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Abstract

In this paper, conservative simultaneous confidence intervals for pairwise
comparisons among mean vectors in multivariate normal distributions
are considered. The affirmative proof of the multivariate generalized
Tukey conjecture in the case of four mean vectors can be completed.
Further, the upper bound for the conservativeness of the multivariate
Tukey-Kramer procedure is also given. Finally, numerical results by

Monte Carlo simulations are given.
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1. Introduction

Consider the simultaneous confidence intervals for pairwise multiple compar-
isons among mean vectors from the multivariate normal populations. Let M =
(41, ..., ;) be the unknown p x k matrix of £ mean vectors corresponding to
the k treatments where p; is the mean vector from ith population. Also, let
M = [py,...,1;) be the estimator of M such that vec(X) is distributed as
Nip(0,V ® X), where X = M-M,V = [vi;] is a known k X k positive defi-
nite matrix and X is an unknown p X p positive definite matrix, and vec(-) denotes
the column vector formed by stacking the columns of the matrix under each other.
Further, we assume that .S is an unbiased estimator of 3 such that vS' is indepen-
dent of M and is distributed as a Wishart distribution W,(%,v). Then, we have
the simultaneous confidence intervals for pairwise comparisons among mean vectors
given by

a/Mbe | dMb+t(bVb)/2(a'Sa)?|, VacRP, VbeB, (1)

where R? is the set of any nonzero real p-dimensional vectors and B is a subset in
the k-dimensional space such that

B={bcR:b=e; —e;, 1<i<j<k},

e; is a unit vector of the k-dimensional space having 1 at i-th component and 0 at
others. We note that (1) can be expressed as

a'(p; — 1y) € [ a'(p; — THES’ (dija’Sa)l/ﬂ Va eRP, 1 <i<j <k,

where dij = Vi — 2’Uij + ’Ujj.
In order to give the simultaneous confidence intervals, however, we have to decide

the unknown value of ¢(> 0) which is the upper 100« percentile of the T2, statistic,
Xb)S'Xb
T2 = (Xb)S— Xb 2
max -p Igg%{ b/Vb } ( )
= max {(xi —2;)'(dyS) " (@i — x5)}- (3)

Unfortunately, it is difficult to find the exact value of t. Then, some asymptotic
approximations for the upper percentiles of Tiax.p statistic have been discussed by
Siotani (1959a, 1959b, 1960), Krishnaiah (1979), Siotani, Hayakawa and Fujikoshi
(1985), Seo and Siotani (1992), Seo (1995), and so on.

In the case that V' = I, TZ,,  statistic is reduced as the same as half of the
multivariate Studentized range statistic R2,,, (see, e.g., Seo and Siotani (1992)). So,
as an approximation procedure, Seo, Mano and Fujikoshi (1994) proposed the mul-
tivariate Tukey-Kramer procedure which is a simple procedure by replacing with the
upper percentile of the R2 __statistic as an approximation to the one of Tgm_p statis-
tic for any positive definite matrix V. This procedure is the multivariate version

of Tukey-Kramer procedure (Tukey 1953; Kramer 1956, 1957). The Tukey-Kramer
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procedure is an attractive and simple procedure for pairwise multiple comparisons.
(see, e.g., Hochberg and Tamhane(1987)).

As for the univariate Tukey-Kramer procedure, the generalized Tukey conjecture
is known as the statement that the TK procedure yields the conservative simultane-
ous confidence intervals for all pairwise comparisons among means (see, e.g., Ben-
jamini and Braun (2002)). Even for the univariate case, there has been no analytical
proof of the generalized Tukey conjecture except the special cases. Theoretical dis-
cussions related to this conjecture are referred to Hayter(1984, 1989), Brown(1984),
Uusipaikka (1985) and Spurrier and Isham (1985). Further, Lin, Seppénen and
Uusipaikka(1990) have discussed the generalized Tukey conjecture for pairwise com-
parisons among the components of the mean vector.

