds of the coverage probability for the following parameters: ã= 0:1; 0:05; 0:01,
p = 1; 2; 5, k = 4, ó= 20; 40; 60, and V = I, V 1, V 2 and V 3, that is,

I =

0

B

B

@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

C

C

A

; V 1 =

0

B

B

@

3 0 1 2
0 6 4 2
1 4 3 2
2 2 2 2

1

C

C

A

;

V 2 =

0

B

B

@

3 2 2 1
2 3 2 1
2 2 3 1
1 1 1 1

1

C

C

A

; V 3 =

0

B

B

@

1 0 0 0
0 0:5 0 0
0 0 0:1 0
0 0 0 0:05

1

C

C

A

:

Here we note that I and V 2 are positive deånite matrices such that dij = d, V 1 is a
positive semi-deånite matrix such that

p
d12 =

p
d13+

p
d23 and

p
d12 =

p
d14+

p
d24,
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and V 3 is a positive deånite matrix such that d12 = 1:5, d13 = 1:1; d14 = 1:05;
d23 = 0:6; d24 = 0:55 and d34 = 0:15 (dij 6= d).
It can be seen from simulation results in Table 1 that the upper percentiles with

V = I are always largest values and those with V = V 1 are the lower limit values
in any positive deånite matrix V for each parameter. Also, the upper percentiles
with V = V 3 are always between those with V = I and those with V = V 1. Since
I and V 2 are positive deånite matrices such that dij = d, it may be conårmed from
simulation results that the upper percentiles with V = V 2 are same as those with
V = I.
It is noted from Table 1 that the upper bounds for the conservativeness of mul-

tiple pairwise comparisons can be obtained. For example, when p = 2, ó= 20 and
ã= 0:1, we note that 0:900 î Q(tÉp;V ; ) < 0:977 for any positive deånite V . It
may be noted that the coverage probabilities do not depend on p. Also, it may be
noted that the coverage probabilities are large as óis large.
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Table 1: Simulation results for pairwise comparison
p ó ã tpÅI tpÅV2 tpÅV3 tpÅV1 Q(tÉp;V 1; )
1 20 0.01 3.548 3.547 3.509 2.844 0.998

0.05 2.799 2.798 2.762 2.085 0.989
0.1 2.448 2.448 2.412 1.724 0.976

40 0.01 3.320 3.320 3.285 2.706 0.998
0.05 2.681 2.681 2.646 2.022 0.989
0.1 2.368 2.367 2.333 1.683 0.977

60 0.01 3.250 3.250 3.218 2.661 0.998
0.05 2.642 2.642 2.608 2.000 0.989
0.1 2.342 2.342 2.308 1.670 0.977

2 20 0.01 4.301 4.302 4.259 3.534 0.998
0.05 3.491 3.491 3.451 2.723 0.989
0.1 3.118 3.118 3.079 2.343 0.977

40 0.01 3.896 3.896 3.861 3.262 0.998
0.05 3.251 3.250 3.214 2.576 0.990
0.1 2.938 2.938 2.902 2.238 0.978

60 0.01 3.774 3.773 3.740 3.182 0.998
0.05 3.177 3.177 3.142 2.532 0.990
0.1 2.883 2.883 2.848 2.207 0.978

5 20 0.01 6.293 6.293 6.232 5.266 0.998
0.05 5.214 5.214 5.160 4.223 0.989
0.1 4.731 4.731 4.679 3.746 0.977

40 0.01 5.155 5.154 5.115 4.456 0.998
0.05 4.450 4.449 4.409 3.709 0.990
0.1 4.112 4.112 4.071 3.345 0.978

60 0.01 4.866 4.866 4.832 4.244 0.998
0.05 4.246 4.247 4.209 3.569 0.990
0.1 3.944 3.944 3.906 3.234 0.979
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