As for the multivariate Tukey-Kramer procedure, the multivariate version of
the generalized Tukey conjecture has been affirmatively proved in the case of three
correlated mean vectors by Seo, Mano and Fujikoshi (1994). Further, relating to
multivariate Tukey-Kramer conjecture, Seo (1996) gave the upper bound for con-
servativeness of the procedure for the pairwise comparisons among mean vectors.
The related discussion for the univariate case is referred to Somerville (1993). The
purpose of this paper is to give the affirmative proof of the multivariate generalized
Tukey conjecture in the case of four mean vectors.

Although we do not discuss for comparisons with a control, Seo(1995) proposed
the conservative procedure for the case of comparisons with a control, which is
similar to the multivariate Tukey-Kramer procedure. Also, Seo and Nishiyama(2006)
discuss the bound for these conservative procedures for pairwise comparisons and
comparisons with a control in the case of three correlated mean vectors.

The organization of the paper is as follows. In Section 2, the conservativeness
of the multivariate Tukey-Kramer procedure for four mean vectors and its upper
bound for the conservativeness are discussed. Finally, we also give some numerical
results by Monte Carlo simulations.

2. The multivariate Tukey-Kramer procedure
The simultaneous confidence intervals for all pairwise comparisons by the mul-
tivariate Tukey-Kramer procedure are given by

a'(p;, — p;) € | a'(p; — py) itp.n/dija’Sa} NaeRP, 1<i<j<k (4)

where tf), ; 1s the upper « percentile of Tiax.p statistic with V' = I, that is, tg, 1 =¢*/2
and ¢% = qg’k’y(a) is the upper a percentile of the p-variate Studentized range statis-
tic with parameters k& and v. By a reduction of relating to the coverage probability
of (4), Seo, Mano and Fujikoshi (1994) proved that the coverage probability in the
case k = 3 is equal or greater than 1 — « for any positive definite matrix V. Using
the similar reduction, Seo (1996) discussed the bound of conservative simultaneous
confidence levels.



Consider the probability
Q(t,V,B) = Pr{ (Xb)(vS) '(Xb) < t(b)Vb), YbEB }, (5)

where t is any fixed constant. Without loss of generality, we may assume 3 = I,
when we consider the probability (5).

When t =t (= t2 ;/v) and B = C, the coverage probability (5) is the same as the
coverage probability of (4). The conservativeness of the simultaneous confidence
intervals (4) means that Q(t5,V,C) > Q(t5,I,C) = 1 —a. The inequality is
known as the multivariate generalized Tukey conjecture. Then we have the following
theorem for the case k = 3 by using same line of the proof of Theorem 3.2 in Seo,
Mano and Fujikoshi (1994).

Theorem 1. Let Q(t, V,B) be the coverage probability (5) with a known matriz
V' for the case k = 3. Then, for any positive definite matriz V', it holds that

l—a= Q(t;k)?-[v (C) S Q(ti‘;v VJ(C) < Q(t;k)? VO7(C)7

wheret;:tg_f/l/,@:{cGRk:c:ei—ej, 1 <i<j <k} and Vi has

the condition such that /dia = Vdiz + Vdaz or V/diz = Vdig + Vdaz or V/doz =
Vg 4 +/dis.

In connection with Theorem 1, we have the following conjecture in the case of
k> 4.

Conjecture 2. Let Q(t,V,B) be the coverage probability for (5) with a known
matriz V. Then, for any positive definite matrix V', it holds that

l-—a= Q(t;;?-l-v (C) < Q(t;k)v VJ(C) < Q(t;;” V17(C)7

where tf = t2 /v, C = {c € R': c=e—¢€, 1 <i<j<k}, Vi satis-

fies with one of the conditions “\/di; = \/dy, + \/dj, and \/di; = \/da, + \/d;i,
and ... and \/dz‘j = w/dilk,g + djlk,g ”, ’i, j, ll, 12, c. ,lk_3 and lk_g take an-
other value each other.

In this paper, we consider the proof of the case of £ = 4 in Conjecture 2. That
is, V1 is a matrix with one of the following six conditions;

(1) Vdia = Vdiz + Vdaz and /dy2 = V/dis + Vdos
(i) Vdi3 = Vdia + Vdas and \/di3 = /dig + V/d34
(iii) Vdis = Vdi2 + Vdas and Vdig = /diz + V/ds4
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(iv) V/dog = Vd12 + V/di3 and v/daz = V/day + V/d34
(V) hV4 d24 =V d12 + vV d14 and YV d24 =\ d23 + vV d34
(Vi) Vdsa = v/di3 + /di4 and /dzs = /dag + /das

The proof is as follows. Let A be k x k nonsingular matrix such that V = A’A.
Then, by the transformation Y = X A™', vec(Y) ~ N, (0, I, ® I,,). Further, let
that

IF={~;:~v=(Ve) Y?A¢c, Ve e C.

Then, we can write the coverage probability Q(t5, V,C) as
Qt;,V,C) = Pr{(YAc)(vS) ' (YAc) <ti(c'Vc), Yc e C}
= Pr{(Y7)(vS)"'(Yv) <t;, vy €T}

Further, we can write vS = H{LH/ such that L = diag(ly,...,l,), Iy > ... >
l,. Then H is a p X p orthogonal matrix and L and H; are independent. Then

Q(trw V7(C> = EL[Pr{(Y7)/L_1<Y7) < t:w Y€ I‘H

Since the dimension of the space spanned by C equals three when & = 4 | there
exists a k x k orthogonal matrix Hs such that

~ Hy=1[60], m=1,...,6,

where 8,,(= (6m1, Om2, m3)’) is a 3-demensinal vector. Here 6,,’s satisfy 8,6, = 1.
Then we can write

sin ﬁml sin ﬁm2
6= | sinfBpicosfBma |, m=1,...,6,
€08 1

where 0 < 3,1 < mand 0 < (2 < 2m.
Further, we can write Y Hy = [U, U], where U is px3. LettingU = [uq,...,u,|’
where

sin 04 sin G4 sin B4 sin 049
us = ||ug]| | sinfsicosbs | =75 | sinfscosbsy |, s=1,...,p,
cos 64 cos 04

and r2, 0, and 0, are independently distributed as x? distribution with three de-
grees of freedom, uniform distribution on U0, ) and uniform distribution on UJ0,
27), respectively. Then the coverage probability can be written as

P2

Qt,V.C)=Er R [Pr { Z Z—S(Sin 051 8in Ogo Sin P17 Sin Bo

s=1 %
4 8in 051 €08 Oo Si0 By COS Bma + c0s g1 o8 Bm1)? < t

formzl,...,6}],

*
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where R = diag(ry,...,7p) is independent of L = diag(ly,...,1l,).
Relating the coverage probability Q(t;, V', C), we consider the probability

2
G(B) = Pr [ Z z—s(sin 041 8in B9 Sin By SIN Byna + Sin Bg1 cos Ogo sin Br,1 €OS B
s=1 %
+ 08 05 €08 By )? < B85 form=1,...,6 |, (6)

where 3 = (5117 Ba1, 831, Ba1, Bs1, Be1, B2, Ba2, B32, Baz, P52, 562)/-

Also, we define the volumes 2 and D,,, m =1,...,6, as follows.
Q= {(0s1,052)" : 0 <051 <7,0 <05 <2m,1<5<p},

p 2
D, = { (Os1,052)P € Q2 Z %(sin 041 sin B9 Sin Byp1 SIN B

s=1 %

+ sin @41 cos B4 sin F,1 €S B + cos B cos ﬁml)z > t; } .

Then, we note that the probability (6) is equal to 1 — volume[US _, D,,]/(272)?.
Therefore, to minimize G(3) is equivalent to maximizing the value for volume
of the union of D,,’s. Similarly, to maximize G(8) is equivalent to minimizing the
value for volume of the union of D,,’s.
Next, in the case of k£ = 4 for pairwise comparisons, we can assume that subset
c’s of the set C are as follows.

1 1 1
Cci — 0 Co — 0 C3 — -1
0 ’ -1 |’ 0 ’
~1 ) 0 ) 0 )
0 0 0 \
Cyq = 1 Cs — 1 Cg — 0
0 | 1 | 1|
—1 0 —1

Letting « corresponding with ¢, as v, (a = 1,...,; C3), then we have

/
c, Ve
)
\/chca \/chcb

7;7b =

and 7,7, = 6,6y
Here we note that G(8) and D,,, m = 1,...,6, can be written as

G(617 627 637 647 657 66)
12 . . . 2
=Pr [ Z l—(6m1 Sin 01 81N O + Oz Sin 01 €08 Osp + 6z cos O1)" <t
s=1 %

for m=1,...,6 |,



and

hS]

2
D,, = { (Os1,052)P Z l—s m1 Sin By sin B9 + 0o sin g1 cos O

+6ms cos 0g1)% > ts } )

Assuming that d;; = d, we can put 6,,’s as

1 1 1
61 = ) 762 - 2 763 = 0 )
_ 2 _2 _ 2
V6 V6 V6
V3 V3 0
2 2
64 = _% ) 65 - % ) 66 = -1 )
0 0 0

where 8,,’s satisfy 6§76, = %, 6,65 = %, 6,6, = 1 , 6 65 = 0 6166 = %, 6565 = %,
656, = 0, 8565 = %, 6'266 = —%, 6,6, = —1 6;,65 6'66 =0, §,65 = %,
6,(56 = 1 and 6/66 =

For example puttmg rl/ll = 1 and ¢; = 0.5 in the case of p =1, we have

G(617 627 637 647 657 66)

=Pr [ (sin 611 sin 0198,,1 + sin 011 cos 01269 + cos 0116ms)* < 0.5
form=1,...,6 |,
and
D,, :{ (011, 012) € 2 (sin By sin O196,m1 + sin 11 cos O120ma + 08 0116,,3)% > 0.5 } )

It is noted from Figures 1 ~ 6 that the area of US,_, D,, is equal to Q when
d;; = d. Hence, the area of W8 _, D,, is maximum when d;j = d. It is may be
noted that the volume[US,_; D,,] for p > 2 is maximum when d;; = d. Therefore,
we follow that Q(t5, V', C) is minimum when d;; = d. Further, by using Theorem
2.1 and Corollary 2.2 in Seo, Mano and Fujikoshi (1994), we have that Q(t;, V', C)
is minimum when V' = 1I.

Secondly, we consider the case which volume[US,_; D,,] is minimum. By the same
way, we note that 81, s, 83, 84, 65 and 8 are all same when volume[US _, D,,] is
minimum. Therefore, 8,8, = 6,6, = 1(a # b), that is, vy, = 1. Hence we can get
the condition of V| as “v/diy = V/di3 + /das and /diy = V/di2 + \/das”. We note
that there exists the positive semi-definite matrix V' such that “v/diy = v/diz++/dss
and v/diy = v/diz + V/dat”.

We have the following theorem.



Theorem 3. Let Q(t,V,B) be the coverage probability for (5) with a known matriz
V. Then, for any positive definite matrix V' in the case of k = 4, it holds that

1—a=Q(t;,1,C) < Q(t,V,C) < Q(t;, V;,0),

where t5 = tf)/l/, V1 satisfies with one of the conditions “\/d;; = v/dy + \/dj and
\dij = Vi + \/djm,” and 1, j, I, m take another value each other.

We note that there dose not exist a positive definite matrix such that “\/dio =
Vdis+V/dys and v/diy = /dig+/das” or “V/diz = /diy +V/dys and v/dis = /dis +
Vdsy” or “\/diy = \/diy + /doy and /dyy = /di3 + \/dsy” or “\/dyz = \/dys +\/di3
and /a3 = /dys + V/dzy” or “\/dpy = /diy + V/dis and \/dpy = /da3 + /d3s” or
“Vdsg = \/dis + /dis and /dsy = \/dos + \/dos”. However, there exists V' as a

positive semi-definite matrix. For example, in the case k& = 4, the one of such matrix
V1 is given by

V=

o~ O W
CINNG )
NCRNJURINNG
IO

3. Numerical examinations

This section gives some numerical results of the coverage probability for 7 Iiax,p
statistic and the upper percentiles of the statistic by Monte Carlo simulation. The
Monte Carlo simulations are made from 10 replications of 1,000,000 simulations
for each of parameters based on normal random vectors based on N,(0, V ® I,,).
The sample covariance matrix S is computed on the basis of random vectors from
N,(0, I,). Also, we note that S is formed independently in each time with v degrees
of freedom. The average of 10 replications based on 1,000,000 simulations is used
as the simulated value of the statistic.

Table 1 gives the upper percentiles t,.v of Thaxp (= ,/Tgm_p) and the upper
bounds of the coverage probability for the following parameters: a = 0.1,0.05, 0.01,
p=1,2,5 k=4, v=20,40,60, and V = I, V1, V5 and V3, that is,

1000 301 2
0100 0 6 4 2
1_0010"/1_14327
000 1) 22 2 2
3221 1 0 0 0
2 3 21 005 0 0
V2_2231’V3_000.10

111 1) 0 0 0 005

Here we note that I and V5 are positive definite matrices such that d;; = d, V1 is a

positive semi-definite matrix such that v/dio = v/ di3++/daz and \/d1o = V/di4++/day,
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and V3 is a positive definite matrix such that dio = 1.5, di3 = 1.1, di4 = 1.05,
d23 = 067 d24 = (.55 and d34 =0.15 (d’U 7é d)

It can be seen from simulation results in Table 1 that the upper percentiles with
V = I are always largest values and those with V' = V'; are the lower limit values
in any positive definite matrix V for each parameter. Also, the upper percentiles
with V' = V3 are always between those with V' = I and those with V' = V1. Since
I and V5 are positive definite matrices such that d;; = d, it may be confirmed from
simulation results that the upper percentiles with V' = V', are same as those with
V=1

It is noted from Table 1 that the upper bounds for the conservativeness of mul-
tiple pairwise comparisons can be obtained. For example, when p = 2, v = 20 and
a = 0.1, we note that 0.900 < Q(t5, V,C) < 0.977 for any positive definite V. It
may be noted that the coverage probabilities do not depend on p. Also, it may be
noted that the coverage probabilities are large as v is large.
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Figure 1. Dy when d;; = d Figure 2. Dy U Dy when d;; = d

0
Figure 3. Dl U D2 U D3 Figure 4. Dl U DQ U D3 U D4
when dz'j =d when dij =d
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011 0 ' 011
Figure 5. D1 U Dy U D3 U Dy U Dy Figure 6. D1 U Dy U D3 U Dy U Dg U Dg
when d;; = d when d;; = d
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Table 1: Simulation results for pairwise comparison

p v - tpr to v tovs towi Q(t;, Vi, C)
1 20 0.01 3.548 3.547 3.509 2.844 0.998
0.05 2.799 2.798 2.762 2.085 0.989
0.1 2448 2.448 2.412 1.724 0.976
40 0.01 3.320 3.320 3.285 2.706 0.998
0.05 2.681 2.681 2.646 2.022 0.989
0.1 2368 2.367 2.333 1.683 0.977
60 0.01 3.250 3.250 3.218 2.661 0.998
0.05 2.642 2.642 2.608 2.000 0.989
0.1 2342 2.342 2.308 1.670 0.977
2 20 0.01 4.301 4.302 4.259 3.534 0.998
0.05 3.491 3.491 3.451 2.723 0.989
0.1 3.118 3.118 3.079 2.343 0.977
40 0.01 3.896 3.896 3.861 3.262 0.998
0.05 3.251 3.250 3.214 2.576 0.990
0.1 2938 2938 2902 2.238 0.978
60 0.01 3.774 3.773 3.740 3.182 0.998
0.05 3.177 3.177 3.142 2.532 0.990
0.1 2.883 2.883 2.848 2.207 0.978
5 20 0.01 6.293 6.293 6.232 5.266 0.998
0.05 5.214 5.214 5.160 4.223 0.989
0.1 4.731 4.731 4.679 3.746 0.977
40 0.01 5.155 5.154 5.115 4.456 0.998
0.05 4.450 4.449 4.409 3.709 0.990
0.1 4.112 4.112 4.071 3.345 0.978
60 0.01 4.866 4.866 4.832 4.244 0.998
0.05 4.246 4.247 4.209 3.569 0.990
0.1 3.944 3.944 3.906 3.234 0.979
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